Homework Assignment 0

CS 273 Introduction to Theoretical Computer Science Fall Semester, 2002

Due: Thursday, Sept 5, at the beginning of class

Some of these are warm-up problems to prepare you for the material of this course.

Please **read** the comments on the web page about **how to do homeworks** before doing this homework. **This is an individual homework.**

1. (10 pts) Prove that for any positive integer n > 1

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

- 2. (10 pts) Prove by induction that the sum of the cubes of three consective integers is divisible by 9. (Here integers refer to both positive and negative ones.)
- 3. (10 pts) Prove that for any real number $n \ge 0$ and integers a, b > 0,
 - (a) $\left\lceil \left\lceil n/a \right\rceil / b \right\rceil = \left\lceil n/ab \right\rceil$
 - **(b)** ||n/a|/b| = |n/ab|
- 4. (10 pts) Prove that the number of distinct prime numbers is infinite. (Hint: prove by contradiction)
- 5. (20 pts) Define $f(n) \ll g(n)$ to mean that f(n) is in o(g(n)) and $f(n) \equiv g(n)$ to mean that $f(n) = \Theta(g(n))$. Define $\lg n = \log_2 n$.
 - (a) Prove that $n^{1/\lg n} \equiv \sin n + 2 = \Theta(1)$.
 - (b) Order the following functions $(\lg n)^{\lg n}$, $n^{\lg \lg n}$, $n^{\lg n}$ and $(\lg n)^n$ by notations \ll and \equiv . Justify your answer.
- 6. (10 pts) Let R_1 be a binary relation from set A to B and R_2 be a binary relation from set B to C. Define $R_1 \circ R_2 = \{(a,c) | a \in A, c \in C, \exists b \in B \text{ such that } (a,b) \in R_1, (b,c) \in R_2\}$. Define $R^2 = R \circ R$. Prove that a binary relation R on set A is transitive if and only if $R \supseteq R^2$.
- 7. (10 pts) Prove that in a graph G with n vertices and n+1 edges, there is at least one vertex of degree ≥ 3 .