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Fig. 1. a) Our vehicle of study is a $4 weasel ball; b) it consists entirely of
a battery and slowly oscillating motor mounted to a plastic shell.

Abstract—There is substantial interest in controlling a group
of bodies from specifications of tasks given in a high-level,
human-like language. This paper proposes a methodology that
creates low-level hybrid controllers that guarantee that a group
of bodies execute a high-level specified task without dynamical
system modeling, precise state estimation or state feedback. We
do this by exploiting the wild motions of very simple bodies in an
environment connected by gates which serve as the system inputs,
as opposed to motors on the bodies. We present experiments using
inexpensive hardware demonstrating the practical feasibility of
our approach to solving tasks such as navigation, patrolling, and
coverage.

I. I NTRODUCTION

A fundamental challenge in robotics is the construction of
robot control strategies from specifications of tasks givenin a
high-level language. Ideally, we would like to describe tasks
such as navigation, patrolling, coverage, and herding, andhave
them autonomously executed by a team of robots [2]. The
low level details of the plan should be hidden. Furthermore,
new plans must be efficiently constructed and guaranteed to
be correct.

We propose an unusual paradigm as a thought-provoking
step toward meeting this challenge. A common approach to
many problems is to carefully design an autonomous vehicle,
which involves steps such as system modeling and identifica-
tion, implementing stable controllers, and installing sufficient
sensing to ensure state feedback. In contrast, we propose to
start with a “wildly behaving” body for which its precise

equations of motion are unknown, it is far from stable, and has
little or no sensing capabilities. Our main “vehicle” of study
will be a $4 weasel ball (see Figure 1, which has no sensors,
no computation, and one motor, which oscillates constantlyat
about2Hz.

Although used throughout the experiments in this paper,
the particular choice of body is not critical. We instead care
only about its high-level motion properties. We informally
consider a body to bewild if when placed into a bounded
region r ⊂ R

2, it moves along a trajectory that strikes every
open interval along the boundary ofr infinitely often. By
strike, we mean that the body contacts the boundary with
a non-tangential velocity. A well-studied family of systems
that have this property is calleddynamical billiards [35]
(imagine a billiard ball that bounces off of the table sides
forever). A strong system property that arises in that work
and achieves our required wild behavior isergodicity.1 The
idea of exploiting wild motions in robotics is reminiscent of
the randomization work by Erdmann [11] and designing robot
systems with ergodic dynamics by Shell et al. [33].

How do we control such systems? We are first inspired by
the power of abstraction used in hybrid systems [6], [16], [18].
Following this, we are inspired by the family of work that
converts high-level specifications into low-level controllaws
for the hybrid system [21], [30], [36]. In particular, our work
uses the Linear Temporal Logic (LTL) framework that has
been developed in several recent works [3], [13], [14], [17],
[22], [23], [24], [25], [26], [27], [28], [34], [37].

Although we borrow the overall LTL framework, our
method of control substantially differs. Whereas it is common
in LTL implementations to derive state-feedback control laws
within continuous regions [17], [22], [28], [34], we simply
let our “vehicle” behave wildly. To control a wild body,
we designgates that appear only along region boundaries
and connect to other regions. When a body strikes a gate,
the gate will induce our planned behavior, which might be
to remain in the region or transition to another region. In

1In this context, ergodicity does not necessarily have anything to do with
probabilities, as in the more commonly seen case of Markov chains.



this sense, we “gently guide” the body. This differs from
previous LTL implementations because we do not require
system identification, state feedback, or a state-feedbackcon-
trol law. Our approach instead draws inspiration from several
areas, includingnonprehensile manipulation[12], [19], [31]
and vibrating plates [5], [32]. Even more closely related are
designing virtual fences to control herds of cows [7] and
designing fire evacuation strategies to safely “herd” humans
out of a burning building [8].

Our approach consists of four steps. First, we propose
discrete abstractions for the motion of one or more wild
bodies. Second, we use a temporal logic to give descriptions
of tasks. Third, we translate the temporal logic specification
into a discrete plan. Finally, this discrete plan is converted into
a policy that is executed in our setup involving simple gates
and bodies.

