
1. For each of the following, prove whether or not the set G with the specified operation represents a
group.

(a) G = C, the set of complex numbers, and the operation is standard addition of complex numbers.

(b) G = C, the set of complex numbers, and the operation is standard multiplication of complex
numbers.

Solution: 1.(a) G = C with + :

Closure: for any (a + bi), (c + di) ∈ C, (a + bi) + (c + di) =

[(a + c) + (b + d)i] ∈ C.

Associativity: for any (a + bi), (c + di), (e + fi) ∈ C,

(a + bi) + [(c + di) + (e + fi)] = (a + bi) + [(c + e) + (d + f)i]

= (a + c + d) + (b + d + f)i = [(a + c) + (b + d)i] + (e + fi) = [(a + bi) + (c + di)] + (e + fi).

Identity element is 0 ∈ C: for any (a + bi) ∈ C,

(a + bi) + 0 = 0 + (a + bi) = (a + bi).

Inverse elements exist: for any (a + bi),∃(−a− bi) ∈ C,

such that (a + bi) + (−a− bi) = 0.

Therefore, C with + is a group.

(b) G = C with ∗ :
Closure: for any (a + bi), (c + di) ∈ C,

(a + bi) ∗ (c + di) = [(ac− bd) + (ad + bc)i] ∈ C.

Associativity: for any (a + bi), (c + di), (e + fi) ∈ C,

(a + bi) ∗ [(c + di) ∗ (e + fi)] = (a + bi) ∗ [ce + dei + cfi− df ]

= ace + bcei + adei− bde + acfi− bcf − adf − bdfi = [ac + bci + adi− bd] ∗ (e + fi)

= [(a + bi) ∗ (c + di)] ∗ (e + fi).

Identity element is 1 ∈ C: for any (a + bi) ∈ C,

(a + bi) ∗ 1 = 1 ∗ (a + bi) = (a + bi).

However, inverse element may not exist: since 0 ∈ C,

but there is no element a + bi ∈ C such that 0 ∗ (a + bi) = 1.

Therefore, C with ∗ is not a group.

¥

2. Follow the same instructions as for the previous problem.

(a) G is the set of all binary strings of length 5, and the operation is bitwise exclusive or (XOR).

Solution: G is a group with XOR. We verify the four group axioms:(use * to represent XOR)
(Closure) Let a ∈ G, b ∈ G, a,b are binary strings of length 5, after the operation XOR, the result
must be a binary string of length 5, that is a ∗ b ∈ G.
(Identify) Let e = 00000, so e ∈ G, and for every a ∈ G, we have a ∗ e ∈ G.
(Inverse) Let a−1 = a, so a ∗ a−1 = e
(Associativity) XOR applys on each bit individually, we can check associativity on each bit, there
are eight possibility for associativity, that is (0 ∗ 0 ∗ 0),(0 ∗ 0 ∗ 1),(0 ∗ 1 ∗ 0),(0 ∗ 1 ∗ 1),(1 ∗ 0 ∗ 0),(1 ∗
0 ∗ 1),(1 ∗ 1 ∗ 0),(1 ∗ 1 ∗ 1), it is easy to check that with XOR, a ∗ (b ∗ c) = (a ∗ b) ∗ c. ¥
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(b) G is the set of all 2× 2 matrices of the form

(

a b
c d

)

such that a, b, c, d ∈ IR and ad− bc 6= 0, and

the operation is matrix multiplication.

Solution: G is a group with matrix multiplication. We verify the four group axioms:(use * to represent
matric multiplication)

(Closure) Let x =

(

a1 b1

c1 d1

)

, y =

(

a2 b2

c2 d2

)

,such that a1, b1, c1, d1, a2, b2, c2, d2 ∈ IR and a1d1−b1c1 6=
0, a2d2 − b2c2 6= 0

x ∗ y =

(

a1 b1

c1 d1

)

∗
(

a2 b2

c2 d2

)

=

(

a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)

, we can verify that

(a1a2 + b1c2)(c1b2 + d1d2)− (a1b2 + b1d2)(c1a2 + d1c2) = (a1d1 − b1c1)(a2d2 − b2c2) 6= 0

So x ∗ y ∈ G.

