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Abstract—How many different classes of partially distinguish-
able landmarks are needed to ensure that a robot can always see
a landmark without simultaneously seeing two of the same class?
To study this, we introduce thechromatic art gallery problem. A
guard setS C P is a set of points in a polygonP such that for
all p € P, there exists ans € S such that s and p are mutually
visible. Suppose that two members of a finite guard set C P
must be given different colors if their visible regions overlap.
What is the minimum number of colors required to color any
guard set (not necessarily a minimal guard set) of a polygon
P? We call this number, x¢(P), the chromatic guard number
of P. We believe this problem has never been examined before,
and it has potential applications to robotics, surveillance, sensor

networks, and other areas. We show th‘_"‘t for any spiral pO'YGO” Fig. 1. [left] Three guards in a polygoR. The yellow region denotes the
Papi, xc(Pspi) < 2, and for any staircase polygon (strictly points that are visible from both; and s, so s; and s> must be given
monotone orthogonal polygon) Psia, xc(Psta) < 3. For lower different colors. The purple region is the area visible oingm s1, and the
bounds, we construct a polygon with4k vertices that requires &  green region is the area visible only frosp. The blue region is visible from
colors. We also show that for any positive integek:, there exists a  s3. Since this region does not intersect with the points véstbdm s, or s2,
monotone polygonM, with 3k? vertices such thatyg(My) > k,  the guardss may be colored the same as or s3. [right] A guard placement
and for any odd integer k, there exists an orthogonal polygon and polorlng th_at uses only two colors. This is the minimum nunatbeolors
Ry, with 4k* + 10k + 10 vertices such thatyg(Rx) > k. required for this polygon.

I. INTRODUCTION colors) were found to be worse for human iris identification

Suppose a robot is navigating a region populated withan weaker cameras, as .the more powerful cameras would
colored landmarks. The robot is equipped with the followin§e€ false differences in different pictures of the same eye.
primitives: drive toward the landmark, drive away from thdlinimizing the number of landmark classes could also make
landmark, and drive in circles around the landmark. If thi& SO that only the “most different” classes are used, ingiren
robot were in an area where two landmarks with the sariféé Separation between sensor data points and decreasing
color are visible, then its motion primitives may becomé&lassification errors. The problem of discovering the most
unpredictable. If it can see two different green landmatthesn distinctive v!sual landmarks for mobllle robpt navigatiomsv
what is it to do when told “drive toward the green landmark*@ddressed in_[11]. Other research in which landmarks are
This raises a natural question: How many classes of pmtiaﬁpemflcally selected to reduce classification error inel{20]
distinguishable guards are required to guard a given agma (§”d [24].
Figure[1)? Equivalently, how many classes of landmarks areThis is closely related to the original art gallery problem.
required so that the robot can always see a landmark (so thidg impossible to list all of the significant results about a
it can always navigate), but never two landmarks of the sargalleries in general polygons, but some of the most importan
class (so that it does not get confused)? In this paper, wie tnworks include results on tight bounds [2]. [4] and exterior
answer this question for bounded simply connected polyigonsibility [5]. Orthogonal art galleries are one of the most
areas. We assume that a robot cannot see a given landmagemmonly studied variants, with notable results includigt
the polygon boundary is in the way. bounds on the number of required guards [8]/ [15], [21] and

There are many reasons why one would want to minimiz9unds on the number of guards required for exterior vigjbil
the number of landmark classes. Adding more classes RsPblemsi[7]. Results specific to monotone polygons include
landmarks means that a more sophisticated sensing sysf@Hnds on edge guards [1] and approximation algorithms with
is required. An eight color camera is easier to construat th@ounds independent of the number of polygon vertices [18].
a 32-bit color camera. Even if a camera can see thousarhdﬁst of the important results from before 1987 are discussed
or millions of colors, differences in light or shade couldlst in [22]. We prove lower bounds on the chromatic art gallery
make classification difficult. This was demonstrated|in [12npumber for general, monotone, and orthogonal polygons.
in which more powerful cameras (in terms of number of We also prove upper bounds on the chromatic art gallery



number for spiral polygons and staircase polygons (alswkno Ill. L OWER BOUNDS ON THE CHROMATIC GUARD NUMBER
as strictly monotone orthogonal polygons). Spiral polygon
are a heavily studied area in visibility. Special resultstfos
class of polygons are available for the watchman route probl
[1€], the weakly cooperative guard problem|[14], the vistpi
graph recognition problem|[3], point visibility isomorsins
[16], and triangulation/ [25]. However, we are most integest
in spiral polygons because of their use as building blocks. Arheorem 2. For every integerk > 3, there exists a polygon
algorithm for decomposing general polygons into a minimurp, with 4k vertices such thak(Py) > k.

