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1 Stochastic Iterative Algorithm

Last week we finished with an introduction to Reinforcement Learning. We also looked at the Stochastic
Iterative Aglorithm that allowed us to compute the cost function J in the absence of our knowledge of
the state transition probabilities P(z'|z,u). So to compute the cost function J, for a strategy v at state z
the algorithm performs the action v(z) in a Monte Carlo simulator of the world and obtains the next state

a'. Tt then updates the the current estimate .J,(z) of .J,(z) by blending togather the 1) the current value of

N

J(z) and the 2) sum of the immediate loss I(z,y(z)) obtained from the simulator. Specifically, the following
equation is used to update the current estimate J,(z)

Ty(@) = (1= p)Jy(2) + p(l(z,v(x)) + a, (2')) 1)
where the p € (0,1) parameter determines the blending of the two terms. The fact that f.y(;c) convergest

~

to J(z) has been shown by Robbins-Monro. The theorem that proves this is known as the Robbins Monro
theorem (Robbins and Monro, 1951).

The version of stocahastic iterative algorithm presented here is actually a more general version of the
problem of computing the value of a variable y given the noisy observations h(y) of y. The basic equation
follows the same format:

9= (1-p)3g+ph(y) (2)

Equation 1 works because the Monte Carlos simulator provides us with the probabilities necessary. So by
applying the equation repeatedly, in the limit the equation converges to the actual value of the J,

2 Finding Optimal Strategy

So given the Monte-Carlo simulator, how can we find the optimal strategy ? The answer is Q-leraning. The
basic idea in Q-learning is to find the value or cost to go associated with each state-action pair (x,u) rather
than a state. Thus the optimal J* would correspond to choosing for each state the action that has the lowest
Q-value Q(z,u). Thus the optimal @ function, @* : X x U — R is defined as follows:
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Qo) =l +a 3 (PGl i, Q') (3)
From the above equation we can easily see that J*(z) = minyecy)Q*(z,u) and y*(z) =

arg ming ey () Q*(x,u). Note that in case the the state-action-state transition probabilities are unknown,
we can use the stochasitc iterative version of Q-learning:

Q*(z,u) = (1 - p)Q*(z,u) + (p)(z,u) + a ugg{lw) Q*(a',u")) (4)

where p is the learning rate, as defined above.

3 Imperfect State Information
3.1 States vs. Observation

Now we consider what happens when we do not know what the current state x is, but rather have some
observation (which may or may not be of the current state). Examples of such observations include sensor
readings for a robot etc. We denote the observations made at step k by yi. To make things more interesting,
we also assume that nature interferes with our observations by performing some kind of observation action.
That is an action which alters our observation in some way. We denote the set of all such observations actions



by ® and the observation action at step k by ¢r. Given this notation, we can formally state the relationship
between the observation, observation action and the state by the following observation equation:

yr = h(zk, dr) (5)

where h is some function. Note that earlier we had said that the observation made may not be of the current
state, which seems to contradict the above equation. However, everything works out fine either way so to
keep things simple we assume that y; depends only on the current state.

So from equation 5 we have two kinds of uncertainty.

e Projection which corresponds yy, = h(xk)

e Distrubance which corresponds to yx = h(zk, dr)-

The first type of uncertainty is called projection, because the original state vector xj, in some space is being
projected onto a new vector y with possibly different number of elements. The second type of uncertainty is
called disturbance because since ¢y, is unknown. So given this scenario, our aim is to make the right decision.

As we shall see this is actually tractable in contrast to the task of recovering x given our lack of knowledge
of &.

3.2 Making Decisions using Observations : Information Spaces

In order to make decisions using observations, we first need to take tally of the kinds of information we have
or allow ourselves to have. These are as follows:

e The initial condition (IC) : the inital state z; or the set of initial states, X; C X and the prior over
Xl, P(IL'l)

e The observation history: y1,ya,..., Yk

e The action history uy,us, ..., ug_1.

So given the above information, we can now make decision based on an information state defined by all
the information given above. Thus the information state at step k, 7y, is defined as follows:
77k:{IC,Ul;U%---;kalayl;yza---,yk} (6)

Thus 7, contains all the information that could possibly be used to make a decision. We denote the set
of all such possible ngs by Nj and we call Ny the information space. The dimension of Ny, is given by :
dim(Ny) = k(dim(Y)) + (k — 1)(dim(U)) + dim(IC). As k — oo, dim(Ny) — oo.

