1. For each of the following, prove whether or not the set G with the specified operation represents a
group.
(a) G =C, the set of complex numbers, and the operation is standard addition of complex numbers.

(b) G = C, the set of complex numbers, and the operation is standard multiplication of complex
numbers.

Solution: 1.(a) G = C with + :
Closure: for any (a + bi), (c+ di) € C, (a + bi) + (¢ + di) =
[(a+c¢)+ (b+d)i] € C.
Associativity: for any (a + bi), (c + di), (e + fi) € C,
(a+0bi)+ [(c+di) + (e+ fi)] = (a+bi) + [(c+e) + (d + f)i]
=(a+tc+d)+(b+d+ fli=[(a+c)+ (b+d)i] + (e + fi) = [(a+ bi) + (c + di)] + (e + fi).
Identity element is 0 € C: for any (a + bi) € C,
(a+bi) +0=0+ (a+bi) = (a+ bi).
Inverse elements exist: for any (a + bi), I(—a — bi) € C,

such that (a + bi) + (—a — bi) = 0.

Therefore, C with + is a group.

(b) G = C with x*:

Closure: for any (a + bi), (¢ + di) € C,

(a+bi)* (c+ di) = [(ac — bd) + (ad + be)i] € C.

Associativity: for any (a + bi), (c + di), (e + fi) € C,

(a+bi)*[(c+di)*(e+ fi)] = (a + bi) * [ce + dei + cfi — df]

= ace + beei + adei — bde + acfi — bef — adf — bdfi = [ac + bei + adi — bd] * (e + f1)
= [(a+ bi) * (c + di)] * (e + fi).

Identity element is 1 € C: for any (a + bi) € C,

(a+bi)*1=1x%(a+bi)=(a+bi).

However, inverse element may not exist: since 0 € C,

but there is no element a + bi € C such that 0 * (a + bi) = 1.

Therefore, C with * is not a group.

2. Follow the same instructions as for the previous problem.

(a) G is the set of all binary strings of length 5, and the operation is bitwise exclusive or (XOR).

Solution: G is a group with XOR. We verify the four group axioms:(use * to represent XOR)
(Closure) Let a € G, b € G, a,b are binary strings of length 5, after the operation XOR, the result
must be a binary string of length 5, that isa*b € G.

(Identify) Let e = 00000, so e € G, and for every a € G, we have a x e € G.

(Inverse) Let a™! =a,s0a*xa ' =e¢

(Associativity) XOR applys on each bit individually, we can check associativity on each bit, there
are eight possibility for associativity, that is (0% 0% 0),(0% 0% 1),(01%0),(0*% 1% 1),(1x0%0),(1x*
0x%1),(1%1%0),(1%1x%1), it is easy to check that with XOR, a * (b*c) = (a*b) * c. |



(b) G is the set of all 2 x 2 matrices of the form (CCL b) such that a,b,¢,d € R and ad — be # 0, and

d
the operation is matrix multiplication.

Solution: G is a group with matrix multiplication. We verify the four group axioms:(use * to represent
matric multiplication)

(Closure) Let x = <a1 bl), Yy = <a2 22) ,SuCh that ap, bl,Cl,dl,ag,bg, Co, d2 € IR and a1d1 —b161 7é
2

C1 d1 C2
07 (l2d2 — bQCQ 7’5 0

_(a by as bs _ [aiaz + bica aibs + bids .
TRy = (01 d1) * <02 d2> = <01a2 bdyey ciby + dldz)’ we can verify that

(CL1CL2 + blcz)(clbg + dldg) - (a1b2 + b1d2)(61a2 + d162) = (a1d1 - b101)(a2d2 — b2c2) 75 0

Sozxxy € G.

(Identity) Let e = ((1) (1)), so for every x € G, xxe ==z

d —b
b R — [ —
(Inverse)For every x, = <a1 dl) ,we have z=1 = [ (adZbe)  (ad=be) )
‘1 1 (ad—bc)  (ad—bc)
(Associativity) The associativity is hold because of the property of matrix multiplication. |

. Prove that if every element of a group, G, is equal to its own inverse, then G is an Abelian (commutative)
group.

Solution: 3. Prove: Va € G,a = a~! = G is Abelian.

Proof: Let e be the identity element of G, with juxtaposition denoting the operation on G.
For any a,b € G,ab = (ae)b = (a((ab)(ab)))b ...property of elements in G.
= ((aa)(bab))b = ((e)(bab))b = (ba)(bb) = (ba)e = ba € G.
We have shown that Va,b € G,ab = ba = G is Abelian.
|

. Let G = {a+bv2 | a,b € Q}, in which Q is the set of all rational numbers. Prove that G is a subgroup
of IR under the operation of addition.

Solution: We need to prove that: For every z,y € G, 2 +y ' € G
(Introduction To Theory of Computation, P51).

Let x = ay —|—b1\/§ ‘ ay, by € (Q},y:az +b2\/§ | as, by € (Q}
In group IR under the operation of addition, it is trivial that e = 0, so y~! = —ag — ba/2
So x+y~t = (a1 — az) + (b1 — ba)V/2, as (a1 — az) (b1 — by) are both rational, so  +y~! € G. |



5. Consider the group Z;s (mod 12 addition on the integers).

(a) Give the inverse of every element.
(b) Find all of the generators.

(¢) Determine the order of each element of the group.

Solution: 5.(a) For Z5 with @ :
Identity element is 0. Thus, for any a,b € Z12,a @b =0 = a is inverse of b.

Inverse elements: 0 inverse of itself: 0 & 0 = 0.

1, 11 inverses of each other: 111 =11¢1=0.
2, 10 inverses of each other: 210 =10642 = 0.
3, 9 inverses of each other: 3®9=9®&3 =0.

4, 8 inverses of each other: 48 =8@ 4 =0.

5, 7 inverses of each other: 5 7=76&5=0.

6 inverse of itself: 6 &6 = 0.

(b) By thm 1.3.16, if s is a generator for Zjo, |s| = 12/gcd(12, s).
= ged(12,5) = 1.
Therefore s has no common factors with 12, except 1.
This is true for 1,5,7,11 € Z,.

All these are generators of Zqs.

(¢c) For the generators—1,5,7,11—order is 12.

2:21=2,22=4,23=6,24=825=10,26=0,.. = |2| = 6.
3:31=3,32=6,33=90,34=0,.. = |3 = 4.
4:41=4,42=843=0,..= |4 =3.
6:6.1=6,62=0,..= [6]=2.
8:81=882=483=0,..= |8 =3.
9:91=9,92=6,93=394=0,..= |9 = 4.
10:10.1 = 10,10.2 = 8,10.3 = 6,10.4 = 4,10.5 = 2,10.6 = 0, ...
= |10| = 6.
(Note: multiplication is mod 12.) |

6. Consider the following permutation

(a) Find all of its orbits.

(b) Express the permutation as a product of 2-cycles.

Solution: Orbits: (1,7,5), (2,6,4)
Permutation: (1,5)(1,7)(2,4)(2,6)
Please see Professor Lavalle’s newsgroup post on permutation and 2-cycles for detailed explanation. W



