
Due: Tuesday, Dec. 3, at the beginnning of class

This is a group homework. Please staple your homework in four pairs. 1 and 2, 3 and 4, 5
and 6, 7 and 8. Hand in each of them to the corresponding stack in class.

1. (10 pts) For the languages below, either prove that it is a regular language by giving an
NFA or DFA that recognizes it; otherwise, argue that it is not a regular language. The
alphabet is Σ = {0, 1}.

(a) (10 pts) L = {w | w contains at least two 0’s and at most one 1’s}

Solution: Transitions for a DFA that recognizes L are given below: (δ(x, i) = y, means a transi-
tion to state y given an input i in state x . If an input is seen in a state but there’s no transition
function for it below the DFA will crash thus rejecting the input)

δ(q0, 0) = q1, δ(q0, 1) = q3

δ(q1, 0) = q2, δ(q1, 1) = q4

δ(q2, 0) = q2, δ(q2, 1) = q5

δ(q3, 0) = q4

δ(q4, 0) = q5

δ(q5, 0) = q5

Accept states are q2 and q5 ¥

(b) (10 pts) L = {w | every block of 5 symbols of w contains at least two 1’s}

Solution (Based on cs375 hw): Even though there might be smaller DFAs for this problem
we choose a pretty big one for the sake of simplicity of the proof. We label the states with bit
strings. The label of a state will represent the last up to 5 symbols read. Thus for example if the
last five symbols read are 11010, we will be in state 11010. The codes are at most 5 symbols long
and exclude 10000, 01000, 00100, 00010, 00001, and 00000 (these are the unacceptable histories).
The start state has label ε. All states are accept state. The transition function will be defined as
follows

� If s is a state code of length less than 5, then

δ(s, 0) = s0

δ(s, 1) = s1

� For a state code s = s1s2s3s4s5 of length 5,

δ(s, 0) = s2s3s4s50

δ(s, 1) = s2s3s4s51

In this case, if s2s3s4s50 or s2s3s4s51 are among the excluded codes mentioned above, we
omit the transition, allowing the DFA to crash (and thus reject) if a transition to these states
are required.

The correctness of this design is almost immediate. We simply keep track of the last 5 symbols
read starting with no symbols at all, adding the last symbol read to the end of the state code and
possibly dropping the first symbol of the code if the code becomes too long. The excluded codes
are exactly those possible blocks of 5 consecutive symbols that have less than two 1’s. Clearly, if a
string has a block of length 5 with less than 2 one’s, it will end up trapped in one of the excluded
states. Also a string is never rejected unless it has a block of length 5 with no or only one 1’s. ¥

1

2. (10 pts) Use the same instructions and assumptions as for Problem 1, and solve the
following problems.

(a) (10 pts) L = {w | w contains an equal number of occurences of 0’s and 1’s}

Solution: Let J = {0n1n | n = 0, 1, 2, . . . } . J is made up of all strings consisting of a block
of 0s followed by a block of an equal number of 1s. Thus J = {0∗1∗}

⋂
L. Since J is known to

be non-regular (proof on page 663 of Rosen text) but the intersection of two regular languages is
regular, L can not be regular. ¥

(b) (10 pts) L = {w | w contains an equal number of occurences of the substring 01 and 10}

Solution (Based on cs375 hw): This means that for example 101 ∈ L because 101 contains a
single 01 and a single 10, but 1010 6∈ L because 1010 contains two 10s and one 01. Let kw be the
number of 01s in the string w, and let lw be the number of 10s in the the string w. The crucial
thing to observe is that for any string w, | kw − lw |≤ 1 . Morever if kw > lw then it must end in
a 1, and if lw > kw then it must end in a 0. Therefore what the DFA needs to remember, as it
reads the input, is the following:

i. Nothing has been read so far

ii. String read so far has equal number of 01s and 10s but ends in a 0

iii. String read so far has equal number of 01s and 10s but ends in a 1

iv. String has one more 01 than 10

v. String has one more 10 than 01

So our DFA will have states corresponding to the above ”equivalence classes”. Let q0 correspond
to (i), q1 to (ii), q2 to (iii), q3 to (iv), and q4 to (v). The formal definition is as follows. The
states are q0, q1, q2, q3, and q4. The initial state is q0 . The accept states are q0, q1, and q2. The
transition function is defined below.

δ(q0, 0) = q1, δ(q0, 1) = q2

δ(q1, 0) = q1, δ(q1, 1) = q3

δ(q2, 0) = q4, δ(q2, 1) = q2

δ(q3, 0) = q1, δ(q3, 1) = q3

δ(q4, 0) = q4, δ(q4, 1) = q2

¥

3. (10 pts) Convert the following NFA into a DFA that recognizes the same language.

Solution: Look at the graph below

2

¥

4. (10 pts) Determine whether the following statements are true in general. They might be
for specific cases, but are they always true? Justify your answer.