number of spiral polygons was describedlin| [10]. We choose )

to focus on spiral polygons because we think they could be Proof: The polygon P will be constructed fromk

a useful component in solving the chromatic guard numb8Rdgets, each consisting of four line segments. Each gadget

problem for general polygons, and staircase polygons fir thconsists of a nearly triangu.lar well and a line that connexts
similar potential as pieces of orthogonal polygons. the next gadget. The goal is to arrang®f these gadgets so

Section[l contains the formal definition of the problemt.hat every pair of guards conflict, and each guard can guard

Sectior(Ill contains proofs for lower bounds on the chromat/'® MOre than two convex vertices. _

guard number for general polygons, monotone polygons, and-6t ' Pe a simple arrangement df lines. Now, make
orthogonal polygons. Sectidi IV contains upper bounds &nClosed convex:-gon bounding boxB that contains each
the chromatic guard number for spiral polygons and stagrcad§tersection among the lines df in its interior, and has a

polygons. SectiofiV discusses directions of future reearc Poundary vertex on each line af. Place the well of a very
thin gadget at each of the boundary vertices (see Figuree2). L

p1 andp, be two convex vertices in the same well associated
with line T;. Note that, as the opening of the well is made

Let apolygon P be a closed, simply connected, polygonasmaller, and the width of the segment joinipg and ps is
subset ofR? with boundarydP. A point p € P is visible made narrower, the distance between a pgiatV(p;) N B
from point ¢ € P if the closed segmeriig is a subset of and the closest point tpin 73 N B becomes arbitrarily small.
P. The visibility polygonV(p) of a pointp € P is defined Note also that any guard placed in the well must lie on a
asV(p) = {¢ € P | q is visible fromp}. Let aguard set line segmen¥ C V(p;) UV (p3) that extends fronpips to a
S be a finite set of points irP such that J, .4 V'(s) = P. polygon edge connecting two reflex vertices on the other side
The members of a guard set are referred tg@ards A pair of P.
of guardss,t € S is called conflicting if V(s) N V() # Since each guard in a well has asegment that is
(. Let C(S) be the minimum number of colors required tarbitrarily close to its line from the arrangement, and h# t
color a guard sefS such that no two conflicting guards ardines in the arrangement intersect, thesegments from two
assigned the same color. L&(P) be the set of all guard guards in different wells must intersect (assuming that the
sets of P. Let xg(P) = mingeppy C(S). We call this value wells are thin and the well openings are narrow enough),
Xc(P) the chromatic guard numbeof the polygonP. Note so two guards in different wells must conflict. A guasd
that the number of guards used can be as high or low asidgated inB must conflict with every guard, as eveirgegment
convenient. We want to minimize the number of colors usefhtersectsB, and B C V (s). Therefore, all guards placed in
not the number of guards. P, will pairwise conflict. SinceP,, has 2k convex vertices,

The notion of conflict can be phrased in terms ok and each guard can see at most two convex verticgsiards
distance The link distance between two poinjsq € P are required; hencgs(P:) > k. Since Py, is made fromk
(denotedL D(p, q)) is the minimum number of line segmentgyadgets, each of which has four edgfs,has4k vertices.
required to connecp and ¢ via a polygonal path. Each line ]
segment must be a subset Bf A polygon P is monotoneif there exists a lineL such
that the intersection ofP and any line perpendicular to
L has at most one connected component. A polydbris
strictly monotoneif there exists a linel, such that any line

Proof: If LD(s1,s2) = 1, thens; and s, are mutually perpendicular td. intersectsdP at two or fewer points.
visible, and obviously conflict.

