Homework Assignment 5

CS 273 Introduction to Theoretical Computer Science
Fall Semester, 2002

Due: Tuesday, Dec. 3, at the beginnning of class
This is a group homework. Please staple your homework in four pairs. 1 and 2,3 and 4, 5 and 6, 7 and 8 . Hand in each of them to the corresponding stack in class.

1. (10 pts) For the languages below, either prove that it is a regular language by giving an NFA or DFA that recognizes it; otherwise, argue that it is not a regular language. The alphabet is $\Sigma=\{0,1\}$.
(a) (10 pts) $L=\{w \mid w$ contains at least two 0's and at most one 1's $\}$
(b) (10 pts) $L=\{w \mid$ every block of 5 symbols of w contains at least two 1's $\}$
2. (10 pts) Use the same instructions and assumptions as for Problem 1, and solve the following problems.
(a) (10 pts) $L=\{w \mid w$ contains an equal number of occurences of 0's and 1's $\}$
(b) (10 pts) $L=\{w \mid w$ contains an equal number of occurences of the substring 01 and 10$\}$
3. (10 pts) Convert the following NFA into a DFA that recognizes the same language.

4. (10 pts) Determine whether the following statements are true in general. They might be for specific cases, but are they always true? Justify your answer.
(a) If $L_{1} L_{2}$ is regular and $\left|L_{1}\right|$ is finite, then L_{2} is regular
(b) If $L_{1} \cup L_{2}$ is regular and L_{1} is regular, then L_{2} is regular
5. (10 pts) Prove that by allowing multiple start states, any NFA with ϵ moves can be converted into an NFA that has no ϵ moves. The new NFA must use the same states as the original NFA.
6. (10 pts) Give a brief description (mostly or completely in English) of the language described by each of the following regular experessions. The alphabet is given by $\Sigma=\{0,1\}$.
(a) $(1+\epsilon)\left(00^{*} 1\right)^{*} 0^{*}$
(b) $(\Sigma 01 \Sigma)^{*} \cup \emptyset$
(c) $((01) \cup(10))^{*}\left(111 \cup 1^{*}\right) \cup \epsilon$
7. (10 pts) Design a Turing machine for the language $L=\left\{w w^{R} \mid w\right.$ is any string of 0's and 1's $\}$, in which w^{R} denotes the reverse of w. Thus, the machine should decide whether the input is a palindrome. Describe the finite control of your machine in detail (possibly as a kind of pseudocode), but not necessarily with the specification of all the elements in the formal notation of a Turing machine.
8. (10 pts) Design a Turing machine (specified in the same way as in the previous problem) that decides in polynomial time membership in the language POW-PERM. The language is defined as follows. For the set $\{1,2,3, \ldots, k\}$, let p denote a permutation function. Furthermore, let p^{t} denote the composition of p with itself t times (for example, if p represents a circular left shift, then p^{2} represents two circular left shifts). The language is defined as POW-PERM =
$\left\{\langle p, q, t\rangle \mid p=q^{t}\right.$ in which \mathbf{p} and \mathbf{q} are permutations on $\{1,2, \ldots, k\}$ and t is a binary integer $\}$
Note that the most obvious algorithm does not run in polynomial time. Hint: First try it for the case in which t is a power of 2 .
