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1 Overview

In & game, several agents strive to maximize their (expected) utility by choosing particular courses
of action, and each agent's final utility payoffs depend on the courses of action chosen by all agents.
The inter active situation specified by the set of participants, the possible courses of sction of esch
agent, and the set of all possible utility payoffs, is called & game; the agents 'playing’ a game are
called the players.

Game theory is a set of analytical tools designed to help us understand the phenomena that we
observe when dedsion-malers intersct. The basic assumptions that underlie the theory are that
decision-makers pursue well-defined exogenous objectives (they are raticnal) and take into account
their knowledge or expectations of other decision-makers’ behavior (they reason strategically).
Some of the areas of game theory that we are going to look into are:

# Multiple Decision Makers: There will be two or more decision makers, trying to make
decisions at the ssme time.

# Single stage v Multiple stage
# Zero sum v Non zero sum games: Zero-sum games are games where the amount of
“winnable goods" (or resources ) is fixed. Whatever is gained by one agent, is therefore lost

by the other agent: the sum of gained (positive) and lost (negative) is zero.
In Non-zero-sum games there is no universally scoepted solution., That is, there is no single
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optimal stratexy that is preferable to all others, nor is there a predictable outcome. Non-zero-
sim games are also non-strictly competitive, s opposed to the completely competitive zero-
sum games, because such games generally have both competitive and cooperative elements.

Players engaged in a non-zero sum conflict have some complementary interests and some
interests that are completely opposed.

# Different Information States for each player: Each player has an information set corre-
aponding to the decision nodes, which are nsed to represent situations where the player may
not have complete knowledge about everything that happens in & game. Information sets are
unigque for each player.

# Deterministic v Randomized Strategies: When the player uses a deterministic or pure
strategy, the player specifies a choice from his information set. When & player uses a mixed
strategy, he plays unpredictably in order to keep the opponent guessing,

# Cooperative v Moncooperative: A player may be inberpreted as an individusl or as &
gronp of individuals making & dedsion. Onee we define the set of players, we may distingnish
between two types of models: those in which the sets of possible petions of individual players
are primitives and those in which the sets of possible joint actions of groups of players are
primitives. Models of the first type can be referred to 85 " noncooperative™ , while those of the
second type can be referred to as "cooperative™ .

The following table summarizes some of the above mentioned features. We make the following two

assmphions:
# Players know each other's loss functionals.
# Players are rational decision makers.

# of players | # of steps | MNature 7 | Loss Functionals Example
1 1 N 1 Classical (ptimization
1 1 Y 1 Decision Theory
=1 1 N =1 Matrix Games
=1 1 Y =1 Markov Games [probabilistic)
1 =1 N 1 Optimal Contral Theory
1 =1 Y 1 Stochastic Control
=1 =1 NY e | Dynamic Game Theory
1 1 N =1 Multi-objective Optimality
=1 =1 N/Y 1 Team Theory

2 Single Stage two Player Zero Sum Games

The most elementary type of two-player zero sum games are mafriz games. The main features of
auch games are:

# There are two players Py and P2 and an (m » n) dimensional loss matric A = {a4;}.

# Enpch entry of the matrix is an outcome of the game, corresponding to & particuler pair of
decizions made by the players.



# For Py, the alternatives are the m rows of the matrix and for Pa, the alternatives are the
n columns of the matrix. These are also known as the strategies of the players and can be

expressed in the following way:

' = u
e =

-1

e Fi

# Both players play simultaneonsly.

# If P, chocses the ith row and Pz chooses the jth column, then a;; is the outecame of the game
and Py pays this amount to Po. In case @y is negative, this should be interpreted as Pz
paying ¥, the positive amount corresponding to this entry.

More formally, for each pair < [, Uf =

P has loss LI, ) and

Py has loss La( U], L-'i’-] =-L ("}, [-’f]

We can write the loss functional as simply L, where P; tries to minimize L and Py tries to
maximize L.