The paper is organized as follows. Section II presents some
preliminary concepts, including the interaction between the
wild body, the gates, and the regions. Sections III and IV
present our approach for the cases of a single and multiple
bodies, respectively. Section V presents experiments and Sec-
tion VI concludes the paper.

II. T HE OVERALL DESIGN

Regions and gates

Consider a planar workspaceE ⊂ R
2 that is partitioned

into an obstacle setO and a finite set of bounded cells with
connected open interior, each of which is either aregion
or a gate; Figure 2 shows a simple example. The following
conditions are imposed: 1) No region shares a boundary with
any other region, 2) No gate shares a boundary with any other
gate; 3) Every region shares a boundary with at least one gate;
4) If a gate and a region share a boundary, then the boundary
is a connected interval (rather than being a point or being
disconnected). LetR denote the set of all regions andG denote
the set of all gates. The union of allr ∈ R, all g ∈ G, andO
yieldsE.
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Fig. 2. An example arrangement of five regions and four gates.

Wild bodies

We now place abody b into the workspace. The body is
assumed to be “small” with respect to the sizes of regions,
gates, and their shared boundaries. It is therefore modeled
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Fig. 3. a) A bipartite graph representation of the arrangement of regions
and gates from Figure 2. b) A flow graph that corresponds to oneparticular
composite mode. Each gate mode allows alternative possible flowdirections
between every pair of regions that are adjacent to the gate.

geometrically as a point even though it may have complicated
kinematics and dynamics. We assume that the body moves
in a wild, uncontrollable way, but the trajectory satisfies the
following high-level property: For any regionr ∈ R, it
is assumed thatb moves on a trajectory that causes it to
repeatedly strike every open interval in∂r (the boundary ofr),
with non-zero, non-tangential velocities. We can now imagine
that the body travels on a path through the bipartite graph
shown in Figure 3(a), with transitions occurring only if specific
gates allow it.

Guiding body flow with multimodal gates

Every gateg ∈ G has an associated finite set ofmodes
M(g). At any moment in time, every gateg ∈ G is in
some current modem ∈ M(g). Let k be the total number
of gates. LetM denote the composite mode space, obtained
as thek-fold Cartesian product ofM(g) for every g ∈ G.
The composite mode(m1, . . . ,mk) ∈ M specifies the mode
of every gate and can be considered as a discrete component
of a hybrid system. The continuous component is provided by
the body configuration or statex ∈ X. If there are multiple
bodies, then the continuous component is the Cartesian product
of all body state spaces. Thus, a hybrid system model can be
obtained in whichZ = M ×X is the hybrid state space, and
transition laws govern the mode and continuous state changes.

If a body strikes a gateg, then it is either blocked or
allowed to pass, depending on the current modem ∈ M(g).
Furthermore, amode transition equationspecifies the next
modem′ for g, depending onm and the regionr from which
the striking body entered.

The behavior of the modes and their influence on a body can
be nicely interpreted in terms of the bipartite graph shown in
Figure 3(a). LetN(g) denote the vertices adjacent tog. For
each ordered pair(r, r′), such thatr, r′ ∈ N(g), the mode
m ∈ M(g) could allow one of four behaviors:

1) Block all passage betweenr andr′

2) Allow passage only fromr to r′

3) Allow passage only fromr′ to r

4) Allow bidirectional passage betweenr′ andr

For each composite mode, we obtain a directedflow graph
(see Figure 3(b)), in which the set of vertices isR and there is
a directed edge fromr to r′ only if the mode allows passage
from r to r′. Since the flow graph may have multiple out edges



per vertex, nondeterminism is allowed by the model; however,
the policies developed in this paper will be deterministic.

