Chapter 1

Introduction

Steven M. LaValle
University of Illinois

Copyright Steven M. LaValle 2015

Available for downloading at http://msl.cs.uiuc.edu/vr/
Chapter 1
Introduction

1.1 What Is Virtual Reality?

Virtual reality (VR) technology is evolving rapidly, making it precarious to define VR in terms of specific devices that may fall out of favor in a year or two. In this book, we are concerned with fundamental principles that are less sensitive to particular technologies and therefore survive the test of time. Our first challenge is to consider what VR actually means, in a way that captures the most crucial aspects in spite of rapidly changing technology. The concept must also be general enough to encompass what VR is considered today and what we envision for its future.

We start with two representative examples that employ current technologies: 1) A human having an experience of flying over virtual San Francisco by flapping his own wings (Figure 1.1); 2) a mouse running on a freely rotating ball while exploring a virtual maze that appears on a projection screen around the mouse (Figure 1.2). We want our definition of VR to be broad enough to include these examples and many more, which are coming in Section 1.2. This motivates the following.

Definition of VR: Inducing targeted behavior in an organism by using artificial sensory stimulation, while the organism has little or no awareness of the interference.

![Figure 1.1: In the Birdly experience from the Zurich University of the Arts, the user, wearing a VR headset, flaps his wings while flying over virtual San Francisco, while a motion platform and fan provide additional sensory stimulation. The figure on the right shows the stimulus presented to each eye.](image1)

![Figure 1.2: (a) An experimental setup used by neurobiologists at LMU Munich to present visual stimuli to rodents while they run on a spherical ball that acts as a treadmill (Figure by Kay Thurley). (b) A picture of a similar experiment, performed at Princeton University.](image2)
1.1. WHAT IS VIRTUAL REALITY?

Figure 1.3: (a) We animals assign neurons as place cells, which fire when we return to specific locations. This figure depicts the spatial firing patterns of eight place cells in a rat brain as it runs back and forth along a winding track (figure by Stuart Layton). (b) We even have grid cells, which fire in uniformly, spatially distributed patterns, apparently encoding location coordinates (figure by Torkel Hafting).

Four key components appear in the definition:

- **Targeted behavior:** The organism is having an “experience” that was designed by the creator. Examples include flying, walking, exploring, watching a movie, and socializing with other organisms.
- **Organism:** This could be you, someone else, or even another life form such as a fruit fly, cockroach, fish, rodent, or monkey (scientists have used VR on all of these!).
- **Artificial sensory stimulation:** Through the power of engineering, one or more senses of the organism become hijacked, and their ordinary inputs are replaced by artificial stimulation.
- **Awareness:** While having the experience, the organism seems unaware of the interference, thereby being “fooled” into feeling present in a virtual world. This unawareness leads to a sense of presence in another world, or acceptance of it being natural.

Who is the fool? The idea of “fooling” an organism might seem fluffy or meaningless; however, this can be made surprisingly concrete using research from neurobiology. When animals explore their environment, neural structures composed of place cells are formed that encode spatial information about their surroundings [7]; see Figure 1.3(a). Each place cell is activated precisely when the organism returns to a particular location that is covered by it. Although less understood, grid cells even encode locations in a manner similar to Cartesian coordinates [6] (Figure 1.3(b)). It has been shown that these neural structures may form in an organism, even when having a VR experience [1, 5]. In other words, our brains may form place cells for places that are not real! This is a clear indication that VR is fooling our brains, at least partially.

Terminology regarding various “worlds” Several terms related to VR are in common use at present. The term virtual environments predates widespread usage of VR, and is commonly considered to be synonymous; however, we emphasize in this book that VR can be an interface to a captured “real” world just as well as experiencing a completely artificial world. Augmented reality (AR) refers to systems in which most of the visual stimuli are propagated directly through glass or cameras to the eyes, and some additional structures appear to be superimposed onto the user’s world. The term mixed reality is sometimes used to refer to an entire spectrum that encompasses VR, AR, and normal reality. Telepresence refers to systems that enable users to feel like they are somewhere else in the real world; if they are able to control anything, such as a flying drone, then teleoperation is an appropriate term. For our purposes, virtual environments, AR, mixed reality, telepresence, and teleoperation will all be considered as perfect examples of VR. The most important idea of VR is that the user’s perception of reality has been altered through engineering, rather than whether the environment they believe they are in seems more “real” or “virtual”. We will instead use these terms to distinguish whether VR is employed: The real world refers to the physical world that contains the user, and the virtual world refers to the perceived world as part of the targeted VR experience.