If LD(s1,s2) = 2, then there exists a point € P, such
thatsi7, 7s2 C P. Sincesir C P, r € V(s1). Sincersz C P,
r € V(s2). Because- is in V(s1) andV (s2), the intersection
of V(s1) andV (s2) is non-empty; thereforg, ands. conflict. Proof: The polygon M), is a variant of the standard

If s; andsz conflict, then let- be a point in the intersection “comb” used to show the occasional necessityof3 | guards
of V(s1) andV(sz). Sincer € V(s1), si7 C P. Sincer € in the standard art gallery problem [2]. The vertex listidf,
V(s2), 753 C P. Becausesi7,75; C P, LD(s1,52) < 2. m is [(1,2k — 2),(2,2k — 3), (4,2k — 3), (5,2k — 2),(6,2k —

A finite set of lines in the plane is simple arrangement

if each pair of lines intersects and no three lines interaéct
the same point. A simple arrangement of lines can be used
to construct a polygon that requires a linear number of solor
relative to the number of vertices in the polygon.

Il. PROBLEM DEFINITION

Theorem 1. Two guardssy,se € P conflict if and only if
LD(Sl, 82) S 2.

Theorem 3. For every integerk > 3, there exists a strictly
monotone polygoi/;, with 3k? vertices such thatq(My,) >
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Fig. 2. [left] A gadget. The pointp; andps are the convex vertices. For a guard to ggeand p> simultaneously, it would have to be placed in the
triangular region (bounded on top by the dotted lines) thasdhot extend far out of the well. [middle left] Two gadgetheTcones show the region outside
of the well where a convex vertex is visible. The yellow regiare where a single guard can see two convex vertices. Thareplace where a guard can
see three convex vertices. [middle right] As the well operi;ygnade smaller and the well is made more narrbp;) U V (p2) (purple region) becomes
more narrow and any line segments (colored in red) from a guard in the well must gmfec to arrangement lin&; (colored in blue). [right] A polygon
Py, for k = 5. The blue lines represent a simple arrangen¥emif £ = 5 lines. Each line in the arrangement is associated with thé ofel gadget.

Suppose the polygoid/, has a guard sef assigned to
it that requires onlyyq(My) colors. Considek consecutive
notches inMj that containm,,,..;, notch guards in total. All
of these notch guards will conflict with each other, and all of
these notch guards will conflict with all of the body guards.
Therefore,xg(My) > Muoten + Mbody- NOW, Note that each
body guard can guard at moktnotches. Since there afé
notches, by the pigeonhole principle, notch guards candguar
o ° at mostkm,,o:cn, NOtches (see Figuié 3). Since each notch must

2
Fig. 3. [top] The polygonM, for k — 3. The guards; is a body guard, P€ guardedkmyoicn +kmeoay > k%, SOMnoten +Mpody = k-

and the guard is an notch guard. [middle] Notch guards must be placed d&thereforex (M) > Mpotch + Miody > k-
leastk = 3 notches away from each other to avoid conflicts. Guardand u

so conflict asV (s1) N V(s2) = ¢, but s3, which is k = 3 notches away . . - .
from s; does not conflict withs;. A body guardss4 can only guardk = 3 A p0|yg0nP 1S 0rth090nal(somet'mes callecectilinear in

notches by itself. Portions of the rightmost four notchesblésfrom s, are  other publications) if all of its angles are right angles.
highlighted in purple. [bottom] A guard placement that regsithree colors. . )
Theorem 4. For every odd integerk > 3, there exists a

