
1 Recursive automata

A finite automaton can be seen as a program with only a finite amount of memory. A recursive
automaton is like a program which can use recursion (calling procedures recursively), but again
over a finite amount of memory in its variable space. Note that the recursion, which is typically
handled by using a stack, gives a limited form of infinite memory to the machine, which it can use
to accept certain non-regular languages. It turns out that the recursive definition of a language
defined using a context-free grammar precisely corresponds to recursion in a finite-state recursive
automaton.

A recursive automaton over Σ is made up of a finite set of Nfas that can call each other (like in
a programming language), perhaps recursively, in order to check if a word belongs to a language.

Formally, a recursive automaton over Σ is a tuple (M, main, {(Qm,Σ ∪ M, δm, qm
0 , Fm)}m∈M ),

where

• M is a finite set of module names,

• main ∈ M is the initial module,

• For each m ∈ M , Am = (Qm,Σ ∪ M, δm, qm
0 , Fm) is an NFA over the alphabet Σ ∪ M .

• For any m, m′ ∈ M , m 6= m′, Qm ∩ Qm′ = ∅ (the set of states of different modules are
disjoint).

Intuitively, we view a recursive automaton as a set of procedures/modules, where the execution
starts with the main-module, and the automaton processes the word by calling modules recursively.

Example

Let Σ = {a, b} and let L = {0n1n | n ∈ N}. L is accepted by the following recursive automaton.

Why? The recursive automaton consists of single module, which is also the main module. The
module either accepts ǫ, or reads 0, calls itself, and after returning from the call, reads 1 and reaches
a final state (at which point it can return if it was called). In order to accept, we require the run
to return from all calls and reach the final state of module main.

For example, the recursive automaton accepts 01 because of the following run: q0 − 0− >

q1 − (call m)− > q0 − ǫ− > q3 − (return)− > q2 − 1− > q3. Note that the transition q1 −m− > q3

calls module m; module m starts with its initial state, will process letters (perhaps recursively
calling more modules), and when it reaches a final state will return to the state q3 in the calling
module.

1



Formal definition of acceptance

Formally, let A = (M, main, {(Qm,Σ ∪ M, δm, qm
0 , Fm)}m∈M ) be a recursive automaton.

We define a run of A on a word w. Since the modules can call each other recursively, we define
the run using a stack. When A is in state q and calls a module m using the transition q−m− > q′,
we push q′ onto the stack so that we know where to go to when we return from the call. When we
return from a call, we pop the stack and go to the state stored on the top of the stack.

Formally, let Q =
⋃

m∈M Qm be the set of all states in the automaton. A stack is a word s ∈ Q∗.
A configuration is a pair (q, s) where q ∈ Q and s is a stack.

We say that a word w is accepted by A provided we can write w = y1 . . . yk, such that each
yi ∈ Σ ∪ {ǫ}, and there is a sequence of k + 1 configurations (q0, s0), . . . (qk, sk) such that

• q0 = qmain
0 and s0 = ǫ

We start with the initial state of the main module with stack being empty.

• qk ∈ Fmain and sk = ǫ

We end with a final state of the main module with stack being empty (i.e. we expect all calls
to have returned).

• For every i < k, one of the following must hold:

– qi ∈ Qm, δm(qi, yi+1) = qi+1, and si+1 = si.

– qi ∈ Qm, yi+1 = ǫ, δm(qi, m
′) = q′, qi+1 = qm′

0 and si+1 = q′.si.

– qi ∈ Fm, yi+1 = ǫ and si+1 = qi+1.si.

2 CFGs and recursive automata

We will now show that context-free grammars and recursive automata accept precisely the same
class of languages.

2.1 From CFGs to recursive automata

Given a CFG, we want to construct a recursive automaton for the language generated by the CFG.
Let us first do this for an example.

Consider the grammar (where A is the start variable) which generates {ancbn | n ∈ N}:

A → aAb | aBb

B → c

Each variable in the CFG corresponds to a language; this language is recursively defined using
other variables. We hence look upon each variable as a module; and define modules that accept
words by calling other modules recursively.

For example, the recursive automaton for the above grammar is:

2



Formally, let G = (V,Σ, R, S) be a context free grammar. Let AG = (M,main, {(Qm,Σ ∪
M, δm, qm

0 , Fm)}m∈M ) where M = V , main = S and for each X ∈ M = V , let 〈Qm,Σ ∪ M, δm, qm
0 , Fm)〉

be an NFA that accepts the (finite, and hence) regular language LX = {w|(X → w) ∈ R}.
Then L(G) = L(AG).

2.2 From recursive automata to CFGs

Let A = (M,main, {(Qm,Σ ∪ M, δm, qm
0 , Fm)}m∈M ) be a recursive automaton. We construct a

CFG GA = (V,Σ, R, S) with V = {Xq | q ∈
⋃

m∈M Qm}.
Intuitively, the variable Xq will represent the set of all words accepted by starting in state q

and ending in a final state of the module q is in (however, on recursive calls to this module, we still
enter at the original initial state of the module).

R is the following set of rules:

• If q′ ∈ δm(q, a), then the rule Xq → aXq′ is in R, for any m ∈ M , q, q′ ∈ Qm, a ∈ Σ ∪ {ǫ}.

Intuitively, a transition within a module is simulated by generating the letter on the transition
and generating a variable that stands for the language generated from the next state.

• If q′ ∈ δm(q, m′), then the rule Xq → X
qm′

0

Xq′ is in R, for any m, m′ ∈ M , q, q′ ∈ Qm.

Intuitively, if q′ ∈ δm(q, m′), then Xq can generate a word of the form xy where x is accepted
using a call to module m and y is accepted from the state q′.

• For any q ∈
⋃

m∈M Fm, Xq → ǫ belongs to R.

When at a final state, we can stop generating letters.

The initial variable S is Xqmain

0

.

Then L(GA) = L(A).

3



An example conversion from PDAs to CFGs

Consider the following recursive automaton, which accepts the language {aibjck | i = j or j = k}.

The grammar corresponding to it is:

Xp1 → Xp5Xp2 | Xp3

Xp2 → cXp2 | ǫ

Xp3 → aXp3 | Xp9Xp4

Xp4 → ǫ

Xp5 → aXp6 | Xp8

Xp6 → Xp5Xp7

Xp7 → bXp8

Xp8 → ǫ

Xp9 → bXp10 | Xp12

Xp10 → Xp9Xp11

Xp11 → cXp12

Xp12 → ǫ

where the start variable is Xp1.

4


