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Multiple Choice Problems, 2 points each

1.

10.

On what variable would you induce to prove the following identity?

() 2,00) -

Answer: m

. How many ways are there to arrange the letters of the word NONSENSE?

.8l
Answer: 355

. How many integers are there from 1 to 1000 not divisible by 2,3, or 107

Answer: 333 = 1000 — (500 + 333+ 100 — 166 — 33 — 50 + 16) by Inclusion-Exclusion Formula

. How many bit strings of length 8 are there that contain a pair of consecutive 0s?

Answer: 201 = 28 — Fg, 5 = 256 — 55.

. How many n variable functions are there where each of the variables has domain of size m

and the function range is of size r?
n
Answer: r™

. What 1sZ2 ’“( )

Answer 3"/2n =(1+1/2)"=(1+2"1)"

. There are 10 lockers in the athletic center and 76 students who need lockers. Therefore, some

students must share lockers. What is the largest number of students who must necessarily
share a locker?
Answer: 8 = [76/10] by pigeonhole principle

. What is the number of integral solutions to = + y + z = 32, where x,y, z > 0?7

Answer: (324)

. What is the recurrence for the number of ways to climb a staircase, if you go up either 1 or

3 steps at a time?
Answer: a, = ap—1+ an-3

How many initial values will you need to calculate in order to solve the following recurrence
exactly using annihilators?

np =40n_1—6an_2+40n 3 —ana+2"+¢"+(2-0)" + (24 ¢)"7

Answer: 8 since the annihilator is (E*+4E3+6E?—4E+1)(E—-2)(E—®)(E—-29)(E—(2+®))



Short Problems, 5 points each, all or nothing (no justification nec-
essary)

1,000,000
1. Whatis »_  k?
k=0

Answer: 1,000,000

Z ko 1,000,000 - 1,000,001 — 500,000, 500, 000

2
k=0
2. What is (6’000’ 200’001)?
Answer:
(6, 000, 000, 001) _ 6,000, 000,001 - 6,000,000,000 - 5,999,999, 999
3 N 6

= 10%(6-10° +1)(6 - 10° — 1)
= 10%(36-10'8 — 1)
35,999, 999,999,999, 999, 999, 000, 000, 000

1 100
3. What is the coefficient of z'? in the expansion of (m + —> ?
x

Answer: This is the term (120) z*(1/2)190=% where k— (100— k) = 10. Therefore k = 110/2 =
55. So the coefficient of 210 is (1%) = ('1).

4. Three married couples have purchased 6 seats in a row for a concert. In how many different
ways can they be seated left to right if:

(a) There are no restrictions on seating?
Answer: 6! = 720

(b) If each couple must sit together?
Answer: 3!-23 =48

(c) If all men sit together to the right of all women?
Answer: 3!3! = 36

(d) If the seating arrangement must be ”boy-girl”?
Answer: 3!3! = 36

(e) If the seating arrangement must be "boy-girl”, and each couple must sit together?
Answer: 3!1=6

Long Problems

1. Combinatorics

Prove the following in two ways



(a) algebraically (but without induction)
Solution:

There are two general ways to do this, one by translating directly to facto-

rials, the other using binomial identities.

The first way just simplifies both sides using factorials and elementary algebra.

the left hand side (LHS)

First

3) = edm () = sy
= % divide out like factors
= n(2n—1)
= 2n2—n

Now for the right hand side (RHS):

2(3) +n? = 25T 0
n(n —1) +n? divide out like factors

I

= n2—n+n?
= 22 —n

Since both the LHS and the RHS simplify to identical formulas (through equality pre-
serving transformations), they are equal. This is probably the best way of finding the
proof. One can also rewrite it one linear derivation by reversing the second simplification

and appending it to the first:

(2n)!
(@2n—2)12!
2n(2n—1)
TL(Z?I, —1)
2n% —n
n? —n 4+ n?
n(n — 1) + n?
2n(n —1)/2 + n?
2y + 10
2(5) +n

This is a perfectly acceptable proof because all the manipulations are legal. And you
don’t have to remember a previous result (well, you hope you write everything down
anyway), because you went in one direct line from LHS to RHS. This sort of proof has
the tendency to baffle the reader because they can so easily verify it, but they have
absolutely no idea where the magic came from for lines 5 and 7. Why split the n2? Why
multiply by 2 just to divide it out? It looks like you're going backwards! I’'m not saying
this is an inappropriate way of expressing a proof, you should just be aware of your proof
method and the expression of your proof and its affects on the reader.