3) ... (4k% — 4,2k — 3), (4k2 — 3,2k — 2), (4k% — 2,0), (0, 0)]. monotone orthogonal polygaR;, with 4k2 +10k+10 vertices
This polygon hask? vertices, and it consists of a trapezoidaf!ch thatxa(Bx) = .
region (thebody region that hask? notchesattached to the Proof: We begin by introducing a family of orthogonal
shorter edge. Call the vertices withyacoordinate of2k — 2 polygons with two parameters;, i € 77 . The vertex list for
apex points Note that each notch has a unique apex point. folygonR,, ; is [(0,0), (0,i+1), (1,i+1), (1,4), (2,4), (2,i+
guard with coordinate$z,y) will be referred to as aotch 1),(3,i+1),(3,4),...,(2m—2,4), (2m—2,i+1),(2m—1,i+
guard if y > 2k — 3 and will be referred to as body guard 1), (2m—1,0)]. This takes the form of &m—1) xi rectangle
if y <2k — 3 (see Figurél3). with m 1 x 1-sized notches along the top edge (see Figlire 4).
Each body guard can guard up fto distinct notches. Any guard in R,,,; with a y-coordinate greater thah will
However, since the visibility polygon of a body guard inadsd be called anotch guard All other guards will be calledbody
the entire body region, and every guard’s visibility polpgoguards
intersects the body region, a body guard will conflict with There arem notches. Each notch has a ceiling of length
every other guard in the polygon. Let,.q, be the number 1. These ceilings are a subset of the polygon, so they must
of body guards used in a guard set/uf,. be covered. A body guard can cover the most ceiling if it is
Each notch guard can guard only one notch. However, tywtaced on the bottom of the polygon. Lél(s) be the total
notch guards will not conflict if they are placed far enougtength of ceiling that a body guardcan see. Suppose a body
away from each other. Since the bottom edge\ff has ay guards is placed on the bottom of the polygon underneath the
coordinate of0, two notch guards are forced to conflict onlyleft edge of a notch (thus maximizing the amount of ceiling it
if the distance between the apex points of their correspandican see to its right). This guard can see all of the notch that
notches istk —4 or less. Let a set of notches be&onsecutive it is underneath. It can see a length (6f- 2)/i of the next
if the maximum distance between the apex points of any twtch to the right(i — 4)/i of the notch after that, and so on
notches in the set idk — 4. Let m,,cr, be the maximum (see Figuré}4). Therefore, can seeZ;/jO 2j/i ceiling to its
number of notch guards in any consecutive sek afotches right. We double this term to account for the ceiling it might
in M. be able to see on its left to get




Fig. 5. The polygonR,, ; for i = 5 andm = 7. Three guards have been
placed on ceiling edges and their visibility polygons aghlighted in yellow.
The striped pink regions are portions of the visibility pgbys that have been
cut off by the left or right side oRR,,, ;. Note that if the length of the bottom
edge ofR,,,; extended an extrain both directions, then the length of the
bottom edge of each visibility polygon would be- 1 = 6, regardless of the
guard’s location on its notch’s ceiling.

Eig- ﬁ" %OpldTl:lef{)O%?OBRm,i fordi = 7hé_mrt]i|_mh=d7_- Eagh nfgc?l has.l?‘ the notch). This means that the amount of the bottom edge

eight and width ofl. e bottom edge Is highlighted in red, and the ceilin . T .

edges are highlighted in green. The dotted red line represieea extra length %ee,n by a single ,nOtCh.gljlard place_q on alcellmg is not related

i that we can assume exists on either side of the bottom edgkeignirposes 10 itS exact location within that ceiling. Since no two notch

gf glacin% nontzfoglictin? notch guardS_-t_[bottC:]m] Atguat!d:s Ipﬁgd 0_r|1_ the guards with the same color can have any of their visibility

ottom edge of the polygon is a position where the tota ceiling :

edge inV(s) to the right of s is maximized. The visibility polygori/(s) is polygon; overlap, a single color can be used to guard at most

highlighted in yellow. The number above each notch shows hoshngeiling (2 + 2i — 1)/(i + 1) notches.

edge length in that notch is i (s). Choose any guard set fét,,, ;. Let 2,,,:.;, be the number of
colors used in the notch guards, anddg., be the number

of colors used in the body guards. Since each guard must be
ij2 . NP . a notch or a body guard, we get
) (L 41
4]_4<(2)(2+ )>:Z+1. (1)

Cls) <Y = ==
v 2 Tpotch + Lhody = XG(Rm,i)- (2)