Interactivity Most VR experiences involve another crucial component: interaction. Does the sensory stimulation depend on actions taken by the organism? If the answer is “no”, then the VR system is called open-loop; otherwise, it is closed-loop. In the case of closed-loop VR, the organism has partial control over the stimulation, which could vary as a result of body motions, including eyes, head, hands, or legs. Other possibilities include voice commands, heart rate, body temperature, and skin conductance (are you sweating?).

First- vs. Third-person If you are reading this book, then you most likely want to develop VR systems or experiences. Pay close attention to this next point! When a scientist designs an experiment for an organism, as shown in Figure 1.2, then the separation is clear: The laboratory subject (organism) has a first-person experience, while the scientist is a third-person observer. The scientist carefully designs the VR system as part of an experiment that will help to resolve a scientific hypothesis. For example, how does turning off a few neurons in a rat’s brain affect its navigation ability? On the other hand, when engineers or developers construct
1.1. WHAT IS VIRTUAL REALITY?

a VR system or experience, they are usually targeting themselves and people like them. They feel perfectly comfortable moving back and forth between being the “scientist” and the “lab subject” while evaluating and refining their work. As you will learn throughout this book, this is a bad idea! The creators of the experience are heavily biased by their desire for it to succeed without having to redo their work. They also know what the experience is supposed to mean or accomplish, which provides a strong bias in comparison to a fresh subject. To complicate matters further, the creator’s body will physically and mentally adapt to whatever flaws are present so that they may soon become invisible. We have seen these kinds of things before. For example, it is hard to predict how others will react to your own writing. Also, it is usually harder to proofread your own writing in comparison to that of others. In the case of VR, these effects are much stronger and yet elusive to the point that you must force yourself to pay attention to them. Take great care when hijacking the senses that you have trusted all of your life. This will most likely be uncharted territory for you.

More real than reality? How “real” should the VR experience be? It is tempting to try to make it match our physical world as closely as possible. Our brains are most familiar with this setting, thereby making it seem most appropriate. This philosophy has dominated the video game industry at times, for example, in the development of highly realistic first-person-shooter (FPS) games that are beautifully rendered on increasingly advanced graphics cards. In spite of this, understand that extremely simple, cartoon-like environments can also be effective and even preferable. Examples appear throughout history, as discussed in Section 1.3.

As a VR experience creator, think carefully about the task, goals, or desired effect you want to have on the user. You have the opportunity to make the experience “better than real”. What will they be doing? Taking a math course? Experiencing a live theatrical performance? Writing software? Designing a house? Maintaining a long-distance relationship? Playing a game? Having a meditation and relaxation session? Traveling to another place on Earth, or in the universe? For each of these, think about how the realism requirements might vary. For example, consider writing software in VR. We currently write software by typing into windows that appear on a large screen. Note that even though this is a familiar experience for many people, it was not even possible in the physical world of the 1950s. In VR, we could simulate the modern software development environment by convincing the programmer that she is sitting in front of a screen; however, this misses the point that we can create almost anything in VR. Perhaps a completely new interface will emerge that does not appear to be a screen sitting on a desk in an office. For example, the windows could be floating above a secluded beach or forest. Furthermore, imagine how a debugger could show the program execution trace.

Synthetic vs. captured Two extremes exist when constructing a virtual world as part of a VR experience. At one end, we may program a synthetic world, which is completely invented from geometric primitives and simulated physics. This is common in video games and such virtual environments were assumed to be the main way to experience VR in earlier decades. At the other end, the world may be captured using modern imaging techniques. For viewing on a screen, the video camera has served this purpose for over a century. Capturing panoramic images and videos and then seeing them from any viewpoint in a VR system is a natural extension. In many settings, however, too much information is lost when projecting the real world onto the camera sensor. What happens when the user changes her head position and viewpoint? More information should be captured in this case. Using depth sensors and SLAM (Simultaneous Localization And Mapping) techniques, a 3D representation of the surrounding world can be captured and maintained over time as it changes. It is extremely difficult, however, to construct an accurate and reliable representation, unless the environment is explicitly engineered for such capture (for example, a motion capture studio).

