Chapter 6

Path Planning Extensions

6.1 Optimal Paths

6.1.1 Visibility Roadmap

A visibility roadmap is obtained by generating all line segments between pairs of obstacle region vertices.
Any line segment that lies entirely in the free space is added to the roadmap. Figure 6.1 shows an example.
When a path planning is given, the initial position and goal position are also treated as vertices (in other
words, they are connected to other vertices, if possible). This generates a connectivity graph that can be
searched for a solution. The naive approach to constructing this graph takes time O(n®). The sweep-line
principle can be applied to yield a more efficient algorithm.

There are two important notes about visibility roadmaps:

e The shortest-path solutions found in the roadmap will actually be the shortest-path solutions for the
original problem. In addition, the paths “touch” the obstacle region. This is not acceptable in terms
of the original problem, and the resulting paths should be modified.

e Many edges can be removed from the visibility roadmap, and optimal solutions will still be obtained.
Any edge can be removed if the following property holds: extend the edge in both direction by a small
amount. If either end “pokes” into the obstacle region, then the edge can be removed. Figure 6.1.b
shows the edges that remain after this removal of performed.

6.2 Time-Varying Problems

This section addresses a time-varying version of path planning. Although the robot is allowed to move, it
has been assumed so far that the obstacle region, O, and the goal configuration, g .. are stationary for all
time. It is now assumed that these entities may vary over time, although their motions are predictable. The
case in which unpredictable motions occur is covered in Chapter 77?.

Let T denote an interval of time, which is given by T' = [0, tf] for some final time t; > 0, or T = [0, c0).

Let ggoqi(t) denote the goal configuration at time ¢ € T. The initial configuration may be denoted as
Qinit (0).

Let O(t) denote the obstacle region at time ¢ € T'. The model can defined using time-varying primitives.
The obstacle region in the configuration space now varies with time, and is therefore written as C,ps(t). This
can be defined as

Cobs (1) = {g € C | Alg) N O(t) # 0}

A time varying obstacle region appears significantly more complicated than a stationary obstacle region;
however, it is possible to define a new space that removes the explicit dependency on the parameter, ¢.

Let a topological space, X be called the state space, defined as X = C x T. A state, x € X, represents
both a configuration and a time. Thus, x may be written as (g,t). An obstacle region can be described as a

1

2 Copyright 1999-2001 Steven M. LaValle, University of Illinois

(a) (b)

Figure 6.1: a) A visibility graph is constructed by joining obstacle region vertices; b) It is generally possible
to reduce the number of edges in the visibility roadmap.

subset of X, given by
Xovs = {z € X | A(g) N O(t) # 0}

If the primitives are expressed algebraically in terms of ¢, then it is possible to construct a semi-algebraic
representation of X,p5. A given state, z = (g,t), can be tested for inclusion in X5 by running a collision
detection algorithm for the configuration ¢ and the obstacle region at time ¢. The collision-free subset of the
state space can be written as Xyree = X \ Xops-

For a time-varying path planning problem the following components are defined:

1. A 2D or 3D world

2. A robot A

3. A configuration space C (the set of all transformations for .4)
4. A time interval, T

5. The obstacle region O(t) for all t € T

6. The initial state z;nit

7. The goal region Xgoq

It is assumed that ;n; is of the form %;nit = (qinit,0). A stationary goal configuration, gg0q:, can be specified
as

Xgoal = {(qat) eX | q= qgoal}-

The task is to compute a continuous path, 7 : [0,t] = Xf,ee such that 7(0) = zini and 7(t) € Xgoar-

Since X,ps and Cgyps are conceptually similar, it is natural to ask whether standard path planning algo-
rithms can be adapted easily to the time-varying case. There is one important distinction: a path in X must
be monotonically increasing with respect to time.

Randomized path planning methods can generally be adapted by defining an appropriate metric. Suppose
that (C, p) is a metric space. A suitable metric, p,, can be define over X as

0 Ifg=¢
pe(m, ') =< o0 Ifg#q andt' <t
p(g,q") Otherwise

6.3. MULTIPLE-ROBOT COORDINATION 3

As an example, to extend the randomized roadmap approach, the metric above would be used to select
nearest neighbors to attempt possible connection. The resulting roadmap would be a directed graph in
which edge progress through the state space by increasing time.

There has been no consideration so far of the speed at which the robot must move to avoid obstacles.
It is obviously impractical in many applications if the solution requires the robot to move arbitrarily fast.
One simple approach is to enforce a bound on the speed of the robot. For example, a constraint such as
||dg/dt|| < c for some constant ¢ can be enforced.

6.3 Multiple-Robot Coordination

Suppose that M robots, A!, A2, ..., AM operate in a common world, W. Each robot, A%, has its associated
configuration space, C*, and its initial and goal configurations, ¢;,,;; and gy, -
A state space can be defined that considers the configurations of all of the robots simultaneously,

X=C"xC%*x---xCM,

A state x € X specifies all robot configurations, and may be expressed as = = (¢*, ¢, ..., q¢™).

There are two kinds of obstacle regions in the state space: 1) robot-obstacle collisions, and 2) robot-robot
collisions. For each i from 1 to M, the subset of X that corresponds to robot A? in collision with the obstacle
region is defined as

Xops = {z € X | Al(¢) N O #0}.