Suppose that a certain color is used instead for notch guardssince each color used for a body guard can guard at most
Each notch guard can guard a ceiling of lengtiHowever, ;5 1 |ength of ceiling, and each color used for notch guards
while each body guard must have its own unique color, a singlg, guard at mos2i +2m —1)/(i+ 1) length of ceiling, and
color can be assigned to multiple notch guards. So, given e ism total length of ceiling, we get
dimensions of the polygon, how many notch guards can share
one color? Note that the visibility polygon of a notch guard , .
must include a portion of the bottom edge of the polygon. (Wm—l> Tnoteh + (’ + 1) Thody > M. (3)
Since two notch guards that use the same color have vigibilit i+1 2 '
polygons that do not intersect, this space along the bottom gt ;. — (i—3)/2 and let polygonR,, be the polygon where
edge of the polygon is a resource that can only support a finjje _ (i2 —i)/4+1 with i € {x € Z*|z =1 mod 4}. By
number of notch guards of the same color. The bottom edgg, quadratic formula (and keeping in mind thamust be

of the polygon has lengtim — 1. However, to account for the positive), this implies thai = 1/2 + \/4m — (15/4). This
fact that the bottom of the visibility polygons of notchees# ;s Equatiofil3 into

to the edge could have an additional length of up i6the

convex portion of the polygon were wider, we can treat the

bottom edge as though it has lengtm + 2i — 1 (see Figure (
[B). It is clear that placing a notch guaschlong the ceiling of

a notch minimizes the length of the bottom edge inditle).  The term(i*—i)/4+1 is equal to( (i*+2i) —(3i+6)+10) /4;
It is also clear that for any point on the bottom edge of the hence Equatiohl4 can be rewritten as

polygon, there exists a point on the ceiling of a notch that

~

i —i

)
-t 1) (m'rwtch + mbody) Z + 1. (4)

2

is visible fromp. Suppose a guars is placed on the ceiling i 3 10 i—3
of a notch at a lengtld < ¢t < 1 from the left vertex of the X (Rk) = Tnoteh + Thody > 57 3% + % + 4 2 5 = k.
ceiling. Since the height of the notch is the leftmost point (5)

of V(s) on the bottom edge will extend a distangepast the ~ The polygon therefore requires at leagt — 3)/2 =
z-coordinate of the leftmost point in the notch. Similarlyet /m — (15/16) — (5/4) colors. The polygonR; has 4m
rightmost point ofl/(s) will extend a distance ofl —¢)i past vertices andyg(Ryx) > +/m — (15/16) — (5/4). Sincek =
the z-coordinate of the rightmost point in the notch (see Figur@é — 3)/2 = \/m — (15/16) — (5/4), Ry has4k? + 10k + 10
B). Therefore, the length of the bottom edge insldés) is  vertices and requirek colors. The integek must be odd to
i+ 1 (we have to include the length dfdirectly underneath ensure that the number of vertices is divisible by [ ]



While these constructions do not work when the desired
number of required colors i$ or 2, it is trivially easy to
construct such polygons, as;(P) > 1 for all polygons, and
xa(P) > 2 for all non-star-shaped polygons.

IV. UPPER BOUNDS ON THE CHROMATIC GUARD NUMBER

Sn+1

One could just give every guard its own color. Any polygon
P with n vertices can be guarded Qy;/3j guards (the art Fig. 7. A polygon consisting of the edges on the reflex sulm:heth_aerbn
gallery theoremi[21) Sa () < |3 However,this bound Si%.1 26 he s00es,_ e 410 i St o) e verces o
is unsatisfying, because colors can often be reused. Th&I&iangles haves,.: as an endpoint.
exist polygons with an arbitrarily high number of verticasait
require only two colors. We prove bounds better thari3] p, andb,, the vertices counterclockwise froby to b,, 1, and
for two categories of polygons. the edge betweeb), ., andp,,; (call this subpolygorP,,11).

. If each of these vertices in the subpolygon is visible from
A. Spiral polygons sn+1, then the subpolygon can be triangulated by connecting

A chainis a series of point§, pa, . .., p,] along with line  each vertex tos,;, meaning thats,,; guards the entire
segments connecting consecutive pointsulichainis a chain  subpolygon (see Figufg 6).
that forms part of the boundary of a polygon. The poipts  Since s,,,; is placed on the interval in between, and
andp,, are calledendpoints and all other points aramternal it must be able to see the entire edge betwgeandb,,,
vertices A convex subchairs a subchain where all the internalmeaning thab,, is visible froms,, 1. By definition, the vertex
vertices have an internal angle of less tharadians. Areflex p, ., is visible froms,, ;. Examine the polygon consisting of
subchainis a subchain where all the internal vertices have aRe edges along the reflex subchain betwégnand b, 1,
internal angle of greater thanradians. Note that convex ands,, 15, ands,,1b,+,. Since all the vertices along the reflex
reflex subchains can trivially consist of a single line segmesubchain are reflex, they cannot have edges between each othe
(if there are no internal vertices). A spiral polygon is ayg@n in a triangulation, so in any triangulation, they must all be
with exactly one maximal reflex subchain (all reflex subchairtonnected ta,, ., (see Figur&l?). By definition, the poipj,
of the spiral polygon must be contained within the maximaé visible froms,,.;. The pointp,, is visible tos, ,, because
reflex subchain). $ns1 is on the convex subchain interval betwegnandr,,.

