1. For each of the following, prove whether or not the set G with the specified operation represents a group.
(a) $G=\mathcal{C}$, the set of complex numbers, and the operation is standard addition of complex numbers.
(b) $G=\mathcal{C}$, the set of complex numbers, and the operation is standard multiplication of complex numbers.

Solution: 1.(a) $G=\mathbf{C}$ with + :
Closure: for any $(a+b i),(c+d i) \in \mathbf{C},(a+b i)+(c+d i)=$

$$
[(a+c)+(b+d) i] \in \mathbf{C}
$$

Associativity: for any $(a+b i),(c+d i),(e+f i) \in \mathbf{C}$,
$(a+b i)+[(c+d i)+(e+f i)]=(a+b i)+[(c+e)+(d+f) i]$
$=(a+c+d)+(b+d+f) i=[(a+c)+(b+d) i]+(e+f i)=[(a+b i)+(c+d i)]+(e+f i)$.
Identity element is $0 \in \mathbf{C}$: for any $(a+b i) \in \mathbf{C}$,
$(a+b i)+0=0+(a+b i)=(a+b i)$.
Inverse elements exist: for any $(a+b i), \exists(-a-b i) \in \mathbf{C}$,
such that $(a+b i)+(-a-b i)=0$.
Therefore, \mathbf{C} with + is a group.
(b) $G=\mathbf{C}$ with *:

Closure: for any $(a+b i),(c+d i) \in \mathbf{C}$,
$(a+b i) *(c+d i)=[(a c-b d)+(a d+b c) i] \in \mathbf{C}$.
Associativity: for any $(a+b i),(c+d i),(e+f i) \in \mathbf{C}$,
$(a+b i) *[(c+d i) *(e+f i)]=(a+b i) *[c e+d e i+c f i-d f]$
$=a c e+b c e i+a d e i-b d e+a c f i-b c f-a d f-b d f i=[a c+b c i+a d i-b d] *(e+f i)$
$=[(a+b i) *(c+d i)] *(e+f i)$.
Identity element is $1 \in \mathbf{C}$: for any $(a+b i) \in \mathbf{C}$,
$(a+b i) * 1=1 *(a+b i)=(a+b i)$.
However, inverse element may not exist: since $0 \in C$,
but there is no element $a+b i \in C$ such that $0 *(a+b i)=1$.
Therefore, \mathbf{C} with $*$ is not a group.
2. Follow the same instructions as for the previous problem.
(a) G is the set of all binary strings of length 5 , and the operation is bitwise exclusive or (XOR).

Solution: G is a group with XOR. We verify the four group axioms:(use * to represent XOR)
(Closure) Let $a \in G, b \in G$, a, b are binary strings of length 5 , after the operation XOR, the result must be a binary string of length 5 , that is $a * b \in G$.
(Identify) Let $e=00000$, so $e \in G$, and for every $a \in G$, we have $a * e \in G$.
(Inverse) Let $a^{-1}=a$, so $a * a^{-1}=e$
(Associativity) XOR applys on each bit individually, we can check associativity on each bit, there are eight possibility for associativity, that is $(0 * 0 * 0),(0 * 0 * 1),(0 * 1 * 0),(0 * 1 * 1),(1 * 0 * 0),(1 *$ $0 * 1),(1 * 1 * 0),(1 * 1 * 1)$, it is easy to check that with XOR, $a *(b * c)=(a * b) * c$.
(b) G is the set of all 2×2 matrices of the form $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $a, b, c, d \in \mathbb{R}$ and $a d-b c \neq 0$, and the operation is matrix multiplication.

Solution: G is a group with matrix multiplication. We verify the four group axioms:(use * to represent matric multiplication)
(Closure) Let $x=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right), y=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)$,such that $a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, c_{2}, d_{2} \in \mathbb{R}$ and $a_{1} d_{1}-b_{1} c_{1} \neq$ $0, a_{2} d_{2}-b_{2} c_{2} \neq 0$
$x * y=\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) *\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{ll}a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\ c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}\end{array}\right)$, we can verify that

$$
\left(a_{1} a_{2}+b_{1} c_{2}\right)\left(c_{1} b_{2}+d_{1} d_{2}\right)-\left(a_{1} b_{2}+b_{1} d_{2}\right)\left(c_{1} a_{2}+d_{1} c_{2}\right)=\left(a_{1} d_{1}-b_{1} c_{1}\right)\left(a_{2} d_{2}-b_{2} c_{2}\right) \neq 0
$$

So $x * y \in G$.
(Identity) Let $e=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, so for every $x \in G, x * e=x$
(Inverse)For every $\mathrm{x}, x=\left(\begin{array}{cc}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)$, we have $x^{-1}=\left(\begin{array}{cc}\frac{d}{(a d-b c)} & \frac{-b}{(a d-b c)} \\ \frac{c}{(a d-b c)} & \frac{a}{(a d-b c)}\end{array}\right)$.
(Associativity) The associativity is hold because of the property of matrix multiplication.
3. Prove that if every element of a group, G, is equal to its own inverse, then G is an Abelian (commutative) group.