As humans interact, it becomes important to track their motions, which is an important form of capture. What are their facial expressions while wearing a VR headset? Do we need to know their hand gestures? What can we infer about their emotional state? Are their eyes focused on me? Synthetic representations of ourselves called avatars enable us to interact and provide a level of anonymity, if desired in some contexts. The attentiveness or emotional state can be generated synthetically. We can also enhance our avatars by tracking the motions and other attributes of our actual bodies. A well-known problem is the uncanny valley, in which a high degree of realism has been achieved in a avatar, but its appearance makes people feel uneasy. It seems almost right, but the small differences are disturbing. There is currently no easy way to make ourselves appear to others in a VR experience exactly as we do in the real world, and in most cases, we might not want to.

Health and safety Although the degree of required realism may vary based on the tasks, one requirement remains invariant: The health and safety of the users. Unlike simpler media such as radio or television, VR has the power to overwhelm the senses and the brain, leading to fatigue or sickness. This phenomenon has been studied under the heading simulator sickness for decades; in this book we will refer to adverse symptoms from VR usage as VR sickness. Sometimes the discomfort is due to problems in the VR hardware and low-level software; however, in most cases, it is caused by a careless VR developer who misunderstands or disregards the side effects of the experience on the user. This is one reason why human physiology and perceptual psychology are large components of this book. To develop comfortable VR experiences, you must understand how these factor in. In many cases, fatigue arises because the brain appears to work harder to integrate the unusual stimuli being presented to the senses. In some cases, inconsistencies
1.2 MODERN VR EXPERIENCES

with prior expectations, and outputs from other senses, even lead to dizziness and nausea.

Another factor that leads to fatigue is an interface that requires large amounts of muscular effort. For example, it might be tempting to move objects around in a sandbox game by moving your arms around in space. This quickly leads to fatigue and an avoidable phenomenon called gorilla arms, in which people feel that the weight of their extended arms is unbearable. For example, by following the principle of the computer mouse, it may be possible to execute large, effective motions in the virtual space by small, comfortable motions of a controller. Over long periods of time, the brain will associate the motions well enough for it to seem realistic while also greatly reducing fatigue.

1.2 Modern VR Experiences

This section gives you a quick overview of what people are doing with VR today, and provides a starting point for searching for similar experiences on the Internet. Here, we can only describe the experiences in words and pictures, which is a long way from the appreciation gained by experiencing them yourself. This printed medium (a book) is woefully inadequate for fully conveying the medium of VR. Perhaps this is how it was in the 1890s to explain in a newspaper what a movie theater was like! If possible, it is strongly recommended that you try many VR experiences yourself to form first-hand opinions and spark your imagination to do something better.

Video games People have dreamed of entering their video game worlds for decades. By 1982, this concept was already popularized by the Disney movie Tron. Figure 1.4 shows several video game experiences in VR. Most gamers currently want to explore large, realistic worlds through an avatar. Figure 1.4(a) shows Valve’s Portal 2, which is a puzzle-solving adventure game developed for the HTC Vive VR headset. Figure 1.4(b) shows an omnidirectional treadmill peripheral that gives users the sense of walking while they slide their feet in a dish on the floor. These two examples give the user a first-person perspective of their character. By contrast, Figure 1.4(c) shows Lucky’s Tale, which instead yields a comfortable third-person perspective as the user seems to float above the character that she controls. Figure 1.4(d) shows a game that contrasts all the others in that it was designed to specifically exploit the power of VR.

Immersive cinema Hollywood movies continue to offer increasing degrees of realism. Why not make the viewers feel like they are part of the scene? Figure 1.5 shows an immersive short story. Movie directors are entering a fascinating new era of film. The tricks of the trade that were learned across the 20th century need to be reinvestigated because they are based on the assumption that the cinematographer controls the camera viewpoint. In VR, viewers can look in any direction, and perhaps even walk through the scene. What should they be allowed to do? How do you make sure they do not miss part of the story? Should the story be linear, or should it adapt to the viewer’s actions? Should the viewer be a first-person character in the film, or a third-person observer who is invisible to the other characters? How can a group of friends experience a VR film together? When are animations more appropriate versus the capture of real scenes?