If two points on the convex subchain interval betwegnand
r, are not mutually visible, then there must be a reflex vertex
Proof: The spiral polygon consists of two subchains, Betweenb,, and g,, on the reflex subchain, but by definition,
reflex subchain, and a convex subchain. tetandv; be the there are no such vertices. Because the vertices in between
endpoints of the reflex subchain. Without loss of generalityind p,,,; lie on a convex subchain, &, ; can see bothp,
assume that the path along the convex subchain frpt v; andp, 1, thens, ., can see all the vertices in between. This
runs clockwise. The guards will all be placed along the edgaseans thaP, ,; can be triangulated with every triangle having
of the convex subchain. sp41 @s an endpoint, se,,; guardsP, ., (the triangle with

Call the nth guard placeds,. Places; at v,. Let p, be endpointsp, 1, b,+1, ands, 1 is degenerate, as those three
the point most clockwise along the convex subchain that p®ints are colinear, but this is not a problem). This techeiq
visible from s,,. Let b, be the most counterclockwise vertexstill works if s, ; can seey; (in this casep, 1 = b1 = vy).
along the reflex subchain visible from. Let g,, be the vertex This implies inductively thafS is a guard set foiP.
immediately clockwise fronb,,. Let r,, be the point on the  Because all the guards are along the convex subchain, if two
convex subchain colinear wig, andb,, and visible from both. guards conflict, their visibility polygons must interseotrse-
Note thatp,, andr,, define the endpoints of an interval alongvhere along the convex subchain. Also, singeZ V (s,41)
the convex subchain. Placg,;; at a point on this interval ands,, ¢ V(s,_1), s,41 cannot conflict withs,,_;, or there
that is not one of the endpoints. Note that this means; ¢ would be no room along the convex subchain to plage
V(s,). Terminate when a guard can see(see Figurél6).  Therefore, all evenly indexed guards can be colored red, and

We can show that this is a guard set for the polygoall oddly indexed guards can be colored blue s P) < 2.
by triangulating the polygon using the polygon verticeg th "]
members ofS, and the pointsp; and showing that each )
triangle has a member &8 as one of its vertices. Suppose>: Staircase polygons
that the polygon bounded by the edges starting from An alternating subchainis a subchain with at least one
counterclockwise along the boundary Bf until b,, and the internal vertex, with the first and last internal verticesnige
edge betweem, andb, has already been triangulated suclkonvex, and with consecutive internal vertices altermatin
that each triangle contains a vertex in the §eti < n}. We between convex and reflex. #aircase polygoris an orthog-
must show that,,,; can guard the subpolygon bordered bpnal polygon consisting of two convex verticas, and v,
the edges counterclockwise frgm.; to p,,, the edge between connected by two alternating subchains. For simplicityyite

Theorem 5. For any spiral polygonP, xq(P) < 2.



Fig. 6.

[top left] A spiral polygonP. The convex subchain is highlighted in red, and the reflexisain is highlighted in blue. [top right] The first guasg

is placed on vertex. The pointspy, b1, g1, andr; are marked and the interval in whigh can be placed is highlighted in green. [bottom left] Reaalyi
showing that placed guards form a guard set. The subpolygos assumed to be guarded by. The region thass is responsible for i%, bounded by the
reflex subchain between andbq, the edge betweep, andbs, the convex subchain betwegn andp;, and the edge betwedn andp;. The subpolygon
P> has been triangulated, indicating that can guard the whole subpolygon. The triangle with endpgintsh2, and so is degenerate, as those three points

are colinear. [bottom right] A guard placement and 2-colgrin

Vw

U, S5 = Sm

Fig. 8. [left] A staircase polygor® with verticesv,, andv identified. The
lower subchain is highlighted in red, and the upper subckainighlighted
in blue. [middle] The guard; is placed on the neighbor ef, on the lower
subchain. The guards is placed on the rightmost convex vertex Wf(s1).
[right] A guard placement and coloring fdP that uses only three colors.