Common mistakes for the above method are:

e mixing up sides when doing the derivation side by side. Doing a side by side deriva-
tion (that is something like (") =2()+n?> = ... = ... = n(2n—1) =n® —n+n?
= 2n2 —n = 2n? —n) is readable as a proof (and if all the operations are performed
correctly) but is technically not really correct, because you don’t really yet know
if one side actually does equal the other. Also it can lead to egregious errors like
assuming the thing you are trying to prove if you accidentally look at a previous
line and use it as an equality, when it is only a thing to be proved.



e minor transcription errors, e.g. accidentally transferring (2n)! on one line to 2n! on
another (treating it as 2(n!)) (then you probably made a second mistake later to
make everything turn out ok in the end.

The second way of proving the identity is by using Vandermonde’s identity with m = n
and r = 2. This gives:

2n _ n+n

G = o
= Yi-0 (WG ) Vandermonde’s identity
= (&) + MO+ @) expanding the sum
= (H)+n-n+(3) small cases of binomials
= 2(5) +n? algebra

This I would consider a clever method because with a little extra work (trying to find
one of a vast sea of identities to one small problem) gives you a pretty short proof.

combinatorially
Solution: First a few examples of what a combinatorial proof is not

e using words instead of symbols
e handwaving
e a picture proof

A combinatorial proof (of an identity) tries to give some interpretation of the two sides
such that they count the same set of objects. You must come up with a counting situation
S, interpret the LHS, showing that it counts A, then do the same for the RHS. Often
one of these steps is trivial or obvious.

So here is a combinatorial proof:

Let S be the number of subsets of size 2 from the union of 2 (disjoint) sets of size n.
The LHS counts this directly (this was the obvious interpretation given the description
of A): the whole set is of size 2n and we want the number of subsets of size 2 (number
of unordered pairs).

The RHS counts things by considering from which of the 2 sets (let’s call the two sets
A and B) does each item in the pair come. We’ll look at the cases separately:

e Both items of the pair could come from A, there are () ways to do that.

e Both items of the pair could come from B, there are (72’) ways to do that.

e One item could come from A and the other from B. There are n ways for the first
and n ways for the second, for a total n?

These three cases are mutually exclusive and they cover all the possibilities, so all we
have to do is add them up to get 2(}) + n?.

Since we’ve counted the same situation in two different ways, the two different ways
must be equal. QED.

This proof is not too long and tells you quite a bit more about the symbols than the
algebraic proof. The difficulty is in finding such a proof. Often you can look at the
symbols and translate to combinatorial situations you know already. All subsets can
come from 2", subsets of a particular size come from (}), disjoint sets from addition (the
sum rule). A combinatorial proof asks a bit more creativity from you, but the insight
you get from it is infinitely more than an algebraic proof (I claim that there is very little
to no insight from an algebraic proof).

The common pitfalls in coming up with a combinatorial proof are



e using a binomial identity in an algebraic manner. A combinatorial identity is an
algebraic formula (with equality) that describes a combinatorial situation. It may
have been proved by combinatorics, algebra, calculus, whatever, and it may be inter-
preted combinatorially, algebraically, over the real or complex numbers, whatever.
But if you use it in a proof in an algebraic manner, you are not using it combinato-
rially.

e just translating symbols into words. There is (usually) no proof in such a direct
translation. The proof is in providing a correspondence between the situations that
these words describe.

e picking the wrong interpretation. Sometimes the symbols can lead you astray. For
example, the n?, standing by itself, seems like an ordered pair with replacement,
from one set. That is a reasonable starting point for n? but it might make the
interpretation of the other symbols more complicated (how to reconcile 2 kinds of

unordered pairs and 1 kind of ordered pair on a set of size n with an unordered pair
of 2n).

2. Induction

Prove the following by induction

Solution: Base case: n = 0.

LHS = i k(Z)

RHS = 02071
= 0.

Since LHS matches RHS, the statement holds for n = 0.

n
Induction Hypothesis: Let us assume that the statement holds for some n > 0O i.e. Z k <:) =n2n!

k=0
for some n > 0.

n+1 n+1
To Prove: » k:( 5 ) = (n+1)2".

k=0
n—|—1
+
LHS =
n—|—1
= l( ) ( )] , using Pascal’s identity



E)E()
= Zk( )-{—Tilk(k )smce (nL):o
= n2n1+:Z::k(k_

n

= n2" '+ ) (G+1) (”) , by substituting j =k — 1

- J
j=-1

= n2"! +§_:(j+ (:) since (_nl) =0
+

,using induction hypothesis

Q.

)
=0 \J

n
= n2" + 2" by using the identity, Z (n) =2"
—q \J
7=0
RHS

Hence the statement holds for n + 1 also. Therefore by the principle of Mathematical Induc-
tion, the statement holds for all n > 0.

Some common mistakes were:

e Forgetting the base case
e Getting the summation indices wrong

e Proving the identity by algebraic methods without using induction

. Probability

On the planet Bayleen, in the star system Tau Ceti, there is a species of life form that has
three sexes: the ximander (with 20 eyes), the yeoman (with 30 eyes), and the zyzygy (with
500 eyes).

