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Homework 3 Solutions

1. Prove by induction that if the annihilator for a recurrence is (E − b)n, for any positive integer, n, and
constant, b, the solution to the recurrence is

ai = bi





n
∑

j=1

cji
j−1



 ,∀i ∈ N

in which the cj are constants to be determined from initial conditions.

Solution: (a) For the base case, it is shown that the summation is the solution of the recurrence by
applying the annihilator (E − b)n with n = 1 to yield zero.

(E − b) < cjb
i > = E < cjb

i > −b < cjb
i >

= < cjb
i+1 > − < cjb

i+1 >

= < 0 >

(b) Now assuming that (E − b)n is the annihilator for the recurrence for any positive integer n, then

(E − b)n <





n
∑

j=1

cji
j−1



 bi >=< 0 > (1)

Would it still be the annihilator in the inductive step n+ 1, i.e.

(E − b)n+1 <





n+1
∑

j=1

cji
j−1



 bi >=< 0 >?

To show this we first multiply the new summation with (E − b)n

(E − b)n <





n+1
∑

j=1

cji
j−1



 bi > = (E − b)n <





n
∑

j=1

cji
j−1 + cn+1i

n



 bi >

= (E − b)n <





n
∑

j=1

cji
j−1



 bi > +(E − b)n < cn+1i
nbi >

First part is identical to equation (1) above, hence

< 0 > +(E − b)n < cn+1i
nbi >= cn+1 < ((E − b)(ib

i

n ))n >

Let k = i/n, then

cn+1 < ((E − b)(nkbk))n >

Since n is a constant, it can be factored out

cn+1n
n < ((E − b)(kbk))n > = cn+1n

n < (E(kbk)− b(kbk))n >

= cn+1n
n < ((k + 1)bk+1)− (kbk+1))n >

= cn+1n
n < (bk+1(k + 1− k))n >

= < cn+1n
nb(k+1)n >

1



CS 273 Homework 3 Solutions Fall 2002

Substituting k = i/n yields

< cn+1n
nbi+n >

It is now straight forward to show the inductive step n+ 1

(E − b)n+1 <





n+1
∑

j=1

cji
j−1



 bi >= (E − b)(E − b)n <





n+1
∑

j=1

cji
j−1



 bi >= (E − b) < cn+1n
nbi+n >

This is like the equation in the base case, thus similarly

(E − b) < cn+1n
nbi+n >=< 0 >

This completes the proof by induction.

¥

2. Consider the simple recurrence ai = −ai−2 with specified initial conditions a0 and a1. By inspecting
the recurrence, write down an simple expression for an in terms of a0 and a1 (the expression may
contain “if” conditions). Using annihilators, solve the recurrence, and show that it yields an expression
equivalent to your first one.

Solution: By simply writing down the terms note that the sequence looks like this

an = {a0, a1,−a0,−a1, a0, a1,−a0,−a1...}

which can be rewritten as following

an = {a0, if n mod4 = 0

a1, if n mod4 = 1

−a0, if n mod4 = 2

−a1, if n mod4 = 3}

Now using anihilators note that

E2〈a0, a1,−a0,−a1, a0, a1,−a0,−a1...〉 = 〈−a0,−a1, a0, a1,−a0,−a1...〉

Thus E2〈...〉+ 1〈...〉 = 0

So the anihilator is (E2 + 1), which is (E − (−i))(E − i) = 0

The recurrence is therefore c1(−i)n + c2(i)
n which can be rewritten as

an = {c1 + c2, if n mod4 = 0

−c1i+ c2i, if n mod4 = 1

−c1 − c2, if n mod4 = 2

c1i− c2i, if n mod4 = 3}

From the initial conditions we have

a0 = c1 + c2

a1 = −c1i+ c2i, which reduces to the original equation for an

¥
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3. Solve the following recurrence: ai = 4ai−1 − 4ai−2 + i2i + 2 for the initial conditions a0 = 2, a1 = 10.

Solution: The homogeneous annihilator for ai = 4ai−1 − 4ai−2 = 0 is (E − 4E + 4) = (E − 2)2 and
that for i2i +2 is (E− 2)2(E− 1). The complete annihilator is thus (E− 2)4(E− 1). Since in general,
(E − a)n annihilates p(i)ai where p(i) is any polynomial in i of degree n− 1. We have

ai = C12
i + C2i2

i + C3i
22i + C4i

32i + C5

We are left to calculate the constants Ci. Using the initial conditions and the recurrence, we have
a0 = 2, a1 = 10, a2 = 42, a3 = 154, a4 = 514. Now plugging each of these numbers into the left side of
the above equation and solve the resulting linear equation systems, we get C1 = 0, C2 = 10/3, C3 =
1/2, C4 = 1/6, C5 = 2. Hence our solution is

ai =
10

3
i2i +

1

2
i22i +

1

6
i32i + 2

¥

4. Consider the following family of recurrences:

n
∑

k=0

(

n

k

)

ai−k = 0.