Specifying tasks in LTL

We want to specify tasks in some high-level way, possibly
starting from structured English or some simple logic. We
chose Linear Temporal Logic (LTL) due to its increasing
popularity and available toolkits; see [10]. The syntax includes
a set Π of propositions, propositional logic symbols, and
some temporal operators. Formulas are constructed from atoms
π ∈ Π using the grammar

φ ::= π | ¬φ | (φ ∨ φ) | © φ | φUφ,

in which U meansuntil and© meansnext. Other operators
and connectives can be derived from the grammar:conjunction
(∧), implication (⇒), equivalence(⇔), eventually(♦), and
always(�). For examples, suppose thatπi means that a robot
is in ri. Common task specifications are [26]:

• Navigation:♦π1

• Sequencing:♦(π1 ∧ ♦(π2 ∧ ♦(π3 ∧ · · · ♦πk) · · · )
• Coverage:♦π1 ∧ ♦π2 ∧ · · · ♦πk

• Avoiding regions:¬(π1 ∨ π2 · · · ∨ πk)Uπfinal

• Patrolling:�(♦π1 ∧ ♦π2 ∧ . . .♦πk).

An information-feedback plan

A plan or control law can generally be expressed as an
information-feedback mappingπ : I → M , in which M is
the composite mode space andI is an information spacethat
takes into account actuation histories and sensor observation
histories (see Chapter 11 of [29]). Recall that for each compos-
ite mode, there is a corresponding flow graph. We can therefore
imagineπ as specifying a dynamic flow graph, which changes
its flow as new information becomes available.

There are many possible choices forI, depending on the
kind of sensors and filters that are developed. We prefer to take
a minimalist approach and use the weakest sensors and filters
that can nevertheless accomplish the task. Therefore, we avoid
the case in whichI = Z = M ×X, which would imply that
state estimation is available and perfect state feedback can be
performed. In coming sections, we will considertime feedback,
for which I = T = [0, t], an interval of time. We will also use
simple sensors that detect whether a body has passed in or out
of a gate. IfY represents the set of all sensor outputs, then
we will developsensor feedbackplans of the formπ : Y →
M . In Section IV, a more complicated information space will
appear, in which a filter keeps track of the number of bodies
per region. This information will be used as feedback to define
π.

III. C ONTROLLING ONE WILD BODY

In this section a method for generating controllers for a
single wild body is introduced. First, we present a discrete
transition system that represents a time abstraction of the
system, and allows a transformation of the problem from
a continuous to a discrete domain. Second, we generate a
discrete plan that satisfies a given formula in LTL. Finally,we

show how to execute discrete plans using gates and limited
sensing.

Discrete abstraction of motion

Given the setR of n regions in the environment, we define
a set of Boolean propositionsΠ = {π1, π2, ..., πn}. The
propositionπi is true if and only if the body is inri.

Note that only oneπi can beTrue at any time. Our goal is
to construct a plan so that the resulting body trajectory satisfies
whatever LTL formulaφ is given over the set of propositions
Π.

When a body strikes a gate, it will experience an immediate
transition to a region, according to our model. This corre-
sponds to a discontinuous state jump through each gate area
(recall Figure 2(b)). We could alternatively model continuous
motions through gates; however, this is avoided in favor of
simplicity and is not needed because we define propositions
only over the regions. Let̃x : [0, t] → X (recall the hybrid
system state spaceZ = M ×X) denote the bodytrajectory.

We now define a discrete transition systemD1 that simulates
the original hybrid system. Let the state space of the discrete
system beQ = M ×R (recall thatM is the composite mode
space andR is the set of regions). The transition system is
defined as

D1 = (Q, q0,→1), (1)

in which q0 = (m0, r0) yields the initial composite modem0

and regionr0. The transition relationq →1 q′ is true if and
only if, for q = (m, r) and q′ = (m′, r′), whenever the body
is in r and the composite mode ism, then it can strike a gate
to arrive inr′ and the composite mode changes tom′.

It is straightforward to show thatD1 is a simulation of the
original hybrid system. Therefore, we can design a solution
plan overD1, thereby inducing the correct behavior of the
original hybrid system. This is the standard approach to hybrid
system control using a discrete abstraction [1], [23]. We
can then apply standard model checking software, such as
NuSMV [9] or SPIN [20] to find a trajectorỹq = (q0, q1, . . .)
for D1 that satisfies the formulãq |= φ for a given LTL
formula φ. The packages are quite fast in practice and have
been used extensively for this purpose. The resulting trajectory
q̃ could be finite or infinitely long (but expressed finitely).