It will take many years to resolve these questions and countless more that will arise. In the meantime, VR can also be used as a kind of “wrapper” around existing movies. Figure 1.6 shows the VR Cinema application, which allows the user to choose any seat in a virtual movie theater. Whatever standard movies or videos that are on the user’s hard drive can be streamed to the screen in the theater. These could be 2D or 3D movies. A projector in the back emits flickering lights and the audio is adjusted to mimic the acoustics of a real theater. This provides an immediate way to leverage all content that was developed for viewing on a screen, and bring it into VR. Many simple extensions can be made without modifying the films. For example, in a movie about zombies, a few virtual zombies could enter the theater and start to chase you. In a movie about...
1.2. MODERN VR EXPERIENCES

Figure 1.5: Oculus Story Studio produced *Henry*, an immersive short story about an unloved hedgehog who hopes to make a new friend, the viewer.

Figure 1.6: VR Cinema, developed by Joo-Hyung Ahn for the Oculus Rift. You can choose your seat and watch any movie you like.

Figure 1.7: An important component for achieving telepresence is to capture a panoramic view: (a) A car with cameras and depth sensors on top, used by Google to make Street View. (b) Bublcam is a cheap, portable way to capture and stream omnidirectional videos.

tornadoes, perhaps the theater rips apart. You can also have a social experience. Imagine having “movie night” with your friends from around the world, while you sit together in the virtual movie theater. You can even have the thrill of misbehaving in the theater without getting thrown out.

Telepresence The first step toward feeling like we are somewhere else is capturing a panoramic view of the remote environment (Figure 1.7). Google’s Street View and Earth apps already rely on the captured panoramic images from millions of locations around the world. Simple VR apps that query the Street View server directly enable the user to feel like he is standing in each of these locations, while easily being able to transition between nearby locations (Figure 1.8). Panoramic video capture is even more compelling. Figure 1.9 shows a frame from an immersive rock concert experience. Even better is to provide live panoramic video interfaces, through which people can attend sporting events and concerts. Through a live interface, interaction is possible. People can take video conferencing to the next level by feeling present at the remote location. By connecting panoramic cameras to robots, the user is even allowed to move around in the remote environment (Figure 1.10). Current VR technology allows us to virtually visit far away places and interact in most of the ways that were previously possible only while physically present. This leads to improved opportunities for telecommuting to work. This could ultimately help reverse the urbanization trend sparked by the 19th-century industrial revolution, leading to *deurbanization* as we distribute more uniformly around the Earth.
1.2. MODERN VR EXPERIENCES

Figure 1.8: A simple VR experience that presents Google Street View images through a VR headset: (a) A familiar scene in Paris. (b) Left and right eye views are created inside the headset, while also taking into account the user's looking direction.

Figure 1.9: Jaunt captured a panoramic video of Paul McCartney performing Live and Let Die, which provides a VR experience where users felt like they were on stage with the rock star.

Figure 1.10: Examples of robotic avatars: (a) The DORA robot from the University of Pennsylvania mimics the user's head motions, allowing him to look around in a remote world while maintaining a stereo view (panoramas are monoscopic). (b) The Plexidrone, a low-cost flying robot that is designed for streaming panoramic video.

Figure 1.11: Virtual societies develop through interacting avatars that meet in virtual worlds that are maintained on a common server. A snapshot from Second Life is shown here.
1.2. MODERN VR EXPERIENCES

Virtual societies Whereas telepresence makes us feel like we are in another part of the physical world, VR also allows us to form entire societies that remind us of the physical world, but are synthetic worlds that contain avatars connected to real people. Figure 1.11 shows a Second Life scene in which people interact in a fantasy world through avatars; such experiences were originally designed to view on a screen but can now be experienced through VR. Groups of people could spend time together in these spaces for a variety of reasons, including common special interests, educational goals, or simple an escape from ordinary life.