(a) How many children must be born before we can be sure that there are at least 17 of
some sex? Why?
Solution: 5 points We want the number of children, say IV, who must be born before
we can be sure that there are at least 17 children of the same sex. Let us find out the
maximum number of children that can be born without satisfying this condition. We can
have 16 children of each of the sexes, and yet not have 17 of any one sex. This number
is 48. Therefore, if we have one child more, it is bound to be from one of the three sexes,
and hence, you will have at least 17 of any one sex. Therefore, N is 16 x 3 + 1 = 49.



This also follows directly from the pigeonhole principle. We want to find the smallest
integer N such that [N/3] = 17. Since (3 * 16)/3 = 16,[(3*16+1)/3] = 17, so
N=3%16+1=49.

Regardless of the wishes of the parents, there is always a 60% chance that a ximander will
be born, a 30% chance for a yeoman, and a 10% chance for a zyzygy.

(b)

For a group of three children, what is the probability that no two have the same sex?
Solution: 3 points

The probability that no two of them have the same sex would be the probability that
we have one child from each of the sexes.

Let us consider an equivalent situation. Suppose, we have 10n elements total comprised
of three different types of elements. The number of elements of the first type is 6n, the
number of elements of the second type is 3n and the number of elements of the third
type is n. The problem is to pick out one element of each type. Now, the probability of

6n) /3n\(n
choosing 3 elements each of a different type from 10n elements is %. When n

tends to infinity, this value becomes 6-(0.6)-(0.3)-(0.1). This is essentialfy the answer to
the question of having each child of a different sex in a group of three children. Perhaps
the more intuitive way to proceed would have been to consider the probability of not
having each child in the group have a different sex, and then subtract that from one,
which would work out to the same value. Hence, the probability of having each child
from a different sex in a group of three would be 6 - (0.6) - (0.3) - (0.1).

What is the expected number of eyes a child will have?

3 points We know that expectation is given by Y i ; - p(x;). Here, this evaluates to
(0.6)-(20)+(0.3)-(30)+(0.1) - (500) = 12+ 9450 = 71. Therefore, the expected number
of eyes a child will have is 71. Of course, this does not mean that any single child will
have 71 eyes. It only means that if we have n children, then the total number of eyes
they would have would be 71n in the limit.



(d) How many children can parents expect to have before getting a yeoman?

4 points Suppose the parents have a yeoman as their first child, the probability of this
happening is 0.3. Now, the number of children the parents had before the yeoman is 0.
Now let us consider the case when the parents have a yeoman as their second child, the
probability of this happening is (0.7)(0.3) and the number of children they had before
having a yeoman is 1. Similarly, we can find out the probability of their having a yeoman
as their third child and so on.

Therefore, expectation is 0 * (0.3) 4 1(0.7)(0.3) 4 2(0.7)%(0.3) 4 3(0.7)%(0.3) + ...

This is a geometric distribution of the form p(1—p)¥, the mean of which is (1}'%1’) or % —1.

Solving using the above, we see that the expected number of children before having a
yeoman is 2.33.

Another way of looking at it would be if we consider the number of children to be
inclusive of the yeoman. Thus, the probability of having a yeoman would be (0.3) and
the number of children would be 1. If the parents had two children (second of which
would be the yeoman) the probability of that would be (0.7) % (0.3). We can calculate
the probabilities of having three children in the same way and so on.

Therefore, expectation would be 1 * (0.3) + 2 * (0.7)(0.3) + 3(0.7)%(0.3) + ...

This series is the geometric distribution of the form p(1 — p)*~! with mean %. On
solving, we see that the expected number of children is 3.33. But this number includes
the child which is a yeoman, so the number of children born before the yeoman would
be 3.33 — 1 = 2.33.

4. Recurrence

Consider a collection of n lines in the plane, such that each line intersects every other line
and no three lines meet at a point.

(a) Let r, be the number of regions into which n intersecting lines cut the plane. What are
r0,T1,72,737
Solution: 1 point rp = 1 No lines leave the whole plane as one region
r1 = 2 One line cuts the plane into two regions
rg = 4 Two non-parallel lines cut the plane into four regions
r3 = 7 The most three lines can cut the plane into is seven regions

3
1 1 > P | B _43
5
L3

Common mistakes:

e Not realizing the whole plane is one region
e Drawing parallel lines



(b) Obtain a recurrence for r,. Justify.
Solution: 4 points Let there be n — 1 lines on the plane cutting it into 7, 1 regions.
When drawing a new line, it has to intersect all of those n — 1 old lines. The new line
passes through a region, cutting it into two, before each intersection point. For n — 1
lines there are n— 1 intersection points and therefore n— 1 new regions added before each
intersection. In addition, there is one more region added after the last intersection point.
Thus the total, there are n new regions in addition to the old 7,_1. So the recurrence

Thn =Tn_1+1N
Another way to write this recurrence is
Tn =2rp_1—Tp_2+1
But there is no combinatorial justification for this, it just comes out the same alge-
braically.