To implement the plan on the original hybrid system,
simple binary sensing is used to detect whether the body has
transitioned through the gate so that the system can keep track
of the region that currently contains the body. In this way,
every transition fromqi to qi+1 in q̃ can be enforced.

A simple example

We will illustrate the ideas presented in this section with
an environment that will be used for our experiments (Section
V). In Figure 4, there are five regionsR = {r0, r1, r2, r3, r4}
and five gatesG = {a, b, c, d, e, f}, shown in blue.

We request the body to visit the regionsr2, r1, r0, r4 in that
order. This is encoded in LTL asφ = ♦(π2 ∧♦(π1 ∧♦(π0 ∧



Fig. 4. An example of an arrangement of five regions and five gates.

♦π4))).2

Running a model checker produces a sequence that sets the
gate modes as follows:

1) Set gatec to allow passage fromr2 to r1.
2) Set gateb to allow passage fromr1 to r0.
3) Set gatea to allow passage fromr0 to r4.

After each step, a sensor can be used to ensure that the body
has passed the gate and transition to the next stage occurs.
This example is actually so simple that the gate modes can be
all set in advance and remain static during execution. This will
occur for any trajectorỹq that does not revisit any regions. In
this case, the gates can be made from pieces of paper, as shown
in Figure 4 and no sensing is even needed. More complicated
examples, which require sensing and the greater expressive
power of LTL are given in Section V.

IV. CONTROLLING MULTIPLE WILD BODIES

This section builds on the concepts of the previous sections
and extends them to multiple wild bodies. We will achieve
control of the bodies without assume any communication or
coordination between the bodies or any central source. This
is quite unusual for the control of multi-robot systems. We
allow bodies to collide with each other, thereby eliminating
collision avoidance overhead in terms of sensing and control.
We do, however, assume that the bodies remain sufficient wild
so that the region boundary is struck by at least one of them in
finite time. Our experimental observations are that the wildness
properties actually improve as more bodies are placed in the
environment. Gates are struck more quickly and frequently.

Discrete abstraction for multiple bodies

Suppose thatn identical, indistinguishable bodies are placed
into the environment. The only information relevant for tasks
will be the number of bodies per region at any instant. Once
again, we will not care about the precise location of bodies
with each region. Furthermore, bodies are interchangeabledue
to their indistinguishability.

Consider defining a discrete transition system

Dn = (Qn, q0,→n). (2)

2Note this is nonstandard because ourπi represents the subset ofQ that
includesq = (m, ri) for all m ∈ M . By contrast, in [26],πi corresponds
to a singleton subset ofQ because there are no gate modes.

Let Qn = M × C, in which M is once again the space
of composite modes. We wantC to correspond to set of
possible body positions, recording only which region they
are in. If the bodies were distinguishable, thenC would
be an n-fold Cartesian product ofR, the set of regions.
However, due to indistinguishability,C is defined as the set
of all m dimensional vectorsc = (c1, . . . , cj) for which each
ci ∈ N∪{0} andc1+· · ·+cn = j andj = |R|. In other words,
c ∈ C encodes the number of bodies occupying each of the
regions. The size ofC is

(

j+n−1
n

)

, which from combinatorics
is the number of ways to placen balls (bodies) intoj boxes or
urns (regions). Eachc ∈ C will be referred to as adistribution
of balls.

In (2), q0 = (m0, c0), in which m0 is the initial composite
mode andc0 is the initial body distribution. The transition
relation q →n q′ is true if and only if, forq = (m, c) and
q′ = (m′, c′), whenever the body distribution isc and the
composite mode ism, then when a body strikes a gate, the
distribution changes toc′ and the composite mode changes to
m′.

Following by analogy to Section III, we have proved that
Dn is a simulation of the original hybrid system ofn bodies
moving among regions and gates. It is assumed that the initial
distribution of bodies is given. To express multi-body tasks
in LTL, we define the setΠ of propositions to correspond
to every possible distribution inC. An LTL formula φ can
then be defined to express any task that involves distributions
of bodies across the regions. Furthermore, standard model
checking software is once again applied to produce a trajectory
q̃ = (q0, q1, . . . , qk) for Dn that satisfies̃q |= φ. The trajectory
is implemented by once again using simple binary sensors near
the gates to ensure that each transition has occurred before
changing the gate modes. A sequence of body distributions is
obtained in practice that satisfies the desired LTL formula.