Empathy The first-person perspective provided by VR is a powerful tool for causing people to feel *empathy* for someone else’s situation. The world continues to struggle with acceptance and equality for others of different race, religion, age, gender, sexuality, social status, and education, while the greatest barrier to progress is that most people cannot fathom what it is like to have a different identity. Figure 1.12 shows a VR project sponsored by the United Nations to yield feelings of empathy for those caught up in the Syrian crisis of 2015. Some of us may have compassion for the plight of others, but it is a much stronger feeling to understand their struggle because you have been there before. Figure 1.13 shows a VR system that allows men and women to swap bodies. Through virtual societies, many more possibilities can be explored. What if you were 10cm shorter than everyone else? What if you teach your course with a different gender? What if you were the victim of racial discrimination by the police? Using VR, we can imagine many “games of life” where you might not get as far without being in the “proper” group.

Education In addition to teaching empathy, the first-person perspective could revolutionize many areas of education. In engineering, mathematics, and the sciences, VR offers the chance to visualize geometric relationships in difficult concepts or data that is hard to interpret. Furthermore, VR is naturally suited for practical training because skills developed in a realistic virtual environment may transfer naturally to the real environment. The motivation is particularly high if the real environment is costly to provide or poses health risks. One of the earliest and most common examples of training in VR is *flight simulation* (Figure 1.14). Other examples include firefighting, nuclear power plant safety, search-and-rescue, military operations, and medical procedures.

Beyond these common uses of VR, perhaps the greatest opportunities for VR education lie in the humanities, including history, anthropology, and foreign language acquisition. Consider the difference between reading a book on the Victorian era in England and being able to roam the streets of 19th-century London, in a simulation that has been painstakingly constructed by historians. We could even visit an ancient city that has been reconstructed from ruins (Figure 1.15). Fascinating possibilities exist for either touring *physical* museums through a VR
1.2. MODERN VR EXPERIENCES

Virtual prototyping In the real world, we build prototypes to understand how a proposed design feels or functions. Thanks to 3D printing and related technologies, this is easier than ever. At the same time, virtual prototyping enables designers to inhabit a virtual world that contains their prototype (Figure 1.16). They can quickly interact with it and make modifications. They also have the opportunities to bring clients into their virtual world so that they can communicate their ideas. Imagine you want to remodel your kitchen. You could construct a model in VR and then explain to a contractor exactly how it should look. Virtual prototyping in VR has important uses in many businesses, including real estate, architecture, and the design of aircraft, spacecraft, cars, furniture, clothing, and medical instruments.

Health care Although health and safety are challenging VR issues, the technology can also help to improve our health. There is an increasing trend toward distributed medicine, in which doctors train people to perform routine medical procedures in remote communities around the world. Doctors can provide guidance through telepresence, and also use VR technology for training. In another use of VR, doctors can immerse themselves in 3D organ models that were generated from medical scan data (Figure 1.17). This enables them to better plan and prepare for a medical procedure by studying the patient’s body shortly before an operation. They can also explain medical options to the patient or his family so that they may make more informed decisions. In yet another use, VR can directly provide therapy to help patients. Examples include overcoming phobias and stress disorders through repeated exposure, improving or maintaining cognitive skills in spite of aging, and improving motor skills to overcome balance, muscular, or nervous system disorders.

New human experiences Finally, the point might be to simply provide a new human experience. Through telepresence, people can try experiences through the eyes of robots or other people. However, we can go further by giving people experiences that are impossible (or perhaps deadly) in the real world. Most often, artists are the ones leading this effort. The Birdly experience of human flying (Figure 1.1) was an excellent example. Figure 1.18 shows two more. What if we change our scale? Imagine being 2mm tall and looking ants right in the face. Compare that to being 50m tall and towering over a city while people scream and run from you. What if we simulate the effect of drugs in your system? What if you could become your favorite animal? What if you became a piece of food? The creative possibilities for artists seem to be endless. We are limited only by what our bodies can comfortably handle. Exciting adventures lie ahead!
1.2. MODERN VR EXPERIENCES

Figure 1.16: Architecture is a prime example of where a virtual prototype is invaluable. This demo, called Ty Hedfan, was created by designer Olivier Demangel. The real kitchen is above and the virtual kitchen is below.

Figure 1.17: A heart visualization system based on images of a real human heart. This was developed by the Jump Trading Simulation and Education Center and the University of Illinois.

