
Due: Thursday, Sept 5, at the beginnning of class

Some of these are warm-up problems to prepare you for the material of this course.

Please read the comments on the web page about how to do homeworks before doing this homework.
This is an individual homework.

1. (10 pts) Prove that for any positive integer n > 1

1√
1
+

1√
2
+ . . . +

1√
n

>
√

n

Solution: Prove by induction.
Base Step: When n = 2, 1√
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Thus, it’s true when n = k + 1. This finishes the induction step, which completes the proof. ¥

2. (10 pts) Prove by induction that the sum of the cubes of three consective integers is
divisible by 9. (Here integers refer to both positive and negative ones.)

Solution: Let the middle one of the three consective integers be n. Base Step: When n = 0,(−1)3 +
03 + 13 = 0,which is divisible by 9. Induction Step: Assume that it’s true for n = k. First, we prove
the case in which n increases. When n = k + 1,

k3 + (k + 1)3 + (k + 2)3 = (k − 1)3 + k3 + (k + 1)3 + ((k + 2)3 − (k − 1)3)

= (k − 1)3 + k3 + (k + 1)3 + 9k2 + 9k + 9

Since 9k2 + 9k + 9 is divisible by 9, it’s true when n = k + 1. The case in which n decreases can be
proved in the same way. This finishes the induction step, which completes the proof. ¥

3. (10 pts) Prove that for any real number n ≥ 0 and integers a, b > 0,

(a) ddn/ae/be = dn/abe

Solution: When n = 0, the proof is trivial. We are concerned with the case when n > 0. Since
n > 0, a, b > 0 and a, b ∈ Z, there exists k ≥ 0, k ∈ Z, such that k < n/a ≤ k + 1, which means
dn/ae = k + 1. Since k + 1 ∈ Z, there exist unique q, r ∈ Z and q ≥ 0, 0 ≤ r < b, such that
k + 1 = b · q + r. Therefore, dn/ae/b = k+1

b = q + r/b.

i. When r = 0:
dn/ae/b = q ⇒ ddn/ae/be = q.
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For the right hand of the equation,

k < n/a ≤ k + 1

⇒ k

b
< n/ab ≤ k + 1

b

⇒ q − 1 < q +
−1
b

=
k

b
< n/ab ≤ k + 1

b
= q

⇒ q − 1 < n/ab ≤ q

⇒ dn/abe = q

Thus ddn/ae/be = dn/abe.
ii. When r 6= 0:
dn/ae/b = q + r/b⇒ ddn/ae/be = q + 1.
For the right hand of the equation,

k < n/a ≤ k + 1

⇒ k

b
< n/ab ≤ k + 1

b

⇒ q ≤ q +
r − 1

b
=

k

b
< n/ab ≤ k + 1

b
= q + r/b < q + 1

⇒ q < n/ab < q + 1

⇒ dn/abe = q + 1

Thus ddn/ae/be = dn/abe.
This completes the proof. ¥

(b) bbn/ac/bc = bn/abc
Solution: The proof can be done in exactly the same fashion. ¥

4. (10 pts) Prove that the number of distinct prime numbers is infinite. (Hint: prove by
contradiction)

Solution: We proof by contradiction. Suppose the number of distinct prime numbers is finite, denoted
by n. Let the biggest be Pn and the smallest be P1. We construct a new number Pn+1 =

∏n
i=1 Pi +1.

First of all, Pn+1 is a prime number since it can not be divided by any prime number Pi where 1 ≤ i ≤ n.
And Pn+1 > Pn, contradicting our assumption that all primes are in the list Pi, 1 ≤ i ≤ n. ¥

5. (20 pts) Define f(n) ¿ g(n) to mean that f(n) is in o(g(n)) and f(n) ≡ g(n) to mean that
f(n) = Θ(g(n)). Define lg n = log2 n.

(a) Prove that n1/ lg n ≡ sinn + 2 = Θ(1).

Solution: n1/ lg n = nlg 2/ lg n = nlog2

n = 2 = Θ(1).
Since −1 ≤ sinn ≤ 1, 1 ≤ sinn + 2 ≤ 3⇒ sinn + 2 = Θ(1) ¥

(b) Order the following functions (lg n)lg n, nlg lg n, nlg n and (lg n)n by notations ¿ and ≡.
Justify your answer.

Solution: (lg n)lg n ≡ nlg lg n ¿ nlg n ¿ (lg n)n.

i. (lg n)lg n ≡ nlg lg n can be justified by showing that they are actually equal.

(lg n)lg n = (2lg lg n)lg n = 2lg lg n·lg n = 2lg n·lg lg n = nlg lg n
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ii. Since for all real constants a and b such that a > 1,

lim
n→∞

nb

an
= 0

Substituting lg n for n and 2a for a, we have

lim
n→∞

lgb n

(2a)lg n
= lim

n→∞

lgb n

na
= 0

From this limit, we conclude that lgb n¿ na for any constant a > 0. Taking a = 1, b = 1,we
have lg n¿ n, which gives us nlg lg n ¿ nlg n.

iii. Taking a = 1, b = 2,we have lg2 n¿ n. Together with the obvious result 2¿ lg n, we have

nlg n = 2lg2 n ¿ 2n = 2n lg 2 ¿ 2n·lg lg n = 2lg lg n·n = (lg n)n

This justifies nlg n ¿ (lg n)n.

¥

6. (10 pts) Let R1 be a binary relation from set A to B and R2 be a binary relation from set
B to C. Define R1 ◦ R2 = {(a, c)|a ∈ A, c ∈ C,∃b ∈ B such that (a, b) ∈ R1, (b, c) ∈ R2}. Define
R2 = R ◦R. Prove that a binary relation R on set A is transitive if and only if R ⊇ R2.

Solution: (a) We first prove that a binary relation R on set A is transitive if R ⊇ R2.
If R ⊇ R2, whenever (a, b) ∈ R and (b, c) ∈ R, (a, c) ∈ R2, and thus (a, c) ∈ R. R is transitive
according to definition of transitivity.

(b) We then prove that R ⊇ R2 if a binary relation R on set A is transitive.
If a binary relation R on set A is transitive, whenever (a, b) ∈ R and (b, c) ∈ R, there exists
(a, c) ∈ R. Since for every element (a, c) ∈ R2, there exists b ∈ R such that (a, b) ∈ R and
(b, c) ∈ R. Thus for every element (a, c) ∈ R2, (a, c) ∈ R, which proves R ⊇ R2 by definition.

This completes the proof. ¥

7. (10 pts) Prove that in a graph G with n vertices and n + 1 edges, there is at least one
vertex of degree ≥ 3.

Solution: Prove by contradiction. Suppose for the purpose of contradiction that each and every vertex
has a degree of at most 2. The sum of degree of all the n vertices is at most 2n. However, since there
are n+1 edges and each and every edge contributes exactly 2 to the sum of degree of G independently.
The sum of degree of the graph is exactly 2n + 2, contradicting the previous result. Therefore, in a
graph G with n vertices and n + 1 edges, there is at least one vertex of degree ≥ 3. ¥
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