- 1. For each of the following, prove whether or not the set G with the specified operation represents a group.
 - (a) $G = \mathcal{C}$, the set of complex numbers, and the operation is standard addition of complex numbers.
 - (b) G = C, the set of complex numbers, and the operation is standard multiplication of complex numbers.

Solution: 1.(a) $G = \mathbf{C}$ with +:Closure: for any $(a + bi), (c + di) \in \mathbf{C}, (a + bi) + (c + di) =$ $[(a + c) + (b + d)i] \in \mathbf{C}.$ Associativity: for any $(a + bi), (c + di), (e + fi) \in \mathbf{C},$ (a + bi) + [(c + di) + (e + fi)] = (a + bi) + [(c + e) + (d + f)i] = (a + c + d) + (b + d + f)i = [(a + c) + (b + d)i] + (e + fi) = [(a + bi) + (c + di)] + (e + fi).Identity element is $0 \in \mathbf{C}$: for any $(a + bi) \in \mathbf{C}$, (a + bi) + 0 = 0 + (a + bi) = (a + bi).Inverse elements exist: for any $(a + bi), \exists (-a - bi) \in \mathbf{C}$, such that (a + bi) + (-a - bi) = 0.Therefore, \mathbf{C} with + is a group. (b) $G = \mathbf{C}$ with + is a group. (b) $G = \mathbf{C}$ with + is a $(a + bi), (c + di) \in \mathbf{C},$ $(a + bi) * (c + di) = [(ac - bd) + (ad + bc)i] \in \mathbf{C}.$ Associativity: for any $(a + bi), (c + di), (e + fi) \in \mathbf{C},$ (a + bi) * $(c + di) = [(ac - bd) + (ad + bc)i] \in \mathbf{C}.$

(a+bi) * [(c+di) * (e+fi)] = (a+bi) * [ce+dei+cfi-df]= ace+bcei+adei-bde+acfi-bcf-adf-bdfi = [ac+bci+adi-bd] * (e+fi)

= [(a+bi) * (c+di)] * (e+fi).

Identity element is $1 \in \mathbb{C}$: for any $(a + bi) \in \mathbb{C}$,

(a+bi) * 1 = 1 * (a+bi) = (a+bi).

However, inverse element may not exist: since $0 \in C$,

but there is no element $a + bi \in C$ such that 0 * (a + bi) = 1.

Therefore, \mathbf{C} with * is not a group.

- 2. Follow the same instructions as for the previous problem.
 - (a) G is the set of all binary strings of length 5, and the operation is bitwise exclusive or (XOR).

Solution: G is a group with XOR. We verify the four group axioms: (use * to represent XOR) (Closure) Let $a \in G$, $b \in G$, a,b are binary strings of length 5, after the operation XOR, the result must be a binary string of length 5, that is $a * b \in G$.

(Identify) Let e = 00000, so $e \in G$, and for every $a \in G$, we have $a * e \in G$.

(Inverse) Let $a^{-1} = a$, so $a * a^{-1} = e$

(Associativity) XOR applys on each bit individually, we can check associativity on each bit, there are eight possibility for associativity, that is (0 * 0 * 0), (0 * 0 * 1), (0 * 1 * 0), (0 * 1 * 1), (1 * 0 * 0), (1 * 0 * 1), (1 * 1 * 0), (1 * 1 * 1), it is easy to check that with XOR, a * (b * c) = (a * b) * c.

(b) G is the set of all 2×2 matrices of the form $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $a, b, c, d \in \mathbb{R}$ and $ad - bc \neq 0$, and the operation is matrix multiplication.

Solution: G is a group with matrix multiplication. We verify the four group axioms:(use * to represent matric multiplication)

 $\begin{array}{l} \text{(Closure) Let } x = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}, y = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix}, \text{such that } a_1, b_1, c_1, d_1, a_2, b_2, c_2, d_2 \in \mathbb{R} \text{ and } a_1d_1 - b_1c_1 \neq 0, a_2d_2 - b_2c_2 \neq 0 \\ x * y = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} * \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} = \begin{pmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + d_1c_2 & c_1b_2 + d_1d_2 \end{pmatrix}, \text{ we can verify that} \\ & (a_1a_2 + b_1c_2)(c_1b_2 + d_1d_2) - (a_1b_2 + b_1d_2)(c_1a_2 + d_1c_2) = (a_1d_1 - b_1c_1)(a_2d_2 - b_2c_2) \neq 0 \\ \text{So } x * y \in G. \\ & (\text{Identity) Let } e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \text{ so for every } x \in G, x * e = x \end{array}$

(Inverse) For every x, $x = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$, we have $x^{-1} = \begin{pmatrix} \frac{d}{(ad-bc)} & \frac{-b}{(ad-bc)} \\ \frac{c}{(ad-bc)} & \frac{-b}{(ad-bc)} \end{pmatrix}$.

