
CS497 Planning and Decision Making Week 5 Notes

(2/18, 2/20)

Scribe: Shiau Hong Lim

1 Cycles and Termination

Assuming that termination actions are to be applied when the goal state is reached, but the number
of stages, K is unknown. We need the following conditions to ensure that the dynamic programming
algorithm will terminate:

• Non-deterministic

1. No negative (in a minimax sense) cycles
2. Must be able to escape positive cycles

• Probabilistic

– None of the above, with probability 1

Consider the following example:

Figure 1: Cycle example

The loss for every state transition is 1. At state xB, the probability of going to either of the
next two states is 1/2. The expected loss is therefore,

E[L] =
1
2
(3) +

1
4
(7) + · · · = 3 +

∞∑

i=0

1
2i+1

(4i) < ∞

which is finite. Problem arises when we perform dynamic programming iteration that stops only
when L∗ values stabilize. In the above scenario, there will be a decreasing, non-zero difference
between subsequent L∗k due to the cycle. To ensure termination of the algorithm, we introduce an
error-term ε such that the algorithm stops when

max
x∈X

∣∣∣L∗k+1(x)− L∗k(x)
∣∣∣ < ε

1



2 Infinite Horizon Markov Decision Process

In an infinite-horizon Markov Decision Process (MDP), the number of stages is unbounded. It can
be viewed as a game that never ends — you have to play forever. Many real-life problems can be
modeled as infinite-horizon MDPs. One consequence is that there are no specific goal states. Our
objective is therefore to minimize the cost function

L = lim
n→∞

n∑

i=1

l(xi, ui)

The problem is that L may be unbounded. To fix this problem, we have the following options:

1. Average cost-per-stage

where instead of L as described above, we try to minimize

lim
K→∞

1
K

E

{ K−1∑

i=1

l
(
xi, γ(xi), θ

)}

For many problems, the average cost-per-stage is well-defined and finite.

2. Discounted loss

Let α ∈ (0, 1) denote a discount factor. We define the loss function as

L = lim
K→∞

{ K−1∑

i=1

αi l(xi, ui, θi)
}

where ui = γ(xi), and γ is the strategy/policy. Since α is less than one, L is finite. The
problem is then to choose γ that optimizes:

lim
K→∞

E
{ K−1∑

i=1

αi l(xi, ui, θi)
}

The discount factor, α determines the importance of future loss. A large α will result in slow
convergence, but give more weight to the future.

From now on, we shall focus on the second option.

2.1 Forward Dynamic Programming

We would like to optimize:

lim
K→∞ E

θi

{ K−1∑

i=1

αi l(xi, ui, θi)
}

If we assume a finite K for now, and let li = l(xi, ui, θi). As K increases, we get the following
sequence of L∗K ,

K = 1, L∗1 = 0
K = 2, L∗2 = l1
K = 3, L∗3 = l1 + αl2
K = 4, L∗4 = l1 + αL2 + α2l3 = l1 + α(l2 + αl3)

...
We can visualize this sequence as in Figure 2. For every new stage, the forward dynamic program-
ming adds a level to the top.

2



Figure 2: Forward growth Figure 3: Backward growth

2.2 Backward Dynamic Programming

What we really want is a backward dynamic programming algorithm, which is usually more nat-
ural to implement. This is visualized in Figure 3. For every new stage, the backward dynamic
programming adds a level to the bottom. Consequently, we need to multiply the previous values
by α (pushing them to the future) in order to make use of the previous stage’s result. Assuming
that K is fixed, we have the following update equations:

L∗K(x) = 0 ∀x ∈ X

L∗k(x) = min
uk∈U(x)

E
θk

{
αk l(xk, uk, θk) + L∗k+1

(
f(xk, uk, θk)

)}

We define
J∗K−k(xk) = α−kL∗k(xk)

Substitute J for L, we get

αkJ∗K−k(xk) = min
uk∈U(xK)

E
θk

{
αk l(xk, uk, θk) + αk+1 J∗K−k−1

(
f(xk, uk, θk)

)}

Divide both sides by αk, and let i = K − k,

J∗i (xk) = min
uk∈U(xK)

E
θk

{
l(xk, uk, θk) + α J∗i−1

(
f(xk, uk, θk)

)}

From the above equation, J∗i can be interpreted as the expected loss for an i-stage optimal strategy.
It can be shown that for finite X, U and Θ, J∗i (x) → J∗(x) as i →∞, where J∗(x) is the optimal
value function for an infinite-horizon MDP. So we have

J∗(x) = min
u∈U(x)

E
θ

{
l(x, u, θ) + α J∗

(
f(x, u, θ)

)}

How do we find J∗? Two common ways: value iteration and policy iteration.