assume without loss of generality that orthogonal polygoﬁ@
are always oriented such that each edge is either vertical’e

horizontal, and that,, is the top left vertex, and that,

the same vertex. Suppose without loss of generality ¢ha

on the lower subchain. Note that the rightmost convex vertex
on the lower subchain iV (s;11) must also be the lowest
convex vertex on the lower subchain ¥(s;11). Note also
that a ray extended downward frogy,; must intersect the
horizontal edge incident te;,, (otherwises; o would not

be the rightmost convex vertex on the lower subchain). K thi
is the same horizontal edge that is incidentsto then the
point where the ray intersects the horizontal edge incident
s; must be a convex vertex (calldf). Since the convex vertex
vy neighbors the convex vertex along a horizontal edge, and
sincewvy is to the right ofv;, vy must bev.. Therefore,s; o
would only be placed on the same vertexsasf v, is visible

m s;11. Since we stop placing guards once a guard can see
r two guards will never be placed on the same vertex.

Next, it must be shown that this is a guard set for the

is the bottom right vertex. Put the polygon on a coordinagyircase polygon. Suppose without loss of generality that

plane withv,, at the(0,0) coordinate, let right be the positive
x direction, and let up be the positive direction. The

guard s; is placed on the lower subchain. Assume that the
et [s1,s2...s;] forms a guard set for the subpolygon that

term “staircase polygon” is a synonym for strictly MONotoNE.g above the guard; (call this subpolygonP,). We must

orthogonal polygon (mentioned in [7], which solved the @nis ¢, that the sefs1, 5o

...8;+1] forms a guard set for the

yard problem for this class of polygons). Note that the bo“%bpolygon that lies to the left of guars., (call this

from Theorem[ ¥ is for monotone orthogonal polygons, n%‘hbpolygo

strictly monotone orthogonal polygons.

Theorem 6. For any staircase polygo®, ys(P) < 3.

nP;1). Letp;,1 be the point where a ray extended
downward froms;; intersects the lower subchain. Note that
each vertex on the lower subchain betwegnand p;; is
visible froms; ;. We have to show tha{;, ; guardsP;;1\P;.

Proof: Due to our assumptions about the orientation afet v be the reflex vertex to the right of; on the lower
the polygonP, one of the alternating subchains is going tgubchain. LetQ;,; be the subpolygon below;; and to the

be above the other one. Call the higher subchainupger
subchainand call the other subchain thewver subchainPlace

left of s;11 (see Figurél9). Clearlyp;+1 2 P11\ P; (8Ssi+1
cannot be lower thag;). Note that every vertex of);; that

a guards; on the neighbor of,, along the lower subchain. is not connected ta;; by an edge ofQ;,, is on the lower
If guard s; has been placed on the lower subchain, then plaggbchain. For any given vertexin Q;,; that is not connected
guard s;;1 on the right-most convex vertex on the uppefo s;,; by an edge ofQ;,, all edges ofQ;,; not incident
subchain that is contained In(s;). If guards; has been placed to s, ; that lie abover must also lie to the left of, and all
on the upper subchain, then place gugrd on the right-most edges ofQ;,; not incident tos,; that lie to the right ofv

convex vertex on the lower subchain that is containeld (s ).
Stop placing guards when a guard can sgeand letm be
the number of guards placed (see Fidure 8).

must also lie below. Sinces;; is never lower than, and
never to the right o, every vertexv of ;1 must be visible
from s;,.1. This means that one could triangulage,; such

First, it must be shown that; and s;. o are not placed on that each triangle has;; as one of its corners. Therefore,



Fig. 10. [left] A staircase polygo® with a guard placement. [right] The
regionsV (s1) andV (s4) are shown. Note that the lowest point¥fis; ) is
higher than the highest point ¥ (s4), as the horizontal line incident tg's
vertex is higher than the horizontal line incidentsgs vertex.