Common mistakes:

e Justifying the recurrence by “I see the pattern in the sequence...”
e Justifying the recurrence by “A new line adds n new regions” without saying why
there are n new regions
(c) Solve the recurrence for 7, to obtain a formula for the number of regions.
Solution: 3 points
Th =Tp—1+n,r0=1,1r1=2,179 =14

There are two ways to solve this recurrence. First, without annihilators.

n(n + 1) n +n?
2

n
Th=Tn1+n=rna+(n—-1)+n=rg+ > k=1+ =1+ 5

k=1

We can also solve it using the annihilators. The annihilator for the homogeneous part
is E — 1 and for the non-homogeneous part of n it is (E — 1)2. So (E — 1)? annihilates
the whole sequence. Therefore the recurrence has a form of

T™h =Co+cC1n + czn2

Now using the initial conditions

7‘0 = ]_:CO (1)
M = 2=c¢c+c1tc=cr+c=1 (2)
r9 = 4=-cg+ 2c1+ 4co (3)

Subtracting (2) from (3) twice we get
2 =1=>cy=1/2
Then from (2) we get
ca=1/2
Thus the exact solution is

n—i—n2
2

rm=14+1/2n+1/2n* =1+

Common mistakes:



(d)

(f)

e Just writing the summation and not the closed form for the first method

e Arithmetical errors for the annihilator method
Let ¢, be the number of closed regions into which n intersecting lines cut the plane.
What are cg, c1, c2, c3?
Solution: 1 point You need at least three lines to make a closed region, so ¢g = ¢; =
c2=0,c3=1

3
1 1 ¥ | __43
5
&

With three lines, region 5 is closed.
Common mistakes:

e Considering the plane a closed region
e Drawing parallel lines

Obtain a recurrence relation for ¢,. Justify.

Solution: 3 points Since you need at lest three lines to make a closed region, as we
draw the new nth line, only the regions between the intersection points with the old
lines are closed. With n — 1 old lines there are n — 1 intersection points and therefore
n — 2 regions between them. The regions before the first intersection point and after the
last intersection point are not closed since they are formed by only two lines. So there
are n — 2 new closed regions in addition to the old ¢,—1 ones. Thus the recurrence is:

Ch=Cp_1+n—2

Common mistakes:

e Justifying the recurrence by “I see the pattern in the sequence...”

e Justifying the recurrence by “A new line adds n — 2 new regions” without saying
why there are n — 2 new regions

e “The new line cuts every old closed region in half and adds one more closed region
so the recurrence is ¢, = 2¢,_1 + 1”

Solve the recurrence for ¢, to obtain a formula for the number of closed regions. You
may use the answer from part (c).

Solution: Again, there are several ways to solve the recurrence. First, we can convert
it to the same type of summation as in part (c):

n—2 2

—-2)(n—-1 2 —

Ch =Chno1+n—2=cp2+(n—3)+(n—2) =ca+ E k= (n=2)(n—1) = sn+n
1 2 2

We can solve the recurrence using annihilators. In fact, since the homogeneous part is
the same as in (c¢) and the non-homogeneous part is of the same degree, it has the same



annihilator (E — 1)® and the same form

cn =1o +t1n+t2n2

However, we cannot use the first two base cases to find the constants (if you tried, you
probably find that out by getting zeroes). This is because you need three lines to form
a closed region, so the first equation with the closed region is ¢3 = ca + 1. Thus ¢3 is the
first base case we can use. We will need three base cases to find the three constants, so

we need to calculate ¢4 = c3 + 2 = 3.

co = 0=1tg+ 2t1 + 4t
cs = 1=tg+ 3t1 + 92
ca = 3=tg+ 4t1 + 16t

Subtracting (1) from (2) we get

t1+5ta=1=1t =1— 5t
Subtracting (1) from (3) twice we get

—to+ 8ty =3 =1t =8, —3
Substituting both of these into (1) we get

Mo=1=ty=1/2= 1g=1,¢; = —3/2
Therefore
2 — 3n +n?
2

We can solve the recurrence in yet another way by noticing that

cn=1-3/2n41/2n% =

Cn =Tn—2—1
Therefore, using the solution for r,, from (c)

(n-2)+ (=27

_n—2+n2—2n+4_ 2 —3n+n?

=1
Cn + 2 5

Common mistakes:

e Just writing the summation and not the closed form for the first method

e Arithmetical errors for the annihilator method

e Using the wrong relationship between ¢, and r, for the third method

2