2.3 Value Iteration

Also known as cost-to-go iteration or cost-to-come iteration. It basically performs a greedy policy
update until the J values converge:

1. Initialize J∗0 (x) = 0 ∀x ∈ X

3



2. Calculate J∗1 (x), J∗2 (x), . . .

3. Until
max
x∈X

∣∣∣J∗i+1(x)− J∗i (x)
∣∣∣ < ε

2.4 Policy Iteration

Given a fixed strategy γ, we evaluate the strategy by

Jγ(x) = E
θ

{
l(x, u, θ) + αJγ(x′)

}

Suppose nature does not directly affect loss, i.e. l(x, u, θ) = l(x, u) ∀x, u, θ, then

J∗(x) = min
u∈U(x)

{
l(x, u) + α

∑

x′
P (x′|x, u)J∗(x′)

}
(1)

and
Jγ(x) = l(x, u) + α

∑

x′
P (x′|x, u)Jγ(x′) (2)

We perform policy iteration as follows,

1. Guess an initial strategy γ

2. Evaluate γ using Equation (2)

3. Use Equation (1) to find an improved γ (greedily)

Example

Consider the following 2-state MDP.

Figure 4: u = a Figure 5: u = b

We have X = {1, 2}, U = {a, b} and we assume l(x, u, θ) = l(x, u). We pick α = 9/10. Let
the expected loss be l(1, a) = 2, l(1, b) = 1/2, l(2, a) = 1 and l(2, b) = 3. The first step of policy
iteration is to guess a γ, so let γ(1) = a and γ(2) = b. To evaluate γ, we calculate

Jγ(1) = 2 +
9
10

[3
4
Jγ(1) +

1
4
Jγ(2)

]

Jγ(2) = 3 +
9
10

[1
4
Jγ(1) +

3
4
Jγ(2)

]

4



Solving the linear system, we obtain Jγ(1) ≈ 24.12 and Jγ(2) ≈ 25.96. For step three, we find a
new γ′ using

J ′(x) = min
u∈U(x)

{
l(x, u) + α

∑

x′
P (x′|x, u)Jα(x′)

}

and we get J ′(1) = 23.45, J ′(2) = 23.12 with the corresponding γ′(1) = b and γ′(2) = a. We then
repeat the process again (with γ′) until convergence (within ε).

3 Reinforcement Learning

So far we have been assuming that P (x′|x, u) is known, i.e. the transition function / model / nature
is known. What if it is not know? We learn it. The traditional view of the entire optimization
process involves three phases of operation:

1. Learning phase — get P (x′|x, u)

2. Planning phase — get γ

3. Execution phase — use γ

It turns out that we can actually combine all these together in one well-defined operation. This is
reinforcement learning. It is essentially a learning-by-doing algorithm, where we interact with the
world for a large number of times and based on the experience, obtain an optimal loss function as
well as γ. The world can usually be simulated using a Monte Carlo Simulator, where it provides
feedback to the algorithm based on the chosen action as shown below.

Figure 6: Reinforcement learning

3.1 Evaluating a Strategy

The evaluation function is again given as:

Jγ(x) = l(x, u) + α
∑

x′
P (x′|x, u)Jγ(x′)

But this time, we do not know P (x′|x, u). It turns out that we can estimate Jγ(x) through repetitive
observation and update during the simulation. As the number of run increases, our estimation of
Jγ(x) will approach the correct values. This is an outcome of the stochastic iterative algorithm. It

5



basically says that given a fix point y = h(y), we can estimate y by observing a “noisy” version of
h and using the following update equation:

y ← (1− ρ)y + ρ(h(y)), ρ ∈ (0, 1)

In our case, y = Ĵγ(x). So the update equation is

Ĵγ(x) ← (1− ρ)Ĵγ(x) + ρ

(
l
(
x, γ(x)

)
+ α Ĵγ(x′)

)

While we can improve γ greedily from Ĵγ(x) that we obtain, the process is tedious. We shall look
at a more straight-forward way of obtaining optimal γ using Q-learning next time.

6