A simple example

Figure 5(a) shows an example that has three regionsR =
{r1, r2, r3} and three gatesG = {a, b, c}. Suppose that
each gate allows the bodies to transition in either direction,
depending on its mode. The discrete transition systemD2 is
given by (2) forn = 2. Any trajectoryq̃ for D2 corresponds
to a walk through the graph shown in Figure 5(b). The gate
that is crossed by a body is labeled on each edge.

Consider the following task. Suppose that both bodies
are initially in r1, as shown in Figure 5(a). The task is to
bring them tor3, then r2, and then return tor1. Suppose
that propositionsπi means that both bodies are inri. The
corresponding LTL formula is

♦(π1 ∧ ♦(π3 ∧ ♦(π2 ∧ ♦π1))). (3)

A possible solution trajectory forD2 is depicted in Figure 6
as a sequence of body distributions for which transitions are
caused by setting gate directions.

V. EXPERIMENTS

We performed several experiments on low-cost hardware to
illustrate the methodology and to show its practical feasibility.
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Fig. 5. a) An example with three regions, three gates, and two bodies; b) a
graph that for which the vertices areC, the set of possible distributions, and
the edges correspond to possible transitions.
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Fig. 6. An example trajectory that satisfies the LTL formula given in (3). A
sequence(c0, . . . , c6) of distributions is visited.

The printed frames in this section do not do justice to the
execution of the system. Full videos appear at

http://msl.cs.uiuc.edu/rss11/

The hardware

Recall from Figure 1 in Section I that we implement the
wild bodies using weasel balls. Each one costs around $4 US
and consists of a plastic ball of radius8.5cm that has only
a single offset motor inside that oscillates at about2Hz We
performed hundreds of experiments that consisted of placing
one or more balls into regions and observing their motions.
Without fail, they are easily able to strike our gates, which
will be explained shortly. Therefore, we believe that they are
sufficiently wild and therefore suitable for our experiments.

Now consider the design of gates. Various kinds are in-
troduced in [4]. As mentioned at the end of Section III, some
tasks do not require changing the gate mode during execution.
For these cases, we can implement astatic gate[4], which
allows one-way motion from region to region and is fixed in
advance.

A simple way to engineer a successful static gate is illus-
trated in Figure 7(a). A body moving from the bottom region
to the top region can pass through the right side by bending
the paper; a body moving in the other direction is blocked.

(a) (b)

Fig. 7. a) A static, directional gate can be implemented making aflexible
“door” from a stack of paper; in this case, the body can transition only from
the bottom region to the top; b) this works much like a “doggie door”.

(a) (b) (c)

Fig. 8. The three gate configurations: a) the gate allows a body to cross in
the left to right direction, b) the gate prevents bodies fromcrossing in either
direction, and c) the gate allows an body to cross in the rightto left direction.

This simple setup proved to be reliable in implementing the
directional gate in some of our experiments.

For many experiments involving translating LTL formulas
into low level controllers, static gates are insufficient. In these
cases, we need be able to control the gate modes externally
during execution based on sensor feedback. We will call this
a controllable gate.

Our controllable gate is made from a piece of acrylic in
the form of aramp. By tilting the ramp, the direction of the
gate is altered, and we can obtain three gate configurations to
execute the gate actions, as seen in Figure 8.

The acrylic ramp element is attached to Futaba S3003 servo
motors using standard servo horns. Servo motors were chosen
for this application because they are inexpensive (around $8
US each) and allow precise control of output angle by the
use of negative feedback. Additionally, the only control input
required is a Pulse-Width Modulation (PWM) signal, which is
easily generated by most microcontrollers.