Solution: 3. Prove: $\forall a \in G, a=a^{-1} \Rightarrow \mathrm{G}$ is Abelian.
Proof: Let e be the identity element of G , with juxtaposition denoting the operation on G .
For any $a, b \in G, a b=(a e) b=(a((a b)(a b))) b \ldots$ property of elements in G.
$=((a a)(b a b)) b=((e)(b a b)) b=(b a)(b b)=(b a) e=b a \in \mathbf{G}$.
We have shown that $\forall a, b \in G, a b=b a \Rightarrow \mathrm{G}$ is Abelian.
4. Let $G=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$, in which \mathbb{Q} is the set of all rational numbers. Prove that G is a subgroup of \mathbb{R} under the operation of addition.

Solution: We need to prove that: For every $x, y \in G, x+y^{-1} \in G$ (Introduction To Theory of Computation, P51).

Let $\left.\left.x=a_{1}+b_{1} \sqrt{2} \mid a_{1}, b_{2} \in \mathbb{Q}\right\}, y=a_{2}+b_{2} \sqrt{2} \mid a_{2}, b_{2} \in \mathbb{Q}\right\}$
In group \mathbb{R} under the operation of addition, it is trivial that $e=0$, so $y^{-1}=-a_{2}-b_{2} \sqrt{2}$
So $x+y^{-1}=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) \sqrt{2}$, as $\left(a_{1}-a_{2}\right)\left(b_{1}-b_{2}\right)$ are both rational, so $x+y^{-1} \in G$.
5. Consider the group $\mathbb{Z}_{12}(\bmod 12$ addition on the integers).
(a) Give the inverse of every element.
(b) Find all of the generators.
(c) Determine the order of each element of the group.

Solution: 5.(a) For \mathbf{Z}_{12} with \oplus :
Identity element is 0 . Thus, for any $a, b \in \mathbf{Z}_{12}, a \oplus b=0 \Rightarrow a$ is inverse of b.
Inverse elements: 0 inverse of itself: $0 \oplus 0=0$.
1,11 inverses of each other: $1 \oplus 11=11 \oplus 1=0$.
2,10 inverses of each other: $2 \oplus 10=10 \oplus 2=0$.
3, 9 inverses of each other: $3 \oplus 9=9 \oplus 3=0$.
4,8 inverses of each other: $4 \oplus 8=8 \oplus 4=0$.
5, 7 inverses of each other: $5 \oplus 7=7 \oplus 5=0$.
6 inverse of itself: $6 \oplus 6=0$.
(b) By thm 1.3.16, if s is a generator for $\mathbf{Z}_{12},|s|=12 / \operatorname{gcd}(12, s)$.
$\Rightarrow \operatorname{gcd}(12, s)=1$.
Therefore s has no common factors with 12 , except 1 .
This is true for $1,5,7,11 \in \mathbf{Z}_{12}$.
All these are generators of \mathbf{Z}_{12}.
(c) For the generators- $1,5,7,11-$ order is 12 .

$$
\begin{aligned}
& 2: 2.1=2,2.2=4,2.3=6,2.4=8,2.5=10,2.6=0, \ldots \Rightarrow|2|=6 . \\
& 3: 3.1=3,3.2=6,3.3=9,3.4=0, \ldots \Rightarrow|3|=4 . \\
& 4: 4.1=4,4.2=8,4.3=0, \ldots \Rightarrow|4|=3 . \\
& 6: 6.1=6,6.2=0, \ldots \Rightarrow|6|=2 . \\
& 8: 8.1=8,8.2=4,8.3=0, \ldots \Rightarrow|8|=3 . \\
& 9: 9.1=9,9.2=6,9.3=3,9.4=0, \ldots \Rightarrow|9|=4 . \\
& 10: 10.1=10,10.2=8,10.3=6,10.4=4,10.5=2,10.6=0, \ldots \\
& \Rightarrow|10|=6 .
\end{aligned}
$$

(Note: multiplication is mod 12.)
6. Consider the following permutation

$$
\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
7 & 6 & 3 & 2 & 1 & 4 & 5
\end{array}\right) .
$$

(a) Find all of its orbits.
(b) Express the permutation as a product of 2-cycles.

Solution: Orbits: $(1,7,5),(2,6,4)$
Permutation: $(1,5)(1,7)(2,4)(2,6)$
Please see Professor Lavalle's newsgroup post on permutation and 2-cycles for detailed explanation.