Figure 1.18: (a) Epic Games created a wild roller coaster ride through virtual living room. (b) A guillotine simulator was made by Andre Berlemont, Morten Brunbjerg, and Erkki Trummal. Participants were hit on the neck by friends as the blade dropped, and they could see the proper perspective as their heads rolled.
1.3 History Repeats

Staring at rectangles How did we arrive to VR as it exists today? We start with a history that predates what most people would consider to be VR, but includes many aspects crucial to VR that have been among us for tens of thousands of years. Long ago, our ancestors were trained to look at the walls and imagine a 3D world that is part of a story. Figure 1.19 shows some examples of this. Cave paintings, such as the one shown in Figure 1.19(a) from 30,000 years ago. Figure 1.19(b) shows a painting from the European Middle Ages. Similar to the cave painting, it relates to military conflict, a fascination of humans regardless of the era or technology. There is much greater detail in the newer painting, leaving less to the imagination; however, the drawing perspective is comically wrong. Some people seem short relative to others, rather than being further away. The rear portion of the fence looks incorrect. Figure 1.19(c) shows a later painting in which the perspective have been meticulously accounted for, leading to a beautiful palace view that requires no imagination for us to perceive it as “3D”. By the 19th century, many artists had grown tired of such realism and started the controversial impressionist movement, an example of which is shown in Figure 1.19(d). Such paintings leave more to the imagination of the viewer, much like the earlier cave paintings.

Moving pictures Once humans were content with staring at rectangles on the wall, the next step was to put them into motion. The phenomenon of stroboscopic apparent motion is the basis for what we call movies or motion pictures today. Flipping quickly through a sequence of pictures gives the illusion of motion, even at a rate as low as two pictures per second. Above ten pictures per second, the motion even appears to be continuous, rather than perceived as individual pictures. One of the earliest examples of this effect is the race horse movie created by Eadward Muybridge in 1878 at the request of Leland Stanford (yes, that one!); see Figure 1.20.

Motion picture technology quickly improved, and by 1896, a room full of spectators in a movie theater screamed in terror as a short film of a train pulling into a station convinced them that the train was about to crash into them (Figure 1.21(a)). There was no audio track. Such a reaction seems ridiculous for anyone who has been to a modern movie theater. As audience expectations increased, so has the degree of realism produced by special effects. In 1902, viewers were inspired by a Journey to the Moon (Figure 1.21(b)), but by 2013, an extremely high degree of realism seemed necessary to keep viewers believing (Figure 1.21(c) and 1.21(d)).

At the same time, motion picture audiences have been willing to accept lower degrees of realism. One motivation, as for paintings, is to leave more to the imagination. The popularity of animation (also called anime or cartoons) is a prime example (Figure 1.22). Even within the realm of animations, a similar trend has emerged as with motion pictures in general. Starting from simple line drawings in 1908 with Fantasmagorie (Figure 1.22(a)), greater detail appears in 1928 with the introduction of Mickey Mouse(Figure 1.22(b)). By 2003, animated films achieved a much higher degree of realism (Figure 1.22(c)); however, excessively simple animations have also enjoyed widespread popularity (Figure 1.22(d)).

Toward convenience and portability Another motivation for accepting lower levels of realism is cost and portability. As shown in Figure 1.23, families were willing to gather in front of a television to watch free broadcasts in their homes, even though they could go to theaters and watch high-resolution, color, panoramic, and 3D movies at the time. Such tiny, blurry, black-and-white television sets seem comically intolerable with respect to our current expectations. The next level of portability is to carry the system around with you. Thus, the progression is from:
1.3. HISTORY REPEATS

Figure 1.20: This 1878 *Horse in Motion* motion picture by Eadward Muybridge, was created by evenly spacing 24 cameras along a track and triggering them by trip wire as the horse passes. The animation was played on a zoopraxiscope, which was a precursor to the movie projector, but was mechanically similar to a record player.

1) having to go somewhere to watch it, to 2) being able to watch it in your home, to 3) being able to carry it anywhere. Whether pictures, movies, phones, computers, or video games, the same progression continues. We can therefore expect the same for VR systems. At the same time, note that the gap is closing between these levels: The quality we expect from a portable device is closer than ever before to the version that requires going somewhere to experience it.

