CS 273

Introduction to the Theory of Computation Fall 2002

Midterm Solutions

1. Basic counting problems. Give brief answers to each of the following questions. Unsimplified expres-
sions (in terms of factorials, sums, etc.) are acceptable.

(a)

Suppose we have an unlimited supply of red balls, blue balls, and green balls. Suppose we start
picking balls of random color from our supply, and putting them into a box. How many balls
must be placed in the box to guarantee that the box contains at least 7 red balls or at least 11
blue balls or at least 2 green balls? (5 points)

Solution: By pigeonhole principle, if we have 6 + 10+ 1 + 1 = 18 balls, the box must contain at
least 7 red balls or 11 blue balls or 2 green balls. |

Consider all of the permutations of the symbols from multiset {a,a,a,b,b,b,b,c,c}. How many
distinct permutations are there if we do not allow permutations that have both ¢’s together? (5
points)

Solution: Two common approaches to the problem.

i. Line all the a’s and b’s in a row and place an empty space between each neighboring two
letters and at the two ends. With 7 a’s and b’s, we have 8 such empty postions. Now select
two empty positions and place c¢’s at these positions. There are (g) ways to select. And

for each selection, there are 37—1'1, ways to permutate the a’s and b’s. Hence, the answer is

() 3t = 980,
ii. Another way to see it is to bundle the two c’s. Now there are 3%51! permutations with both

Hence, the answer

c’s together. The total number of permutations of these 9 symbols is 3%52!.

3 = 980.

s 9!
18 314121 — 31411

How many distinct solutions are there to the following equation
z1+ x4+ Fxp=n2;>1,n>k
(5 points)

Solution: The problem is exactly the same as throwing n balls into k& bins such that each bin

contains at least one ball. First, we place a ball in every bin and then there are %

distinct ways to place the remaining balls in the k bins. The answer is % |

2. Solve the following recurrences.

(a)

State the general form of the solution and then determine the coefficients. (10 points) T'(1) =
1,T(2) =6, and for all n > 3,

T(n)=T(n—2)+3n+4
Solution: Generally, you can solve the problem by either applying annihilators, which entails
solving linear equation system, or expanding the recurrence.

i. The homogeneous annihilator for T'(n) —T(n—2) = 0 is E? — 1 and that for 3n+4is (E—1)2.
The complete annihilator is thus (E —1)3(E+1). Since in general, (E —a)™ annihilates p(i)a’
where p() is any polynomial in i of degree n — 1. We have

T(n) = 01n2 +Con+Cs + 04(_1)7),

We are left to calculate the constants C;. Using the initial conditions and the recurrence, we
have T'(1) = 1,T(2) = 6,7(3) = 14,7(4) = 22. Now plugging each of these numbers into
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ii.

the left side of the above equation and solve the resulting linear equation systems, we get
Cy=3/4,C,="17/2,C3 = —29/8,C, = 3/8. Hence our solution is

3 7 29 3
T(n)=n*+_-n— "+ (-1
(n) Tt 8( )
By expanding the recurrence several times, it’s easy to read the recurrence as T'(n) = T'(n —
2i)+3i(n—(i—1)) +4i. When n is even, i = n/2—1; when n is odd, ¢ = (n —1)/2. Plugging
1 into the equation, we get

Tn) = T2)+3(n/2-1)(n—(n/2—-1-1))+4(n/2-1)
— §2 Z — 2= wh i
= 4n +2n 3 when n is even
and
T(n) = T(2)+3(n/2-1)(n—(n/2—1-1))+4(n/2—-1)
3 4 7 26 .
= Zn —i—in—?whennls odd

(b) Give a tight asymptotic solution to the following recurrence. T(1) = 4, and for all n > 2 a power

i

ii.

of 2, (5 points)

T(n) =3T(n/2) +n?—2n+1

Solution: You can solve it by applying Master theorem or by expanding the recurrence.

By expanding the recurrence, we get

T(n) = 3T(n/2)+n*>-2n+1
3(3T(n/4) + (n/2)® — 2(n/2) + 1) +n® — 2n + 1

?,iT(n/2i)+n2(1+(1

5+ G

Since n is a power of 2, i = logn,

4
= 4n'°8s? 4 gnQ —4n +logn + g
= 0(n?
By Applying Master theorem, it’s easy to verify that the recurrence falls in category 3, in
which T'(n) = ©(f(n)) = ©(n?).
|

3. Toss a perfect six-sided die 12 times. Find the probability that every face of the die appears at least
once. Unsimplified expressions (in terms of factorials, sums, etc.) are acceptable. Show your reasoning.
(15 points)

Solution: We take the outcome of the 12 tosses as a sample point. For a perfect six-sided die, it’s
easy to verify that every sample point has the same probability associated with it. The size of the
sample space is 612.
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Let P;,1 < i < 6 be the property that face 7 doesn’t appear in the 12 tosses and A; be the set of sample
points with property P;. If follows that P; is the property that face i appears at least once during the
12 tosses and A; is the corresponding set. The set of all the sample points such that each face appears
at least once can be expressed as A; [JAz2()...[)A4s. Let S be the sample space.