3.3 Strategy in an Information Space

We can define strategies for information space states in the same way as in the case of perfect state infor-
mation.

e Strategy with perfect state informaiton : v: X - U

e Strategy with imperfect state information : v : Ny — U.

Note that in the case of imperfect state information, it is difficult to say which actions are available since
the state is unknown. So in this case we make the simplifying assumption that U(z) = U Vz € X. If we
specify v Yk we specify exactly what choice the decision maker makes in all possible futures.



4 Manipulating the Information Space

We have 4 possible ways of dealing the size of the information space. These are as follows:

e Limit memory (i.e. forget part of the history)

e Be Bayesian

e Do the non-deterministic equivalence of being Bayesian
e Approximate N

¢ Find equivalence classes in Ny, (sometimes defined by the problem itself).

We describe first three of these below.

4.1 Limit Memory

In this we only remember the last i stages. So if np = {IC,u1,ua,...,uk—1,Y1,Y2,-- -, Yk then if we set i to
1, then n, = {IC, ug_1,yx } or if we go one step further, ny = yy.

4.2 Bayesian Analysis

To manipulate the information space using Bayesian methods, first we make note of the kind of information
that we have available or allow ourselves to have. We have the recent observation y, we assume we have
P(¢) and we also know the observation function y = h(z, ¢). From the above three, we can compute P(y|z).
Assuming we have the state transitions and the corresponding observations as shown in figure 1, we can the
use Baye’s rule to obtain the following:

y y y

x1 x2 x3
ul u2 u3

Figure 1: State Transitions and Observations
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We can now apply u; to obtain s :
P(alyr,u1) = Y P(wa|1,u1) P(z1]y1) (8)

Note that in equation 8 x5 does not depend on y;, since z» is conditionally independent of y; given u;.

Now we would like to determine the more general version of the the probability given in equation 8 which
is, given P(zy|ng) compute P(Zg41|Mk+1), ur and yr4+1 where ng1 = g U {uk, Y1}

First we handle applicataion of wuy,
P(ps1|mesur) = P(@rr |me, o, wr) P(ar|n) 9)
T

Assuming zp41 is conditionally independent of 7y, given xj, up and zj, is conditionally independent of uy
given 7, we have:



P(@pra|np,ur) = Y P(@pyr|or, uk) P(zk|mn) (10)

Tk

Now we handle y1.

P(zrq1lme, ks Ye+1) =  P(op|mes1)
P(yk+1|zh+1)P(xk + 1 ng, ug)
2zisr PWr1]Trt1) P(@k1[me, ur)

4.3 Non-deterministic approach

In the non-deterministic approach we deal with sets rather than distributions. So instead of dealing with
probability of the actual state being a particular state z; given an observation yy,nx, Ty, we deal with the
set of all possible states Sy, that the actual state can be.

Let X; C X denote our possible set of initial states. Let Si(~) C X denote the possible set of states
given the information ~. Thus in this case Si(~) is the Bayesian equivalent of P(z| ~). Now given Sk ()
we want to find Sgy1(Ngy1)-

We start with the initial set of states given by S(I.C.) = X;. Let us also assume that we are given ®, the
set of observations from nature, and from this we can get Si(yx) C X, where

Sk(yr) = {zr € X|Idr € ®, 2% = h(yr, dx)} (12)

Now, we recieve y; and get S(IC,y) = S(y1) N X1. Applying u1, we get,

Sa(u1,m) = {z2 € X|361 € ©,3z1 € Si(m),r2 = f(21,u1,61)} (13)

So the above equation is saying that Sy the set of all states that can be reached given action u; was
applied and that nature took action 8;. Equation 12 can also be written as:

52(11'1;771) = U U f(.’ll'l,Ul,el) (14)
01€0© z1€51(m1)

It is clear that in general this procedure can be applied to n steps and then the following general form of
the update equation is derived. First we apply wuy,

Seri(wem) = | U f@ru k) (15)

0L €O 1, €Sk(nK)

and recieve yg41

Sk+1(Me) = Skt Mk ks Yrr1) N Skt (Y1) (16)