Example:
Suppose the loss matrix for players By and P2 is a5 below:
# of players | # of steps | MNature 7 | Loss Functionals Example
1 1 N 1 Classical (ptimization
1 1 Y 1 Decision Theory
=1 1 N =1 Matrix Games
=1 1 Y =1 Markov Games (probabilistic)
1 =1 N 1 Optimal Contral Theory
1 =1 Y 1 Stochastic Control
=1 =1 NY e | Dynamic Game Theory
1 1 N =1 Multi-objective Optimality
=1 =1 N/Y 1 Team Theory

In order to illustrate the above mentioned features of matrix games, let us consider the following
(3 » 4) matrix.

Py
13|32
Pyl |-1]2]1|
22 (01|

In this case, Py, who is the maximizer, has a unique securify strafegy, “column 3 (7° = 3), securing
him & gain-floor ¥ = 0. Py, who is the minimizer, has two security strategies, “row 27 and “row
i = 2,43 = 1) yielding himalcmcdﬁngnf?:max’ﬂg‘, = max;ay; = 2 which is above the
security lewvel of Pa.

We can express this more formally in the following notation:

Security strategy for Py = argmin max; L{L], [-’f]
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Therefore, loss-ceiling or upper value V = min, m.u;L[[-T: Uf]

Security strategy for P2 = argmaz; ming L{TT], UE]
Therefore, gain-floar or lower value V = masx ming L(I7, UE]

2.1 Regret

If Pz plays first, then he chooses column 3 as his security strategy and Pi's unique response would
be row 3, yielding an outecome of ¥V = (0. However, if Py plays first, then he is indifferent between
his two security strategies. In case he chooses row 2, Pa will respond with choosing column 2 snd
if P; chooses row 3, then Py chocses column 2, both strategies resulting in in outeome of V' = 2,
This means that when there is a definite order of play, security strategies of the player who acts
first make complete sense and they can be considered to be in equilibrinm with the corresponding
response strategies of the other player. By the two strategies being in equilibrium, it is meant that
after the game i5 over and its outeome is observed, the players should have no ground to regret
their past actions. Therefore, in & matrix game with a fixed order of play, for example, there is no
justifiable reason for & player who acts first to regret his security strategy.

In matrix games where players arrive af their decisions inde pendenily the security strategies cannot
possibly possess any sort of equilibrinm. To illustrate this, we look at the following matrix

Py
a0 -1

PO 13
1|2 |1

We assume that the players act independently and the game is to be played only once. Both
players have unique security strategies, “row 3% for Py and “column 17 for Pa, with the upper and
lower values of the game being 77 = 2 and V = 0 respectively. If hoth players play according to
their security strategies, then the outcome of the game is 1, which is midway between the security
strategies of the players. But after the game is over, both P; and P might have regrets. This
indicates that in this matrix game, the security strategies of the players cannot possibly possess
any equilibrinm property.

2.2 Saddle Points

For a class of matrix games with equal upper and lower values, a dilemma regarding regret does
not arise. If there exists a matrix game where V = ¥ = V then we say that the strategies are in
equilibrinm, since each cne is optimal against the other. The strategy pair (row x, col y), poesessing
all the favorable features is clearly the only candidate that can be considered as the equilibrium of
the matrix game.

Such equilibrinm strategies are known as saddle poinf strafegies and the matrix game in ques-
tion is said to have & saddle point in pure strafagies

There can also be multiple saddle points as shown in the following figure:



Figure 1. Saddle point
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2.3 Mixed Strategies

Another approach to obtain equilibrinm in & matrix game that does not possess a saddle point
and in which players act independently is to enlarge the strategy spaces so that the players can
base their decdsions on the outcome of the random events - this strategy is called mized sfrafegy
or randomized strafegy. Unlike the pure strategy case, here the same game is allowed to be played
over and over sgain, and the finsl onteome, sought to be minimized by Py or masximized by Ps is
determined by averaging the outcomes of the individual outcomes.

A strategy of a player can be represented by probability wectors. Suppose the strategy for By
is represented by

y:[y]:yg:...:m]T where gy >0 and gy =1
and the strategy for Py is represented by
3=[3]:3;:...:3n]T where z; >0 and > 5 =1

Let A be the loss matrix. Therefore,
Expected loss for P; is,



Eig Ei]
EllL] = Ezﬂuﬂiﬂ:
fml juml

Note: Az is the ezpecled lbsses over nafure’s choices, given Py s aclions. Az makes Py look like
nafure/probabilistic) fo P1.