Now consider the simple sensor feedback mentioned in the
previous sections. Body crossing feedback is achieved through
the use of optical emitter-detector pairs. Laser pointers were
chosen because they are inexpensive (about $3 US each) and
easily aimed. The laser pointers were modified to run on
external battery packs and held in place by simple armature
mounts (about $3 US each). Simple photodiodes (about $2 US
each) were mounted on the opposite side to detect the laser
beams.

A change in voltage is observed when a body crosses
the beam, thereby blocking the laser beam from reaching
the photodetector. As can be seen in Figure 9, the laser
beam/photodetector pairs are placed so that only an body
which has just crossed a gate causes a beam crossing.

As previously mentioned, the ramp-type gates are imple-



(a) (b)

Fig. 9. a) A ball that has just crossed the gate interrupts thelaser beam,
while b) a body simply moving within a region does not interruptthe laser
beam.

(a) (b)

(c) (d)

Fig. 10. “Starting inr2, go to r4”: a) The weasel ball is placed initially in
r4 (leftmost); b) after30 seconds strikes gated and entersr3; c) after105
seconds it strikes gatee and d) moves intor4, which completes the task.

mented using servo motors. The angular position of these
servo motors is determined by the duty cycle of the PWM
signal they receive. For this purpose, we used an Arduino
Mega microcontroller board based on the Atmel ATmega1280
microcontroller. This platform was chosen as it is easy to con-
figure and inexpensive (about $35 US), Additionally, Arduino
documentation and code examples are plentiful.

Single body experiments

We show several experiments for a single weasel ball.
We chose typical tasks specified using LTL, as mentioned
in Section II and [26]. Even though all experiments can be
easily implemented using controllable gates, we use static
gates whenever possible to show the simplest implementation.

We implemented the navigation approach for a weasel ball
in an environment of approximately2 by 3 meters and five
gates; see Figure 10. For the region and gate names, recall
Figure 4. The specification of the task that we would like
to achieve is: “Starting inr2, go to r4”. An LTL formula
that captures this specification is♦π4. We entered the discrete
transition system and the LTL specification using the model
checker NuSMV [9]. The output region sequence implies that
gatesd and e are enabled to allow transitions fromr2 to r3
and from r3 to r4. The experimental execution is shown in
Figure 10.

(a) (b)

(c) (d)

Fig. 11. “Patrol regionsr0, r3 and r1”: a) The ball starts its route; b)
after107 seconds it has entered two new regions; c) after212 seconds it has
visited most regions; d) after225 seconds, it completes a tour of all regions,
and continues.

(a) (b)

(c) (d)

Fig. 12. A coverage task: a) The body crosses into the upper-left region;
b) after15 seconds, the body crosses into the lower-right region, completing
the coverage; c) after50 seconds, the body crosses into the upper-left region
on the return trip; d) after240 seconds, the body returns to the upper-right
region.

We also created an experiment to demonstrate patrolling.
We defined the LTL formula

�(♦π0 ∧ ♦π3 ∧ ♦π1), (4)

and an infinite trajectory was found by the model checker. A
gate configuration that implements the sequence is shown in
Figure 11 along with part of the actual execution. The ball
visits attemps to visit the required regions infinitely often (in
reality, its battery dies).

The next example uses controllable gates to implement
sequencing. See Figure 12. Suppose that we want to visit
regions in the following order:r0 (upper right),r1 (upper left),
r2 (lower left), r3 (lower right), r2, r1, r0.

The LTL formula to achieve this is

♦(π0∧♦(π1∧♦(π2∧♦(π3∧♦(π2∧♦(π1∧♦π0)))))). (5)

The experiment for this example appears in Figure 12.



(a) (b)

(c) (d)

Fig. 13. Navigation with multiple balls: a) Four weasel ballsare started in
the left-most region; b) after48 seconds some progress is made; c) after262
seconds, all but one ball have arrived at the destination; after 270 seconds,
all four balls have arrived.

Fig. 14. In this experiment,50 weaselballs were successfully manipulated
from a source region into a destination region.

