Homework Assignment 0

CS 273 Introduction to Theoretical Computer Science
Fall Semester, 2002

Due: Thursday, Sept 5, at the beginnning of class

Some of these are warm-up problems to prepare you for the material of this course.
Please read the comments on the web page about how to do homeworks before doing this homework. This is an individual homework.

1. (10 pts) Prove that for any positive integer $n>1$

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}
$$

2. (10 pts) Prove by induction that the sum of the cubes of three consective integers is divisible by 9. (Here integers refer to both positive and negative ones.)
3. (10 pts) Prove that for any real number $n \geq 0$ and integers $a, b>0$,
(a) $\lceil\lceil n / a\rceil / b\rceil=\lceil n / a b\rceil$
(b) $\lfloor\lfloor n / a\rfloor / b\rfloor=\lfloor n / a b\rfloor$
4. (10 pts) Prove that the number of distinct prime numbers is infinite. (Hint: prove by contradiction)
5. (20 pts) Define $f(n) \ll g(n)$ to mean that $f(n)$ is in $o(g(n))$ and $f(n) \equiv g(n)$ to mean that $f(n)=\Theta(g(n))$. Define $\lg n=\log _{2} n$.
(a) Prove that $n^{1 / \lg n} \equiv \sin n+2=\Theta(1)$.
(b) Order the following functions $(\lg n)^{\lg n}, n^{\lg \lg n}, n^{\lg n}$ and $(\lg n)^{n}$ by notations \ll and \equiv. Justify your answer.
6. (10 pts) Let R_{1} be a binary relation from set A to B and R_{2} be a binary relation from set B to C. Define $R_{1} \circ R_{2}=\left\{(a, c) \mid a \in A, c \in C, \exists b \in B\right.$ such that $\left.(a, b) \in R_{1},(b, c) \in R_{2}\right\}$. Define $R^{2}=R \circ R$. Prove that a binary relation R on set A is transitive if and only if $R \supseteq R^{2}$.
7. (10 pts) Prove that in a graph G with n vertices and $n+1$ edges, there is at least one vertex of degree ≥ 3.