(Identity) Let e =

(

1 0
0 1

)

, so for every x ∈ G, x ∗ e = x

(Inverse)For every x, x =

(

a1 b1

c1 d1

)

,we have x−1 =

(

d

(ad−bc)
−b

(ad−bc)
c

(ad−bc)
a

(ad−bc)

)

.

(Associativity) The associativity is hold because of the property of matrix multiplication. ¥

3. Prove that if every element of a group, G, is equal to its own inverse, then G is an Abelian (commutative)
group.

Solution: 3. Prove: ∀a ∈ G, a = a−1 ⇒ G is Abelian.

Proof: Let e be the identity element of G, with juxtaposition denoting the operation on G.

For any a, b ∈ G, ab = (ae)b = (a((ab)(ab)))b ...property of elements in G.

= ((aa)(bab))b = ((e)(bab))b = (ba)(bb) = (ba)e = ba ∈ G.

We have shown that ∀a, b ∈ G, ab = ba⇒ G is Abelian.

¥

4. Let G = {a+ b
√
2 | a, b ∈ (Q}, in which (Q is the set of all rational numbers. Prove that G is a subgroup

of IR under the operation of addition.

Solution: We need to prove that: For every x, y ∈ G, x+ y−1 ∈ G
(Introduction To Theory of Computation, P51).

Let x = a1 + b1

√
2 | a1, b2 ∈ (Q},y = a2 + b2

√
2 | a2, b2 ∈ (Q}

In group IR under the operation of addition, it is trivial that e = 0, so y−1 = −a2 − b2

√
2

So x+ y−1 = (a1 − a2) + (b1 − b2)
√
2, as (a1 − a2) (b1 − b2) are both rational, so x+ y−1 ∈ G. ¥
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5. Consider the group ZZ12 (mod 12 addition on the integers).

(a) Give the inverse of every element.

(b) Find all of the generators.

(c) Determine the order of each element of the group.

Solution: 5.(a) For Z12 with ⊕ :

Identity element is 0. Thus, for any a, b ∈ Z12, a⊕ b = 0⇒ a is inverse of b.

Inverse elements: 0 inverse of itself: 0⊕ 0 = 0.

1, 11 inverses of each other: 1⊕ 11 = 11⊕ 1 = 0.

2, 10 inverses of each other: 2⊕ 10 = 10⊕ 2 = 0.

3, 9 inverses of each other: 3⊕ 9 = 9⊕ 3 = 0.

4, 8 inverses of each other: 4⊕ 8 = 8⊕ 4 = 0.

5, 7 inverses of each other: 5⊕ 7 = 7⊕ 5 = 0.

6 inverse of itself: 6⊕ 6 = 0.

(b) By thm 1.3.16, if s is a generator for Z12, |s| = 12/gcd(12, s).

⇒ gcd(12, s) = 1.

Therefore s has no common factors with 12, except 1.

This is true for 1, 5, 7, 11 ∈ Z12.

All these are generators of Z12.

(c) For the generators—1,5,7,11—order is 12.

2 : 2.1 = 2, 2.2 = 4, 2.3 = 6, 2.4 = 8, 2.5 = 10, 2.6 = 0, ... ⇒ |2| = 6.

3 : 3.1 = 3, 3.2 = 6, 3.3 = 9, 3.4 = 0, ... ⇒ |3| = 4.

4 : 4.1 = 4, 4.2 = 8, 4.3 = 0, ... ⇒ |4| = 3.

6 : 6.1 = 6, 6.2 = 0, ... ⇒ |6| = 2.

8 : 8.1 = 8, 8.2 = 4, 8.3 = 0, ... ⇒ |8| = 3.

9 : 9.1 = 9, 9.2 = 6, 9.3 = 3, 9.4 = 0, ... ⇒ |9| = 4.

10 : 10.1 = 10, 10.2 = 8, 10.3 = 6, 10.4 = 4, 10.5 = 2, 10.6 = 0, ...

⇒ |10| = 6.

(Note: multiplication is mod 12.) ¥

6. Consider the following permutation

(

1 2 3 4 5 6 7
7 6 3 2 1 4 5

)

.

(a) Find all of its orbits.

(b) Express the permutation as a product of 2-cycles.

Solution: Orbits: (1, 7, 5), (2, 6, 4)
Permutation: (1, 5)(1, 7)(2, 4)(2, 6)
Please see Professor Lavalle’s newsgroup post on permutation and 2-cycles for detailed explanation. ¥
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