Homework Assignment 5

CS 273 Introduction to Theoretical Computer Science Fall Semester, 2002

Due: Tuesday, Dec. 3, at the beginning of class

This is a group homework. Please staple your homework in four pairs. 1 and 2, 3 and 4, 5 and 6, 7 and 8. Hand in each of them to the corresponding stack in class.

- 1. (10 pts) For the languages below, either prove that it is a regular language by giving an NFA or DFA that recognizes it; otherwise, argue that it is not a regular language. The alphabet is $\Sigma = \{0, 1\}$.
 - (a) (10 pts) $L = \{w \mid w \text{ contains at least two 0's and at most one 1's}\}$
 - (b) (10 pts) $L = \{w \mid \text{ every block of 5 symbols of } w \text{ contains at least two 1's} \}$
- 2. (10 pts) Use the same instructions and assumptions as for Problem 1, and solve the following problems.
 - (a) (10 pts) $L = \{w \mid w \text{ contains an equal number of occurrences of 0's and 1's}\}$
 - (b) (10 pts) $L = \{w \mid w \text{ contains an equal number of occurrences of the substring 01 and 10}\}$
- 3. (10 pts) Convert the following NFA into a DFA that recognizes the same language.

- 4. (10 pts) Determine whether the following statements are true in general. They might be for specific cases, but are they always true? Justify your answer.
 - (a) If L_1L_2 is regular and $|L_1|$ is finite, then L_2 is regular
 - (b) If $L_1 \cup L_2$ is regular and L_1 is regular, then L_2 is regular
- 5. (10 pts) Prove that by allowing multiple start states, any NFA with ϵ moves can be converted into an NFA that has no ϵ moves. The new NFA must use the same states as the original NFA.

- 6. (10 pts) Give a brief description (mostly or completely in English) of the language described by each of the following regular experessions. The alphabet is given by $\Sigma = \{0, 1\}$.
 - (a) $(1+\epsilon)(00^*1)^*0^*$
 - (b) $(\Sigma 01\Sigma)^* \cup \emptyset$
 - (c) $((01) \cup (10))^* (111 \cup 1^*) \cup \epsilon$
- 7. (10 pts) Design a Turing machine for the language $L = \{ww^R \mid w \text{ is any string of 0's and 1's}\}$, in which w^R denotes the reverse of w. Thus, the machine should decide whether the input is a palindrome. Describe the finite control of your machine in detail (possibly as a kind of pseudocode), but not necessarily with the specification of all the elements in the formal notation of a Turing machine.
- 8. (10 pts) Design a Turing machine (specified in the same way as in the previous problem) that decides in polynomial time membership in the language POW-PERM. The language is defined as follows. For the set $\{1, 2, 3, ..., k\}$, let p denote a permutation function. Furthermore, let p^t denote the composition of p with itself t times (for example, if p represents a circular left shift, then p^2 represents two circular left shifts). The language is defined as POW-PERM =

 $\{\langle p,q,t\rangle \mid p=q^t \text{ in which } p \text{ and } q \text{ are permutations on } \{1,2,\ldots,k\} \text{ and } t \text{ is a binary integer}\}$

Note that the most obvious algorithm does not run in polynomial time. Hint: First try it for the case in which t is a power of 2.