Determine the general form of the solution to these recurrences for any integer n ≥ 1. Note that no
initial conditions are given; therefore, you may leave constants in the solution. Prove the correctness
of your approach.

Solution: The characteristic equation of this recurrence relation is

n
∑

k=0

(

n

k

)

rn−k = 0.

since
n
∑

k=0

(

n

k

)

rn−k = (r + 1)n.

There is a single root r = -1 of the characteristic equation. By Theorem 4 (ROSEN P325) the solution
of this recurrence relation is of the form

ai = (α0 + α1i+ α2i
2 + ...+ αn−1i

n−1)(−1)i

¥

[In all the following problems, for divide-and-conquer recurrences, full credit will be given
for tight asymptotic bounds (including your reasoning). Also, partial credit may be given
if you are only able to obtain distinct upper and lower bounds]

5. Solve the following recurrence

T (n) = 5T (n/4) + n log log n

Solution: T (n) = Θ(nlog45) =Θ(n1.16) by the Master Theorem.

¥

6. Solve the following recurrence

T (n) = log n+ 2
√
n · T (b

√
nc)

3
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Solution: T (n) = Θ(n log n)

First,we apply domain transformation. Let n = 2m(m = log n) and S(m) = T (2m)

S(m) = T (2m) = T (n)

= log n+ 2
√
n · T (b

√
nc)

= m+ 2 · 2m/2 · T (2m/2)

= m+ 2 · 2m/2 · S(m/2)
2−m · S(m) = m · 2−m + 2 · 2−m/2 · S(m/2)

Then we apply range transformation.Let R(m) = 2−m · S(m)

R(m) = 2−m · S(m) = m · 2−m + 2 · 2−m/2 · S(m/2)
= m · 2−m + 2 ·R(m/2)
= 2 ·R(m/2) +m · 2−m

According to the master method, R(m) = Θ(m).Undoing range transformation, S(m) = 2m ·R(m) =
Θ(m · 2m).Undoing domain transformation, T (n) = T (2m) = S(m) = Θ(m · 2m) = Θ(n log n). ¥

7. Solve the following recurrence

T (n) = T (bn− log nc) + 1

Solution: T (n) = Θ(n/ log n)

By expanding the recurrence, it’s clear that T (n) is just the recursion depth. Observe that log n is just
the number of binary bits needed in the representation of n. By expanding the recurrence, it’s easy to
see that at every level of the expansion, we simply take the quantity of the last level, let it being n∗,
subtract log n∗ from it and set the result as the new n∗ to pass onto next level.

(a) We first give an upper bound on the recurrence depth. We partition the range [1...n] into intervals
Ii = [2i, ..., 2i+1], for i = 0, . . . , lg n. The number of binary bits in the representation of a number
n∗ remains the same so long as n∗ falls in interval Ilog n∗ . Initially, n

∗ = n is somewhere in interval
Ilog n. Everytime we subtract log n∗ from n∗ and it may or may not drop to the next interval.
Anyway, we can bound the total steps during the entire process until n∗ drops to equal an initial
condition value such as 1. Since there are exactly 2i distinct values in interval Ii and so long as
n∗ is in Ii, we always subtract i from it, the contribution of each interval Ii to the total steps is

at most 2i

i . T (n) = O(
∑(log n)

i=1 2i/i) = O(n/ log n).

(b) As for the lower bound, observe that as we go down the recursion tree, the term log n∗ is decreasing.
More steps are needed to get to the initial condition in T (n) than in the case if we subtract a
fixed log n every time. Therefore T (n) ≥ n/ log n = Ω(n/ log n). Thus, T (n) = Θ(n/ log n)

¥

8. Solve the following recurrence

T (n) = T (bn/ log nc) + log n

Solution: T (n) = Θ((log n)2/ log log n).

You must note that you can not apply the Master theorem here, as log n is not a constant.

First stage, we have to bound the depth of the recursion tree. The recursion depth can be written as the
following recurrence T ∗(n) = T ∗(n/ log n)+1. Clearly, n/ log n has Θ(log(n)− log log n) bits. Namely,
we have to apply the recurrence 1

2 (log n/ log log n) = Θ(log n/ log log n) times before the number of
digits representing n drops by a factor of two.

4
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Formally, we partition the range [1...n] into intervals Ii = [22i

, ..., 22i+1

], for
i = 0, . . . , lg lg n. By the above argument, the contribution of interval Ii to T

∗(n) is Θ(2i/i). Thus,

T ∗(n) = Θ

(

log log n
∑

i=0

2i

i

)

.

And it turns out that T (n) is just the sum of the numbers of the digits of n at each level of recursion.

T (n) = Θ

(

log log n
∑

i=0

2i

i
2i

)

.

This summation can be solved exactly using known techniques. However, it is easier here to realize
that for i large enough, the elements of this summation behave like a increasing geometric series, and
as such the last element is proportional to the sum of the series. Thus, T (n) = Θ((log n)2/ log log n).

¥
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