Multiple bodies

The controllable gate setup shown in Figures 8 and 9 is
sufficient to implement any sequence of body distributions
produced by a model checker. In cases, however, for which
a cheaper setup of static gates suffices to satisfy the LTL
formula, we implemented that instead. We solved a navigation
task with 4 bodies using the specification: “Move all four
bodies fromr4 (leftmost) tor2 (rightmost)”; see Figure 13. In
LTL this is encoded as♦�π(0,0,4,0,0), in which we denoted
by π(r1,r2,...,rn) the proposition associated with the distribution
(r1, r2, . . . , rn). This proposition is true if and only if there
are exactlyri bodies inri for every i ∈ {1, . . . , n}.

In another experiment, shown in Figure 14, we moved50
weasel balls from from a starting to a goal region, in an
environment with6 regions and6 gates. The regions are
complicated shapes, some with interior obstacles, and the gates
are narrow. It took around40 minutes for all50 balls to arrive
in the goal due in part to a long tail distribution on arrivals.

Using the controllbable gates, we implemented more com-
plicated tasks, such as: “Starting with all four bodies in
r0 (upper-right), cover all four regions simultaneously and

(a) (b)

(c) (d)

Fig. 15. A group splitting and coverage example: a) The 4 bodies begin
together in the upper-right region; b) after 37 seconds the bodies begin to split;
c) after 45 seconds bodies have split completely into independent regions; d)
after 240 seconds bodies reconvene in the lower-left region.

then meet again inr3 (lower-right)”. This is expressed as
♦(π(1,1,1,1) ∧♦π(0,0,0,4)). See Figure 15 for the implementa-
tion.

VI. CONCLUSIONS ANDFUTURE WORK

We have presented a methodology to translate Linear Tem-
poral Logic formulas to low level controllers for simple bodies
that achieve tasks such as navigation, patrolling, and coverage.
A unique aspect of our approach is that the bodies behave
wildly and cannot be directly controlled. The desired behavior
is induced through the use of controllable gates that gently
guide them from region to region. This avoids many traditional
issues such as heavy sensing, state estimation, state feedback,
system identification, communication, and coordination. The
system was implemented using low-cost, widely available
hardware and dozens of experiments were performed.

One direction for future research, which we have already
begun to explore is the use of other platforms for implementing
our methodology. We have performed some experiments in
which the vibrating Hexbug Nano toy was controlled from
region to region using simple directional gates. We have also
developed a small differential drive robot for about $30 US
that moves straight, contacts a boundary, rotates a random
amount, and then moves straight again. This behavior again
seems sufficiently wild to yield the desired performance. An
important direction of future research is to analyze the time
it takes to enter the gate for various motion models, region
shapes, and gate widths. Can objective criteria be formulated
for the motion and then optimized through a simple motion
strategy for the body? Furthermore, statistical analysis might
enable us to predict the expected time to completion for a task,
which is currently a weakness of our approach.

To achieve more useful tasks, we envision enhancing the
bodies with limited amounts of sensing, controllable actua-
tion, and computation. As a step in this direction, we have
equipped one weasel ball with a small Wi-Fi module and
microcontroller, allowing it to use Wi-Fi connections while



wilding moving around. This enables more interesting tasks
to be performed, such as Wi-Fi SLAM [15]. We imagine that
a collection of wild bodies would be useful for exploration
and mapping if equipped with appropriate sensors for this
purpose. As another task, we could equip each body with an
Annoy-a-tron circuit board, which costs $13 US and emits a
loud, piercing sound at irregular intervals, without warning.
We could program the bodies to diffuse in a hostile indoor
environment and then switch into an “annoy” mode during
which the building inhabitants are constantly distracted by tiny
devices stationed in unknown locations.

We are also considering other gate and sensor designs.
Several gate varieties are shown in [4], includingpliant gates
with change their mode using only the energy from the ball.
Very interesting behaviors can be prescribed in this way
(imagine a compliant revolving door). Furthermore, there are
many ways to make “virtual” gates, much in the same way that
artificial walls can be set up when using the popular Roomba
vacuum. We have performed some early experiments in which
an iRobot Create equipped with a cheap color sensor can move
over colored tape on the floor, deciding whether to “bounce”
from the tape or pass through it, depending on the mode. The
tape and color sensor simulate the gate.
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