
CS 273 Introduction to the Theory of Computation Fall 2002

Homework 1 Solutions

1. (10 pts)

(a) (5 pts) How many ways can ten boys and five girls stand in a row with no two girls standing
beside each other?

Solution: Let the 10 boys stand in a line, with an empty position between each pair of them.
So there are 9 empty positions in the line. Plus those two positions at the start and the end of
the line, totally there are 11 empty positions. It is obvious that if the five girls stand in these
empty positions, no two girls will stand beside each other. Given a certain standing order of boys,
the number of ways for girls to stand is the number of 5-permutations of a set with 11 elements,
this is P(11,5). The boys can also stand in an arbitrarily order. So the number of total ways is
P (11, 5)× P (10, 10). ¥

(b) (5 pts) How many ways can ten boys and five girls stand in a circle with no two girls standing
beside each other?

Solution: If the boys stand in a circle, there are 10 empty positions in the circle. (Note that the
start and the end positions of the line merge into one position)So the total ways for girl to stand
is P(10,5). In case the boys stand in a circle, we can fix one boy on a fixed position in a circle, the
rest 9 boys can stand in an arbitrarily order. So the number if total ways is P (10, 5)×P (9, 9). ¥

2. (16 pts) There are five male students and five female students register for a 497 seminar course.
Unfortunately, the professor has trouble hiring any graders and he himself finds the job unacceptably
boring. As a result, he asks the students to exchange homework so that no one grades his or here own
submission.

Solution: Assume there are n students taking the course, define p(n) as the number of ways to
exchange homework so that no one grades his or her own submission.

(a) Solution 1

Obviously, p(2)=1, p(3)=2. Now we try to get the recursive function of p(n). Let’s consider
student n, there are two cases:

1)student n grades the homework of student i, and his homework is graded by student j,where
n 6= i, n 6= j, i 6= j, if student n is out, we can let j grades i’s homework, so the rest n-1 students
still grade others’ homework. On the other hand, in any feasible way for n-1 students, there are
n-1 relation links (such as student i grades j’s homework). And student n can break each one of
these links to constitute a new feasible way for n students. (by letting i grade n, n grade j) In this
case, the total contribution is (n− 1)× p(n− 1)

2)student n grades student i’s homework, and student i grades student n’s homework. There
are n-1 candidates to grade homework with student n. The rest n-2 students still grades others’
homework. So in this case, the total contribution is (n− 1)× p(n− 2). Now we get the recursive
function as follows:

p(n) = (n− 1)× p(n− 1) + (n− 1)× p(n− 2)

Divide n! at both side of the equation, we get

p(n)

n!
=

p(n− 1)

(n− 1)!
−

p(n− 1)

n× (n− 1)!
+

p(n− 2)

n× (n− 2)!

so
P (n)

n!
−

p(n− 1)

(n− 1)!
=

(−1)

n
× (

p(n− 1)

(n− 1)!
−

p(n− 2)

(n− 2)!
)

We get the solution as

p(n) = n!×
n
∑

k=2

(−1)(k)

k!
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where n ≥ 2

(b) Solution 2

First, let all the students grades their homework arbitrarily, the number of total ways is P(n,n).
Define g(k) as there are exactly k students grade their own homework. So

p(n) = P (n, n)−
n
∑

k=1

g(k)

Consider the situation that one student is fixed to grade his/her own homework, others can grade
homework arbitrarily, there are C(n, 1)×P (n−1, n−1) possibilities. But in this case, we calculate
some instances for more than one times. For example, we calculate g(2) C(2,1) times, calculate
g(3) C(3,1) times....,calculate g(n) C(n,1) times. We get

C(n, 1)× P (n− 1, n− 1) =

n
∑

k=1

C(n, k)× g(k)

Simiarly, if we fix two students, we have

C(n, 2)× P (n− 2, n− 2) =

n
∑

k=2

C(n, k)× g(k)

And so on...

C(n, n− 1)× P (1, 1) =

n
∑

k=n−1

C(n, k)× g(k)

C(n, n)× P (0, 0) =

n
∑

k=n

C(n, n)× g(k) = g(n)

Now we prove

p(n) = P (n, n)−
n
∑

k=1

g(k)

= P (n, n)−(C(n, 1)× P (n− 1, n− 1)−C(n, 2)× P (n− 2, n− 2)+C(n, 3)× P (n− 3, n− 3)−...)

p(n) = n!×
n
∑

k=2

(−1)(k)

k!