A (A2 46l = [A AU 46l
=8| - 14 J A 4l

6
=181 1Ad+ D0 1A Al- DD A A (Al + - -
=1

1<i<j<6 1<i<j<k<6
141 A2 A3+ A

/*

since property P; is symmetric,which means

|Ai] = [Ag| = -+~ = | 4| = 5"

A1 () A2l = | A1 () As| = -+~ = |45 (] 46| = 472

|A1ﬂA2ﬂ"'ﬂA5|:"':|A2ﬂA3ﬂ"'mA6|=112
*/

6 6 6 6 6
_pl2 12 12 12 12 12
son- () )= G e (- ()

Finally divide this number with 62 to get the probability. |
4. Find a tight asymptotic solution to the following recurrence:
T(n) = T(|n/4]) + loglogn + 4

in which log denotes the base two logarithm. Partial credit can be earned for upper and lower bounds,
if you are unable to find a tight bound. You may safely ignore the floor operator. (15 points)

Solution: By expanding the recurrence, we get

T(n) = T(n/4)+loglogn + 4
= T(n/16) + loglog(n/4) + 4 + loglogn + 4

n

= T(4i)+loglogn+loglog%—i—---—i—loglog;—_l+4i
= T(ﬁ)+loglogn+log(logn—2)+log(logn—4)+---+log(logn—2(i—1))+4i

4
1
= T(1) +loglogn + log(logn — 2) + log(logn —4) + - - - + log(4) + 4(5) logn

/x T(1) =0(1), 4(%) logn = ©(logn)
denoting D(n) = loglogn + log(logn — 2) + log(logn — 4) + - -- + log(4) = /
= O(logn)+ D(n)

We now bound D(n). Recall the approach used in HW 3. We partition the range [1...n] into intervals
I = [2¢,..,2¢t1 — 1], for i = 0,...,lgn. Initially, logn is the current value and it falls in interval
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Toglogn- Every time we subtract 2 from the current value and add to the sum the binary bits of the
current interval,which is 7. This process continues until the current value equals 4. There are at most
2* distinct values in interval I;. Hence,

loglogn .
2’L
D(n) = ©( E o -1) = O(lognloglogn)
=2

Put together,
T(n) = O(logn) + ©(lognloglogn) = ©(lognloglogn)

5. Proofs by combinatorial reasoning and by induction.

(a) Prove by combinatorial reasoning the following theorem. (8 points)

Theorem: For all integers n > 0 and all real numbers z1,z2, - , Tk,
(z14+z24--+z)" = Z nilxnlm""’---x”’“
n1!n2!---nk! 1 2 k
nyt+ng+---+ng=n
n; Z 0

Solution: Denote (z1+z2+---+z) as S(k). The LHS can be written as (z1+z2+- -+ )(z1+
To+---+ax) - (@1 +22+---+2k). Considering the unsimplified result of the product, each S(k)
contributes one x; to each term. For any fixed ni,ns, -+ ,ni where n; +ng 4+ --- 4+ ng = n and
n; > 0, the coefficient of term z7*z3? - - - 2}'* is the number of all the distinct ways of contribution
from these n S(k) such that z; is selected n; times, which is m And it’s easy to see that
all the combinations of n; are possible, which justifies the summation over all non-negative n;

such that they sum to n. Hence, we get the RHS of the equation. |
(b) Prove the same theorem by induction on n. (12 points)

Solution: i. The Basic Step:
For n =1, the LHS is 7 + 2 + -+ + x. Since 1 + x2 + -+ + xx = 1 and z; > 0, exactly
one z; could equal to 1 every time. The RHS simplifies to

k
|
n
Z 175! |m1111x32"'$zk:Z$i=$1+$2+---+xk
1121 -~ Nk i1
ni+ne+-tneg=n
niZO

LHS equals RHS. The equation holds for n = 1.

ii. The Induction Step:
Suppose that the equation holds for n = n* > 1. When n = n* 4+ 1,LHS equals

(z1 +.’L'2+"'+.’Ek)n*+1
= (@1+z2+-+a)" (@14 T2+ + %)

(z1+ 22 + -+ + k)

I
3
8
=3
5
8
V3
nN
8
Ead
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For any term 3:711 :c?;z xZ:’" in the final product where n;; > 0, 1 < j < m < k and
Z;.nzl n;; = n* + 1, its coefficient comes from exactly m coefficients of those terms in case

n = n*. Namely, its coefficient is

n*! n n*! T n*!
(nil — 1)'71,12' . n,m' nill(niz — 1)' .. -nim! Lz 'nn' e (nim — 1)'

= n'l (n et .++ﬁ)
iy ng,! i ! iy g, ! i ! iy M, ! i
n*!nh + Ny + Ny + 00+ Ny,
Lz 'nzz' te n,-m!
* n*+1
nzl'nn'nzm'
* m
= Ll)" where Znii =n*+1

ni ng,l-on;

j=1
Since this is true for every term, the final product could be written as

n* 4+ 1)!
Z G Py -k
nl!ng!---nk!
n+ne+--+ng=n*+1
mZO

This means the equation holds for n = n* +1. This ends the induction step, which completes
the proof.
|

6. A box contains 10 pairs of socks, and each pair is a distinct color (e.g., there is a pair of yellow socks,
a pair of red socks, etc.). Unsimplified expressions (in terms of factorials, sums, etc.) are acceptable.
Show your reasoning.

(a)

Draw 2 socks at random from the box (without replacement). What is the probability that they
are a pair of the same color? (5 points)

Solution: After picking the first sock, there are 19 socks left. Among these socks, only one sock
can form a pair with the chosen sock. Therefore the probability that they are a pair of the same
color is 75. [ |
Draw 11 socks at random from the box of 20 socks (without replacement). Find the expected

number of matching pairs in your sample. (15 points)

Solution: Define indicator random variable X;,1 < i < 11 such that X; = 1 if the i-th sock
drawn forms a pair with another sock in the 11 socks and X; = 0 otherwise. Let X = % Zzlil X;.
It’s clear that X is the number of matching pairs in the sample. By part (i), we know that
PriX;=1]= (110)%, we have

BIX] = 1/2B(3_ Xi| = /2 BIX] = 1/2) PrXi =1] =1/2) (110) 11—9 - 11/2.10.% _ %

i=1