Expected loss for P is,

ElLy] = -E[L4]
It turns out that we can always find a saddle poiot in the space of mixed strategies.

2.3.1 DMixed Security Strategy

A wvector 7€YY is called & mired securify sfrafegy for Py in the matrix game A, if the following
inequality holds %y @

_ i ;
Vild) = maxy™dz < maxy'dz ye¥ (1)
Here, the quantity ¥V, is kmown as the average security level of .

Anslogpously, & vector 2%62 is called s mired secwrify sfafegy for Pay in the matrix game A, if
the following inequality holds ¥z :

V,(4) = miny"ds <ming'ds =2 (2)
Here, the quantity V' is mown as the average security level of Pa.
From eq. (1), we hawve,
Vi = V ()
Similarly, from eq. (2):
V = V, (4]
Therefore, combining eq. (3) and eq. (1), we have:
VEVu V=V (5)
According to Von Neumann, V' and V,, always equal. 8o eq. () can be written as
ViV = VasV (6)
which essentially means that there always exists a saddle point for mixed strategies.
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24 Computation of Equilibria

It has been shown that a two person zero-sum matrix game always admits & saddle point equilibrinm
in mixed strategies. An important property of mixed saddle point strategies is that, for each player
there is & mixed security strategy and for esch mixed security strategy there is & corresponding
mixed saddle point strategy. Using this property, there is a possible way of obtaining the saddle
point solution of & matrix game, which can be used to determine the mixed security strategies for
each player.

Let us consider the following (2 » 2) matrix game:

ERL
ENES

Let the mixed strategies of ¥ and = be defined as follows:

P,

v = [y
z = [zl

For Py, our goal is to find the y* that optimizes 37 Az while Py is trying to do his best, Le. Py uses
anly pure strategies. Therefore, Py can be expected to play either (2, = 1,z9 =0} or (2, = 0, 23 = 1)
and under different choices of mixed strategies for Py, we can determine the average outcome of
the game as shown in Fig 3 by thebuldline: whid:fnrmatheupperm\'elnpetntheatmight]jne-a
dramn. Mow, ﬁthemuedat.mt.em(y":b;ﬁ ]mrreapnndatnthelnue—atpnmtnfthaten—
wlnpeuinptedhyl:'] thmthemeragenutmmem]lbenn greater than 3 3 This implies that the
strategy (4] = .:. B = _:'] is & mived security strategy for Py (and his ﬂ:l:ll}' one), and therehy, 1t.
is his mixed saddle point strategy. From the figure, we can see that the mixed saddle point value is 2 i

In order to find =¥, we assume the Py adopts pure strategies. Therefore for different mixed strate
gies of Py, the average outcome of the game can be determined to be the bold line, shown in Fig. 4,
which forms the lower envelope to the straight lines drawn. Since Py is the maximizer, the highest
point on this emvelope is his average security level. This he can guarantee by playing the mixed
gtratery which is also his ssddle point strateoy.

2.4.1 Solving matrix games with larger dimensions

One alternative to the graphical solution described above when the dimensions are large (ie. n=m
games) is to convert the original matrix game into a linear programming model and make use of
the powerful algorithms for linear programming in order to obtain the saddle point solutions.

This equivalency of games and LP may be surprising, since a LP problem involves just one decsion-
maker, but it should be noted that with each LP problem there is an associated problem called
the dual LP. The optimal values of the objective functions of the two LPs are equal, corresponding
to the value of the game. When solving LP by simplex-type methods, the optimal solution of the
dual problem also appears as part of the final tablean.
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Figure 2 Mixed Security strategy for Py for the matrix game
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Figure & Mixed Security strategy for Py for the matrix game

3 Non Zero Sum Games

The branch of Game Theory that better represents the dynamics of the world we live in 15 called
the theory of non-zerosum games. Non-zero-sug games differ from zero-sum games in that there



is no nniversally acrepted solution. That is, there is no single optimal strategy that is preferable
to all others, nor is there a predictable outcome. MNon-zero-sum games are also non-strictly com-
petitive, as opposed to the completely competitive zero-sum games, because such games generally
have both competitive and cooperative elements. Players engaged in a non-zero sum conflict have
some complementary interests and some interests that are completely opposed .