(Associativity) The associativity is hold because of the property of matrix multiplication.

3. Prove that if every element of a group, G, is equal to its own inverse, then G is an Abelian (commutative) group.

Solution: 3. Prove: $\forall a \in G, a = a^{-1} \Rightarrow G$ is Abelian.

Proof: Let e be the identity element of G, with juxtaposition denoting the operation on G. For any $a, b \in G, ab = (ae)b = (a((ab)(ab)))b$...property of elements in G. $= ((aa)(bab))b = ((e)(bab))b = (ba)(bb) = (ba)e = ba \in \mathbf{G}.$ We have shown that $\forall a, b \in G, ab = ba \Rightarrow \mathbf{G}$ is Abelian.

4. Let $G = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$, in which \mathbb{Q} is the set of all rational numbers. Prove that G is a subgroup of \mathbb{R} under the operation of addition.

Solution: We need to prove that: For every $x, y \in G$, $x + y^{-1} \in G$ (Introduction To Theory of Computation, P51).

Let $x = a_1 + b_1\sqrt{2} | a_1, b_2 \in \mathbb{Q} \}, y = a_2 + b_2\sqrt{2} | a_2, b_2 \in \mathbb{Q} \}$ In group IR under the operation of addition, it is trivial that e = 0, so $y^{-1} = -a_2 - b_2\sqrt{2}$ So $x + y^{-1} = (a_1 - a_2) + (b_1 - b_2)\sqrt{2}$, as $(a_1 - a_2) (b_1 - b_2)$ are both rational, so $x + y^{-1} \in G$.

- 5. Consider the group $\mathbb{Z}_{12} \pmod{12}$ addition on the integers).
 - (a) Give the inverse of every element.
 - (b) Find all of the generators.
 - (c) Determine the order of each element of the group.

```
Solution: 5.(a) For \mathbf{Z}_{12} with \oplus:
```

Identity element is 0. Thus, for any $a, b \in \mathbb{Z}_{12}, a \oplus b = 0 \Rightarrow a$ is inverse of b.

Inverse elements: 0 inverse of itself: $0 \oplus 0 = 0$.

- 1, 11 inverses of each other: $1 \oplus 11 = 11 \oplus 1 = 0$.
- 2, 10 inverses of each other: $2 \oplus 10 = 10 \oplus 2 = 0$.
- 3, 9 inverses of each other: $3 \oplus 9 = 9 \oplus 3 = 0$.
- 4, 8 inverses of each other: $4 \oplus 8 = 8 \oplus 4 = 0$.
- 5, 7 inverses of each other: $5 \oplus 7 = 7 \oplus 5 = 0$.
- 6 inverse of itself: $6 \oplus 6 = 0$.
- (b) By thm 1.3.16, if s is a generator for \mathbf{Z}_{12} , $|s| = \frac{12}{gcd(12, s)}$. $\Rightarrow gcd(12, s) = 1$. Therefore s has no common factors with 12, except 1. This is true for $1, 5, 7, 11 \in \mathbf{Z}_{12}$.
 - All these are generators of \mathbf{Z}_{12} .

(c) For the generators—1,5,7,11—order is 12. 2: $2.1 = 2, 2.2 = 4, 2.3 = 6, 2.4 = 8, 2.5 = 10, 2.6 = 0, ... \Rightarrow |2| = 6.$ 3: $3.1 = 3, 3.2 = 6, 3.3 = 9, 3.4 = 0, ... \Rightarrow |3| = 4.$ 4: $4.1 = 4, 4.2 = 8, 4.3 = 0, ... \Rightarrow |4| = 3.$ 6: $6.1 = 6, 6.2 = 0, ... \Rightarrow |6| = 2.$ 8: $8.1 = 8, 8.2 = 4, 8.3 = 0, ... \Rightarrow |8| = 3.$ 9: $9.1 = 9, 9.2 = 6, 9.3 = 3, 9.4 = 0, ... \Rightarrow |9| = 4.$ 10: 10.1 = 10, 10.2 = 8, 10.3 = 6, 10.4 = 4, 10.5 = 2, 10.6 = 0, ... $\Rightarrow |10| = 6.$ (Note: multiplication is mod 12.)

6. Consider the following permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 3 & 2 & 1 & 4 & 5 \end{pmatrix}.$$

- (a) Find all of its orbits.
- (b) Express the permutation as a product of 2-cycles.

Solution: Orbits: (1,7,5), (2,6,4)Permutation: (1,5)(1,7)(2,4)(2,6)Please see Professor Lavalle's newsgroup post on permutation and 2-cycles for detailed explanation.