For each pair, A? and A7, of robots, the subset of X that corresponds to A’ in collision with A7 is given

by
x4

obs

={z e X | A'(¢") N A () # 0}
Finally, the obstacle region in X is given by

M
Xobs = (U X;bs) U U Xz:?)s
i=1 ij, i#j

The task is to compute a continuous path, 7 : [0,1] = Xyree such that 7(0) = zini and 7(1) € Zgoar, in
which Zinit = (Ginit> Gt - - > Ginit) a0d Tgoar = (9goat> Toat - - > Tinit)-

It is straightforward to adapt general path planning methods from the standard configuration space, C,
to the state space X. One drawback of this approach is that the dimension of X can be high. For example,
of there are 7 robots which each have 6 degrees of freedom, then the dimension of X is 42. A semi-algebraic
representation of X5 can be constructed, and complete path planning techniques can be applied; however,
they are unlikely to be efficient. Randomized path planning methods offer a reasonable alternative is one is
willing to sacrifice completeness.

Another option is to take a decoupled approach to the coordination of multiple robots. Rather then
considering all interactions simultaneously, a decoupled approach plans for some robots independently, and
then considers interactions.

Prioritized planning One decoupled approach, called prioritized planning, proceeds as follows:
e Compute a path and motion for A!.
e Treat A! as a moving obstacle, and compute a path for 42.
e Treat A! and A? as moving obstacles, and compute a path for A>.
e vdots

e Treat A',..., AM~! as moving obstacles, and compute a path for AM .

Even if the path planning method used for each robot is complete, the prioritized planning method is not
complete because the motions generated in the earlier steps might prevent later robots from reaching their
goals. One can try to improve the likelihood of success by trying different orderings, but there is still no
guarantee of success.

4 Copyright 1999-2001 Steven M. LaValle, University of Illinois

Fixed-path coordination Another decoupled approach, called fized path coordination, plans all paths
independently, and then attempts to schedule the motions of the robots along their paths to avoid collisions.
Suppose M = 2. A collision-free path, 7; : [0,1] = C%_, is computed for each robot, A for i = 1,2. Define
a state space X = [0, 1] x [0, 1]. Each state z € X is of the form (s1, s2) in which s; represents a configuration
7;(s;) of A%. In other words, each s; places A! at a configuration given by its path 7;. The task is to find a
collision-free path in X from (0,0) to (1,1). A state x € X is in collision if A (71 (s1)) N A%(72(s2)) # 0.

6.4 Manipulation Planning

In all of the problems considered thus far, one primary objective has been to avoid collisions. In the case
of manipulation planning, contacts between bodies are allowed. A manipulation task usually involves using
the robot to move an object or part.

Let P denote a part, which is modeled in terms of geometric primitives, as described in Section ??. It is
assumed that P is allowed to undergo transformations, and will therefore have its own configuration space
CP.

The robot, A, will be referred to as a manipulator because it is allowed to interact with the part. Let
C™ denote the configuration space of the manipulator. It will be convenient for manipulation planning to
define a state space as X = C™ x CP, in which each state z € X is of the form = = (¢™, ¢?). As usual, states
in which the manipulator is in collision with the obstacle region should be avoided, leading to

obs = 1(¢™,4%) € X | A(g™) N O}.

States in which the part is in collision with the obstacle region should also be avoided; however, it is usually
necessary to allow contact between the part and obstacle region. Imagine, for example, placing a vase
on a table; the vase and table are required to touch. These “touching” configurations can be defined as
Clontact = 9C%,, (the boundary of Cyre). The complete set of permitted configurations for the part is then

uct The set of forbidden configurations for the part is C¥, = CP\ C? ;... This

: 4 e 4
given by C’ual'id = Cfree contact* obs valid:

results in another obstacle region in the state space, given by

X ={(g™,) e X | €Cl}

obs obs

The sets X7 and X?, = consider collisions with the obstacle region, and the remaining task is to consider
interactions between the manipulator and the part. The manipulator might be allowed to push or carry
the part. In general, the interactions could become quite complicated and even unpredictable. The obstacle
region, Xops can be formed in terms of X7, X? . and the set of states in which the manipulator and part
are in an illegal configuration.

Since the general manipulation planning problem is quite complicated, a restricted version will be defined.
Assume that the manipulator carries the part only if the part is grasped in a specified way. When it is
being carried, the part can be considered as part of the manipulator. When the part is lying in its initial
configuration, ¢} .,, it can be considered as part of the obstacle region in the world.

Assume that the manipulation problem can be solved by picking up the part once and delivering it to its
destination, qgoal. In this case, any solution path can be considered as the concatenation of two paths:

e Transit Path: The manipulator moves from its initial configuration, ¢};,, to any configuration that
enables the part to be grasped.

e Transfer Path: The manipulator carries the part to its desired goal configuration.

A state space, X = C™ x G, can be defined for the restricted problem in which G = {0,1}. States in
which g = 0 for g € G indicate the transit mode, in which the part is in its initial configuration, and is treated
as an obstacle. States in which g = 1 indicate the transfer mode, in which the part is being carried, and is
treated as part of the manipulator. The manipulation planning task can now be formulated as computing a
path, 7 : [0,1] & Xyree, in which

e 7(0) is the initial state x;p

6.4. MANIPULATION PLANNING 5

e 7(1) is a state of the form (¢™,q%,,,)-
® Xyree is the set of allowable states.

A variety of path planning algorithms can be adapted to solve this problem. For example, the randomized
roadmap or rapidly-exploring random trees can be easily adapted.

Copyright 1999-2001 Steven M. LaValle, University of Illinois

Bibliography