(a) If L1L2 is regular and |L1| is finite, then L2 is regular

Solution: False. Let L1 = ∅ . Then now matter what L2 is, L1L2 = ∅ and therefore is regular. ¥

(b) If L1 ∪ L2 is regular and L1 is regular, then L2 is regular

Solution: False. Take L1 = (0+1)∗, and L2 = {0
n1n|n ≥ 0}. Then L1∪L2 = (0+1)∗ is regular,

and so is L1, but L2 is not. ¥

5. (10 pts) Prove that by allowing multiple start states, any NFA with ε moves can be
converted into an NFA that has no ε moves. The new NFA must use the same states as
the original NFA.

Solution: The reason that ε moves can be reduced in NFA is that in NFA, transition function f can
assign multiple states to a pair of state and input. If there is a ε move from state si to sj , in the
transition function, we add sj as the destination state at any place where si is a destination function.
For example, if there is a transition from state sk to si with input a, we also add the move from state
sk to sj with input a. If state si is a start state, we can set state sj as start state too. (That’s the
reason why multiple start states are allowed in the problem.) Then the ε move from state si to sj can
be removed, and the new NFA works in the same way as the original one.

¥

6. (10 pts) Give a brief description (mostly or completely in English) of the language de-
scribed by each of the following regular experessions. The alphabet is given by Σ = {0, 1}.

(a) (1 + ε)(00∗1)∗0∗

(b) (Σ01Σ)∗ ∪ ∅

(c) ((01) ∪ (10))∗(111 ∪ 1∗) ∪ ε

Solution: (a) This regular expression generates all strings in which every 1 is separated by one or
more 0. It also accepts the string which has only one 1 or the empty string.

(b) This set consists all strings that have zero or more 4-length substrings, each with 01 in the middle.

(c) This regular expression generates all strings consisting equal number of 0’s and 1’s at every position
of even length from the beginning and with no more than two 0’s or 1’s consecutive, followed by zero
or more 1’s.

¥

3

7. (10 pts) Design a Turing machine for the language L = {wwR | w is any string of 0’s and 1’s},
in which wR denotes the reverse of w. Thus, the machine should decide whether the input
is a palindrome. Describe the finite control of your machine in detail (possibly as a kind
of pseudocode), but not necessarily with the specification of all the elements in the formal
notation of a Turing machine.

Solution: We want a Turing machine that, starting at the leftmost position of the string, keeping
the information of the symbol at the position and moving right to the rightmost position, comparing
the symbol at that position. If they are same, the machine return back the left, compare the second
leftmost symbol and second rightmost symbol, and so on. If at any position, a difference is found, the
machine halts in a state that is not final state.

To build such a machine, we will use an auxiliary symbol M as a marker. The Turing machine
successively replaces a symbol at the leftmost position of the string with an M and enters a state
according to the symbol it read. (For example, if the machine read 0, it enters state s0, if the machine
read 1, it enters state s1). Then the machine moves right staying in that state until it reaches the
right most position. If the symbol at the rightmost position is 1, and the state of Turing machine is
s0, or the rightmost position has 0, while the state of the Turing machine is s1, then the machine halts
at a state which is not a final state. Otherwise, the symbol at the rightmost position of the string is
replaced by an M, the Turing machine moves to left most position, the machine sweeps back and forth,
terminates in a final state if and only if all the symbols are successively replaced.(The last symbol to
be replaced should be at the right most position, as the machine starts from left most position)

¥

8. (10 pts) Design a Turing machine (specified in the same way as in the previous problem)
that decides in polynomial time membership in the language POW-PERM. The language
is defined as follows. For the set {1, 2, 3, . . . , k}, let p denote a permutation function.
Furthermore, let pt denote the composition of p with itself t times (for example, if p

represents a circular left shift, then p2 represents two circular left shifts). The language
is defined as
POW-PERM =

{〈p, q, t〉 | p = qt in which p and q are permutations on {1, 2, . . . , k} and t is a binary integer}

Note that the most obvious algorithm does not run in polynomial time. Hint: First try
it for the case in which t is a power of 2.

Solution: let t = α02
0 + α12

1 + . . .+ αn2
n, where αi is either 0 or 1.

So qt = qα02
0
+α12

1
+...+αn2

n

= qα02
0

× qα12
1

× . . .× qαn2
n

The trick is instead applying q t times on the set, we can apply q2
i

directly. It is easy to get the
permutation form of q2

i

, just apply q on q itself, we can get q2, apply q2 on q2, we can get q4, and so
on.....

Now we return to the Turing machine. The alphabet I of the machine is the set {1, 2, 3, . . . , k} (plus
blank symbol B), the input of the machine is p,q,t, where both p and q have length k, t is a binary
integer, represented as t = α02

0 + α12
1 + . . .+ αn2

n.

Here is the algorithm:
1. Get an auxiliary space K with length k (which can be at the left to the original input or the right
to the original input), initialize it as {1, 2, . . . , k}, let qaux = q

2. Scan the binary integer t in the order α0, α1, . . . , αn. For each αi, do step 3 and 4
3. If αi is 0, do nothing on the K. Otherwise, apply qaux on K.
4. Apply qaux on itself, let qaux = qaux × qaux
5. Compare K, p to see whether they are same, if yes, this input is a member of POW-PERM.

¥

4