Replace C(n, k) × P (n − k, n − k) (k=1...n) using the equations we get above, we need to prove
that

k
∑

i=1

(−1)(i) × C(k, i) = −1

It is trivial if we let x=1, y= -1 in the THEOREM 6 in ROSEN p256.

¥

(a) (4 pts) In how many ways can this be accomplished?

Solution: The answer is just p(10), where p(n) is as defined above. ¥

(b) (4 pts) In how many ways can at least three students get lucky to grade their own homework?

Solution: Total number- no one grades his/her homework - only one student grades his/her
homework - only two students grade their own homework

P (10, 10)− p(10)− C(10, 1)p(9)− C(10, 2)p(8)

¥
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(c) (8 pts) Now back to the conditions given in the original problem and let the total number of
registered students be n, in how many ways can this be accomplished (without the constraints in
b )?

Solution: The answer is p(n). ¥

3. (20 pts) Every day a student walks from her home to school, which is located 10 blocks east and 14
blocks north from home. She always takes a shortest walk of 24 blocks. Assume she lives on a prefect
grid.

(a) (5 pts) How many different walks are possible?

Solution: A path can be represented by a bit string of length 24. A zero means that the student
went right and a one means that the student went up. Note that the student cannot go left or
down because the student will not then be making a shortest walk of 24 blocks. Given this path
configuration the student can go only 10 blocks to the right ⇒ the number of possible paths is:
(

10+14
10

)

=
(

24
10

)

= 1961256 ¥

(b) (5 pts) Suppose that 4 blocks east and 5 blocks north of her home lives her best friend, whom she
meets each day on her way to school. Now how many different ways are possible?

Solution: We have to find the number of ways to go to the best friend first and then from the
best friend to school.

(

5+4
4

)

∗
(

9+6
6

)

=
(

9
4

)

∗
(

15
6

)

= 630630 ¥

(c) (5 pts) Suppose, in addition, that 3 blocks east and 6 blocks north of ther friend’s house there
is a park where the two girls stop each day to rest and play. Now how many different walks are
there?

Solution: First we will find the number of ways to go to the best friend, then the number of
ways to go from the best friend to the park, and finally the number of ways to go from the park
to school. This is:

(

5+4
4

)

∗
(

6+3
3

)

∗
(

3+3
3

)

=
(

9
4

)

∗
(

9
3

)

∗
(

6
3

)

= 211680 ¥

(d) (5 pts) Stopping at a park to rest and play, the two students often get to school late. To avoid
the temptation of the park, our two students decide never to pass the intersection where the park
is. Now how many different walks are there?

Solution: ¿From part b) we know how many ways there are to go from the friend’s house to
school. ¿From part c) we know how many ways there are to go from the friend’s house to school
via the park. So subtract the second from the first and we get:

(

5+4
4

)

∗ [
(

9+6
6

)

−
(

6+3
3

)

∗
(

3+3
3

)

] =
(

9
4

)

∗ [
(

15
6

)

−
(

9
3

)

∗
(

6
3

)

] = 418950 ¥

4. (10 pts) Use combinatorial reasoning to prove the identity (in the form given)

(

n

k

)

−

(

n− 3

k

)

=

(

n− 1

k − 1

)

+

(

n− 2

k − 1

)

+

(

n− 3

k − 1

)

Solution: Imagin that we have a set of distinguishable objects S = {a, b, c, s1, s2, . . . , sn−3}. Now we
want to choose k objects from S with the constraint that at least one of a, b and c must be chosen.
Observe that

(

n−3
k

)

is number of ways to choose k objects from S without choosing any one of a, b and

c. Therefore the left side of the equation
(

n
k

)

−
(

n−3
k

)

computes exactly the number of ways to choose
k objects from S with the constraint that at least one of a, b and c must be chosen. Let’s look at the
right side of the equation. From another point of view, there are three ways to accomplish the same
task:

(a) Object a is chosen.
We then have to choose another k− 1 objects from the n− 1 objects left. The number of ways to
do this is

(

n−1
k−1

)

. Let the set of all the distinct sets of k objects chosen this way be A1.
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(b) Object a is not chosen. We throw away object a (n− 1 objects left)
Object b is chosen. We then go ahead and choose another k − 1 objects from the n − 2 objects
left. The number of ways to do this is

(

n−2
k−1

)

. Let the set of all the distinct sets of k objects chosen
this way be A2.