3.1 Nash Equilibria

A bi-matrix game is comprised of two (m » n) dimensional matrices A = {a; } and B = {&; } where
each pair of entries {a;;b;;} denote the outcome of the game corresponding to a particular pair
of decisions made by the players. DBeing s rational decision maker each player will strive for an
onteome which provides him with the lowest possible loss.

Assuming that there are no cooperations between the players and the players make their deci-
gions independently, we now try to find out & noncooperative equilibrinm solution. The notion of
saddle points in zero sum games is also relevant in non zero sum games, where the equilibrinm
solution is expected to exist if there is no incentive for any unilateral deviation for the players.
Therefore, we have the following definition:

Definition 3.1 4 pair of strafegies {row *, column 7° } 5 said fo constifude o Nash Equilibrium
if the following pair of inequalifics is salisfied for alli = 1,...mandall j = 1,...,n:

ﬂ.‘r“r 5 ﬂ.ul-
E":l’;’ = E":lf

We use a 2 player, single stage game to illustrate the features of a non zero sum game. A and B
are the two players, each of them have individual loss functions Py and Ps respectively. The loss
functions are represemted by the following two matrices:

For A:
Pa
and for B:
P2
p, | 213 |

It admits two Nash equilibria, {row 1, col 1} and {row 2, col 2}, The corresponding N ash equilibria
is (1,2) and (-1,0).

3.2 Betterness and Admissibility

The previous example shows that & bi-matrix game can admit more than one Nash equilibrinm
solution, with the equilibrinm outcomes being different in esch case. This raises the guestion
whether there is & way of choosing one equilibrinm over the other. We introduce the concepts of
betterness and admissibility as follows:



Betterness

A pair of strategies {row i1, column j }is said to be better than another pair of strategies | row iz,
column jap ifayy, < ag,y and by, < by, and if at least one of these inequalities is strict.

Admissibility
A Mash equilibrinm strategy pair is said to be admissible if there exists no better Mash equilibrinm
gtratery pair.

In the given example, {row 2 ,column 2} is the one that is admissible out of the two Nash equi-
librinm solutions, since it provides lower costs for both players. This peir of strategies can be
described ps the most reasonable noncooperative equilibrinm solution of the bi-matrix game, In
the case when a bimatrix game admits more than one admissible Mash equilibrinm the choice be-
comes more diffioult. If the two matrices are as follows:

For A:
Py
-2 1
Poaa
and for
P,
-1 1
e

there are two admissible Nash equilibrinm solutions{ row 1, column 1}, {row 2, column 2} with
the equilibrinm outecomes being (-2,-1) and [-1,-2respectively. This game can lead to regret unless
some communication and negotiation is possible.

However if the equilibrinm strategies are interchangeable then the ill-defined equilibrinm solution
pecriing from the existence of mltiple admissible Nash equilibrinm solution can be resolved. This
necessarily requires the corresponding outeomes to be the same. Sinee zero sum matrix games are
special types of hi-matrix games (in which case the equilibrinm solutions are known to be inter-
changeahble), it follows that there exista some non empty class of bi-matrix games whose equilibrinm
solutions possess such & property. More precisely :

Multiple Nash equilibria of a bimafriz game (A.B) are inferchangeable if (A, B} is strategically
equivalent fo [A,-4 ).

3.3 The Prisoner’s Dilemma

The following example shows how by using Nash's equilibrinm, the prisoners can achieve results
that yield no regrets, but how by ooperating, they could have done much better. We show the
coat of cooperation and denial of wrong doing in form of the following two matrices:

For A:

.
8|0
i



and for B

Using Mash equilibrinm, the choice is (8,8) which yields no regret for either A or B. However, if the
priscners had cooperated then they would have ended up with (2,2) which is much better for both
of them.
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