Video games Motion pictures yield a passive, third-person experience, in contrast to video games which are closer to a first-person experience by allowing us to interact with him. Recall from Section 1.1 the differences between open-loop and closed-loop VR. Video games are an important step closer to closed-loop VR, whereas motion pictures are open-loop. As shown in Figure 1.24, we see the same trend from simplicity to improved realism and then back to simplicity. The earliest games, such as Pong and Donkey Kong, left much to the imagination. First-person shooter (FPS) games such as Doom gave the player a first-person perspective and launched a major campaign over the following decade toward higher quality graphics and realism. Assassin’s Creed shows a typical scene from a modern, realistic video game. At the same time, wildly popular games have emerged by focusing on simplicity. Angry Birds looks reminiscent of games from the 1980s, and Minecraft allows users to create and inhabit worlds composed of course blocks. Note that reduced realism often leads to simpler engineering requirements; in 2015, an advanced FPS game might require a powerful PC and graphics card, while simpler games would run on a basic smartphone. Repeated

Figure 1.21: A progression of special effects: (a) Arrival of a Train at La Ciotat Station, 1896. (b) A Trip to the Moon, 1902. (c) The movie 2001, from 1968. (d) Gravity, 2013.

lesson: Don’t assume that more realistic is better!

Beyond staring at a rectangle The concepts so far are still closely centered on staring at a rectangle that is fixed on a wall. Two important steps come next: 1) Presenting a separate picture to each eye to induce a “3D” effect. 2) Increasing the field of view so that the user is not distracted by anything but the stimulus. One way our brains infer the distance of objects from our eyes is by stereopsis. Information is gained by observing and matching features in the world that are visible to both the left and right eyes. The differences between their images on the retina yield cues about distances; keep in mind that there are many more such cues, which we discuss in Section 6.1. The first experiment that showed this 3D effect of stereopsis was performed in 1838 by Charles Wheatstone in a system called the stereoscope (Figure 1.25(a)). By the 1930s, a portable version became a successful commercial product known to this day as the View-Master (Figure 1.25(b)). Pursuing this idea further led to Sensorama, which added motion pictures, sound, vibration, and even smells to the experience (Figure 1.25(c)). An unfortunate limitation of these designs is requiring that the viewpoint is fixed
1.3. HISTORY REPEATS

Figure 1.22: A progression of cartoons: (a) Emile Cohl, Fantasmagorie, 1908. (b) Mickey Mouse in Steamboat Willie, 1928. (c) The Clone Wars Series, 2003. (d) South Park, 1997.

with respect to the picture. If the device is too large, then the user’s head also becomes fixed in the world. An alternative has been available in movie theaters since the 1950s. Stereopsis is achieved when participants wore special glasses that select a different image for each eye using polarized light filters. This popularized 3D movies, which are viewed the same way in the theaters today.

Another way to increase the sense of immersion and depth is to increase the field of view. The Cinerama system from the 1950s offered a curved, wide field of view that is similar to the curved, large LED displays offered today (Figure 1.25(d)). Along these lines, we could place screens all around us. This idea led to one important family of VR systems called the CAVE, which was introduced in 1992 at the University of Illinois [3] (Figure 1.26(a)). The user enters a room in which video is projected onto several walls. The CAVE system also offers stereoscopic viewing by presenting different images to each eye using polarized light and special glasses. Often, head tracking is additionally performed to allow viewpoint-dependent video to appear on the walls.

Figure 1.23: Although movie theaters with large screens were available, families were also content to gather around television sets that produced a viewing quality that would be unbearable by current standards, as shown in this photo from 1958.

VR headsets Once again, the trend toward portability appears. An important step for VR was taken in 1968 with the introduction of Ivan Sutherland’s Sword of Damocles, which leveraged the power of modern displays and computers (Figure 1.26(b)). He constructed what is widely considered to be the first VR headset. As the user turns his head, the images presented on the screen are adjusted to compensate so that the virtual objects appear to be fixed in space. This yielded the first glimpse of an important concept in this book: The perception of stationarity. To make an object appear to be stationary while you move your sense organ, the device producing the stimulus must change its output to compensate for the motion. This requires sensors and tracking systems to become part of the VR system. Commercial VR headsets started appearing in the 1980s with Jaron Lanier’s company VPL, thereby popularizing the image of goggles and gloves; Figure 1.26(c). In the 1990s, VR-based video games appeared in arcades (Figure 1.26(d)) and at home units (Figure 1.26(e)). The experiences were not compelling or comfortable enough to attract mass interest. However, the current generation of VR headset leverages the widespread availability of high resolution screens and sensors, due to the smartphone industry, to offer lightweight, low-cost, high-field-of-view headsets, such as the Oculus Rift (Figure 1.26(f)). This has greatly
1.3. HISTORY REPEATS