(c) Both object a and b are not chosen. We throw away object a and b (n− 2 objects left)
Object c is chosen. We then go ahead and choose another k − 1 objects from the n − 3 objects
left. The number of ways to do this is

(

n−3
k−1

)

. Let the set of all the distinct sets of k objects chosen
this way be A3.

Let A be the set of all the distinct sets of k objects chosen from S with the constraint at least one
of a, b and c must be chosen. One important observation is that Ai ∩ Aj = ∅, 1 ≤ i < j ≤ 3 and
A = A1 ∪A2 ∪A3. Now the right side of the equation computes exactly |A|. Both sides computing the
same quantity, the equation thus holds. ¥

5. (10 pts) Use combinatorial reasoning to prove

n
∑

k=0

(

n

k

)2

=

(

2n

n

)

for any n ≥ 0

Solution: Imagine we have a set of 2n objects S = {a1, a2, . . . , an, b1, b2, . . . , bn}. Now we want to
choose n objects from S. The right side of the equation

(

2n
n

)

is just the number of all distinct sets
of n objects chosen from S. Let’s look at the left side. From another point of view, there are n + 1
ways in which this can be accomplished. Think about S as S = A ∪ B where A = {a1, a2, . . . , an}
and B = {b1, b2, . . . , bn}. We can choose nothing from A and choose all n objects from B in

(

n
0

)(

n
n

)

ways. Or we can choose one object from A and n − 1 objects from B in
(

n
1

)(

n
n−1

)

ways. Or we can

choose two objects from A and n− 2 objects from B in
(

n
2

)(

n
n−2

)

ways. . . . Or we can choose n objects

from A and no objects from B in
(

n
n

)(

n
0

)

ways. Notice that
(

n
k

)

=
(

n
n−k

)

. The total number of ways

to choose n objects from S = A ∪B is thus
∑n

k=0

(

n
k

)2
. Since both sides of the equation compute the

same quantity, the equation holds. ¥

6. A thousand balloons are to be given to 200 children C1, C2, . . . , C200. In how many ways can it be
done if

(a) (2 pts) the balloons are identical?

Solution: The children can be represented as the 200 spaces before, between, and after 199 bars.
The problem then reduces to how many ways a 1000 balloons can be distributed among these
spaces. A sample representation of the problem depicting a balloon as ∗, could be:

∗ ∗ | ∗ ∗|| ∗ . . . | ∗ ∗∗

It is obvious from the representation that this is equivalent to the number of different permuta-
tions of (1000 + 199) objects, where there are 1000 indistinguishable objects of type ∗ and 199
indistinguishable objects of type |. By theorem 3, on page 292 of text, the answer is

1199!

1000!199!

¥

(b) (2 pts) the balloons are all different?

4



CS 273 Introduction to the Theory of Computation Fall 2002

Solution: We give out the balloons one by one in order. Since each balloon can be given to any
child and there is no restriction no the number of balloons a child can have. The number of ways
of doing this is 2001000. To verify the correctness, one can argue that every way of giving out
balloon in this fashion is a valid one and every valid configuration can be achieved. Furthermore,
since the balloons are given out in order, a single configuration cannot be achieved in two different
ways. ¥

(c) (3 pts) the balloons are identical and each child must get at least one?

Solution: Once again the children can be represented as the space before and after and the
spaces between 199 bars. The task being to distribute 1000 balloons into the different spaces but
with each space containing at least 1 balloon. This is really the same as first putting a balloon in
each space:

∗| ∗ | ∗ . . . |∗

The problem then reduces to how many ways can we put 800 balloons into each space. To see
this let b represent the remaining balloons, we can now represent the problem as:

∗bbb| ∗ bbb| ∗ bbb . . . bb| ∗ bb

To stay within the problem constraints, let the first ∗ always be fixed at that position. Also each |∗
can be thought of as being a representation of a single bar. Since there’s only one way to fix the ∗
at the first position, the problem is now equivalent to the number of different permutations of (800
+ 199) objects, where there are 800 indistinguishable objects of type b and 199 indistinguishable
objects of type |∗. By theorem 3, on page 292 of text, the answer is

999!

800!199!