V. CONCLUSION

We have introduced the chromatic art gallery problem,
which asks for the minimum number of landmark colors
required to ensure that a robot travelling in a given polygon
can always see at least one landmark, but never simultalyeous
Fig. 9. [top left] A polygonP with a guard placement. [top middle] The S‘?es two Of. the same COIQr' We have constructed a polygon
region Py that s, is responsible for guarding. [top right] The regién that With n vertices that requires)(n) colors, and we have
s1 ands, are reponsible for guarding. [bottom left] The regiBs\ P; thats,  constructed monotone and orthogonal polygons that require
is responsi_ble for guarding. [bottom middle] The r_eg'@a‘, Wh_ich consists Q(\/ﬁ) colors. We have also found constant upper bounds
of the portion of P below and to the left ofs2. This region is a superset . . .
of P»\Py. [bottom right] A triangulation ofQ» where all triangles have a N the chromatic guard number for the spiral and staircase
vertex at the location of2, showing thatss guardsQs. polygons. These two families of polygons may be useful as

building blocks for polygons in more general families.
the guards;;; can guardQ;,; by itself. Therefore, the set The results from Sectioh_lll seem to indicate that the
[s1,82...sm,] forms a guard set foP. environments that have the highest chromatic guard number

Finally, it must be shown that the guard $et, s-...s,,] have a large central convex region with several smalleresich
can be colored with three colors. Suppose guaiid placed on attached to it. Therefore, if one were designing an envimmm
the lower chain. Ley; be they-coordinate of the lowest point where robots were to navigate via visual landmarks, it may be
visible from s;. Note that, because; is on a convex right- advantageous to design the environment without such arrggio
angle vertex on the lower subchaii(s;) is bordered on the as that region would require more landmark classes and would
bottom by a horizontal line at the same height as the horionpotentially be more susceptible to classification errors.
edge incident ta;; thereforey; is just they-coordinate ofs;. Some directions of future research would be finding bounds
Let y;+3 be they coordinate of the highest point W (s;;3). for other families of polygons, and finding tight bounds for
Becauses; ;3 is on a convex right-angle vertex on the uppethe general, monotone, and orthogonal polygons. Visybilit
subchainy (s;3) is bordered on top by a horizontal line at thén curvilinear bounded regions has also been researched [9]
same height as the horizontal edge incideng;to;; therefore Allowing polygons with holes is another possibility, as is
Yi+3 IS just they-coordinate ofs; 3. Now, we must show that placing further restrictions on the placement of guardghames
¥i > Yit+s. In the portion of the proof that showed that eacforcing the guards to be strongly cooperative [23] or weakly
guard is placed on a unique vertex, we demonstrated that tumperativel[17].
y-coordinate ofs;; (call it y;41) has to be higher than the The problem could also be attacked from a visibility graph
y-coordinate ofs;13. If y; < y;13, theny; < yiv3 < yi+1.  context. The structure of standard visibility graphs fongl
However, this is impossible, becausg.; was placed on the polygons is still not completely understood, bui [6] gives
rightmost (and thus, lowest) vertex on the upper chain thiaur necessary conditions for visibility graphs. It is likeéhat
was inV (s;). Thereforey; > y;13. Since the highest point in analogues of these four conditions could be made for “2-link
V(si+3) is lower than the lowest point i (s;), s; ands;ys  visibility.
cannot conflict (see Figufe110). There are also algorithmic questions. While finding the

Sinces; ands; 3 do not conflict, we can color all guardsminimum number of art gallery guards for a given polygon
with an index of0 mod 3 with green, all guards with anis NP-complete/[13], it is not necessary to find the minimum
index of 1 mod 3 with red, and all guards with an index ofnumber of art gallery guards to find the minimum number of
2 mod 3 with blue. Thereforeys(P) < 3. colors required for a polygon (see Figlré 11). There is dlso t

We have assumed throughout this proof that gugrdias possiblity that the graphs representing the conflict retetips
placed on the lower subchain. However, the arguments mdmween guards (each graph vertex is a guard, and two \&rtice
above still apply ifs; was placed on the upper subchain (reflecre connected by an edge if the corresponding guards cpnflict
the polygon over they = —x line). is an easy family of graphs to color. However, these graphs
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