Figure 1.25: (a) The first stereoscope, developed by Wheatstone in 1838, used mirrors to present a different image to each eye; the mirrors were replaced by lenses soon afterward. (b) The View-Master is a mass-produced stereoscope that has been available since the 1930s. (c) In 1957, Sensorama added motion pictures, sound, vibration, and even smells to the experience. (d) In competition to stereoscopic viewing, Cinerama offered a larger field of view. Larger movie screens caused the popularity of 3D movies to wane in the 1950s.

Figure 1.25: (a) The first stereoscope, developed by Wheatstone in 1838, used mirrors to present a different image to each eye; the mirrors were replaced by lenses soon afterward. (b) The View-Master is a mass-produced stereoscope that has been available since the 1930s. (c) In 1957, Sensorama added motion pictures, sound, vibration, and even smells to the experience. (d) In competition to stereoscopic viewing, Cinerama offered a larger field of view. Larger movie screens caused the popularity of 3D movies to wane in the 1950s.
1.3. HISTORY REPEATS

Figure 1.26: (a) CAVE VR, 1992. (b) Sword of Damocles, 1968. (c) VPL Eyephones, 1980s. (d) Virtuality gaming, 1990s. (e) Nintendo Virtual Boy, 1995. (f) Oculus Rift DK2, 2014.

Figure 1.27: Second Life was introduced in 2003 as a way for people to socialize through avatars and essentially build a virtual world to live in. Shown here is the author giving a keynote address at the 2014 OpenSimulator Community Conference. The developers build open source software tools for constructing and hosting such communities of avatars with real people behind them.

improved the quality of VR experiences while significantly lowering the barrier of entry for developers and hobbyists. This also caused a recent flood of interest in VR technology and applications.

Bringing people together We have so far neglected an important aspect, which is human-to-human or social interaction. We use formats such as a live theater performance, a classroom, or a lecture hall for a few people to communicate with or entertain a large audience. We write and read novels to tell stories to each other. Prior to writing, skilled storytellers would propagate experiences to others, including future generations. We have communicated for centuries by writing letters to each other. More recent technologies have allowed us to interact directly without delay. The audio part has been transmitted through telephones for over a century, and now the video part is transmitted as well through videoconferencing over the Internet. At the same time, simple text messaging has become a valuable part of our interaction, providing yet another example of a preference for decreased realism. Communities of online users who interact through text messages over the Internet have been growing since the 1970s. In the context of games, early Multi-User Dungeons (MUDs) grew into Massively Multiplayer Online Games (MMORPGs) that we have today. In the context of education, the PLATO system from the University of Illinois was the first computer-assisted instruction system, which included message boards, instant messaging, screen sharing, chat rooms, and emoticons. This was a precursor to many many community-based, on-line learning systems, such as the Khan Academy and Coursera. The largest amount
of online social interaction today occurs through Facebook apps, which involve direct communication through text along with the sharing of pictures, videos, and links.

Returning to VR, we can create avatar representations of ourselves and “live” together in virtual environments, as is the case with Second Life and Opensimulator 1.27. Without being limited to staring at rectangles, what kinds of societies will emerge with VR? Popular science fiction novels have painted a thrilling, yet dystopian future of a world where everyone prefers to interact through VR [2, 4, 8]. It remains to be seen what the future will bring.

As the technologies evolve over the years, keep in mind the power of simplicity when making a VR experience. In some cases, maximum realism may be important; however, leaving much to the imagination of the users is also valuable. Although the technology changes, one important invariant is that humans are still designed the same way. Understanding how our senses, brains, and bodies work is crucial to understanding the fundamentals of VR systems.

Further reading

Bibliography