¥

(d) (3 pts) the balloons are all different and each child must get at least one?

Solution: Let Pi be the property that child i doesn’t get any balloons and Ai be the set of distinct
ways of giving out balloons with property Pi. If follows that Pi is the property that child i has at
least one balloon and Ai is the corresponding set. The set of all the distinct ways to give out the
1000 balloons such that each child must get at least one can be expressed as A1

⋂

A2

⋂

. . .
⋂

A200.
Let S be the set of all the possible ways to give out the balloons.

|A1

⋂

A2

⋂

. . .
⋂

A200| = |S| −
n
∑

i=1

|Ai|+
∑

1≤i<j≤n

|Ai

⋂

Aj | −
∑

1≤i<j<k≤n

|Ai

⋂

Aj

⋂

Ak|+ . . . +

|A1

⋂

A2

⋂

A3

⋂

. . . A200|

/ ∗

since property Pi is symmetric,which means

|A1| = |A2| = . . . = |A200| = 1991000

|A1

⋂

A2| = |A1

⋂

A3| = . . . = |A199

⋂

A200| = 1981000

. . .

|A1

⋂

A2

⋂

. . .
⋂

A199| = . . . = |A2

⋂

A3

⋂

. . .
⋂

A200| = 11000

∗ /

= 2001000 −

(

200

1

)

1991000 +

(

200

2

)

1981000 − . . . +

(

200

198

)

21000

−

(

200

199

)

11000 +

(

200

200

)

· 0
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¥

7. (24 pts) Consider strings of 7 digits (e.g., 0000000, 1345692)

(a) (4 pts) How many are there?

Solution: For each digit, there are 10 choices (0, 1, 2, . . . , 9). Thus, there are 107 strings of 7
digits. ¥

(b) (5 pts How many contain at least one 2?

Solution: Let P0 be the property that a string contains no 2’s and A0 be the set of strings with
property P0. Then, it’s easy to see that A0 is exactly the set of strings each of which contains
at least one 2. For each string in A0, there are 9 choices for each digit. Therefore |A0| = 97.
|A0| = 107 − |A0| = 107 − 97 = 5217031. ¥

(c) (7 pts) Suppose there are exactly one 2,two 5’s and four 7’s in any string. How many such strings
are there?

Solution: This is the problem of counting permutations of mutiple sets of indistinguishable ele-
ments. Observe that for any one permutation of the 7 digits (one 2,two 5’s and four 7’s), changing
the positions of the indistinguishable elements of a set does not change the ordered arrangement of
the entire permutation. In general, given k sets S1, S2, . . . , Sk, each of which contains ni, 1 ≤ i ≤ k
indistinguishable elements, where

∑k

i=1 ni = n, the total number of distinct permutations of these
n elements is n!

n1!·n2!···nk! . Thus, the answer is
7!

1!·2!·4! = 105. ¥

(d) (8 pts) Suppose there are at most one 2’s, three 5’s and five 7’s in any string. How many such
strings are there?

Solution: Let P1 be the property that a string has at least two 2’s, P2 be the property that a
string has at least four 5’s and P3 be the property that a string has at least six 7’s. And let
A1, A2 and A3 be the corresponding sets of strings. |A1| = 107 − 97 −

(

7
1

)

96 = 1496944. |A2| =
(

7
4

)

93+
(

7
5

)

92+
(

7
6

)

9+1 = 27280. |A3| =
(

7
6

)

9+1 = 64. |A1∩A2| =
7!

3!4! +
7!

2!5! +8 · 7!
2!4!1! = 896 since

given that we already have two 2’s and four 5’s, choosing a seventh digit gives us a configuration
of mutiple sets of indistinguishable elements, which can be solved by the formula in (b). Since
we are only dealing with strings of length 7, |A1 ∩ A3| = |A2 ∩ A3| = |A1 ∩ A2 ∩ A3| = 0.
The set of the strings that has at most one 2’s, three 5’s and five 7’s is A1 ∩ A2 ∩ A3. By the
principle of inclusion and exclusion, |A1 ∩ A2 ∩ A3| = |A1 ∪A2 ∪A3| = 107 − |A1 ∪ A2 ∪ A3| =

107−(
∑3

i=1 |Ai|−
∑

i<j |Ai∩Aj |+|A1∩A2∩A3|) = 107−1496944−27280−64+896 = 8476608. ¥
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