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Abstract— Although sampling-based planning algorithms
have been extensively used to approximately solve motion
planning problems with differential constraints, gaps usually
appear in their solution trajectories due to various factors.
Higher precision may be requested, but as we show in this
paper, this dramatically increases the computational cost. In
practice, this could mean that a solution will not be found in
a reasonable amount of time. In this paper, we substantially
improve the performance of an RRT-based algorithm by
planning low precision solutions, and then refining their
quality by employing a recent gap reduction technique that
exploits group symmetries of the system to avoid costly
numerical integrations. This technique also allows PRMs to
be extended to problems with differential constraints, even
when no high-quality steering method exists.

I. INTRODUCTION

Motion planning problems with differential constraints
include both kinodynamic motion planning and nonholo-
nomic motion planning problems, in which constraints
exist for both the configuration and its time derivatives.
The final objective is to design an open-loop piecewise
continuous control history which will safely drive the robot
system from an initial state to a goal state. A challenging
example is shown in Fig. 1, in which a control history
is designed to maneuver a spacecraft close to a large
space structure, after the failure of some of the on-board
thrusters. Because of pointing constraints on the com-
munication antenna, on-board telescope and star tracker,
the spacecraft is under restrictive constraints both on its
position and its attitude. There exists strong evidence [6],
[7], [8] that motion planning with differential constraints is
intractable. Therefore, many sampling-based methods have
been designed. This includes incremental search algorithms
(ISAs) (e.g., RRTs [27]) and roadmap methods (e.g., PRMs
[38]).

One approach is to first find a path using a holonomic
planner, and then time-parameterize the path and design
the control [4], [17], [28], [39]. Because the dynamics are
ignored in the first step, the returned path might not be
executable or efficient. Another approach is an incremental
search algorithm (ISA). Since dynamics constraints are
considered in the planning process, the returned solu-
tions are guaranteed to be executable [1], [3], [5], [12],
[13], [14], [15], [20], [26], [29], [36], [30], [34]. The

Fig. 1. This extremely challenging problem requires trajectory design for
a crippled spacecraft that has complicated orientation constraints (details
are in Section VI) and must drift among obstacles.

majority of robot systems involve continuous time and
inputs; therefore, most ISAs first discretize the space of
piecewise continuous control histories into a finite subset,
which decreases the problem complexity. A directed search
graph is incrementally built, which corresponds to family
of partial solution trajectories. Initially, there are a small
number of nodes. In each iteration, a node in the graph
is chosen and extended to generate new nodes and edges.
If a path in the graph that connects the initial state and a
goal state exists, a solution is returned. PRMs have also
been used for systems with differential constraints [38],
[40] when an analytical steering method is available.

One common problem with ISAs and other sampling-
based planning algorithms is that there exist gaps in their
solutions since the solution control history might not
exactly drive the system between two given states. One
main reason is the input space discretization. Under the
discretization, some systems are not small-time locally
controllable (STLC): the sets of reachable states have the
structure of a lattice, which prevents the exact matching
of the trajectory endpoint with the goal state in a finite
number of steps. In cases in which the set of reachable
states is everywhere dense [31], or even continuous [14],



it is possible in principle to add a sequence of controls
to move the final point arbitrarily close to the end goal,
but this is done at the expense of the efficiency of the
trajectory.

Gaps greatly degrade the quality of the solutions, es-
pecially when a gap appears far from the end because a
small offset early in the trajectory might greatly change
the final state after integration. Many ISAs can quickly
return low precision solutions with big gaps. However,
finding high precision solutions with small gaps usually
increases the running time dramatically. Sometimes, if the
set of reachable states has a lattice structure under a control
space discretization, a solution will not be returned by an
ISA if the distance between nearest reachable states to any
goal state is larger than the given tolerance. In this case, a
higher resolution discretization of the control space might
be necessary, which also causes longer running time.

If a separate algorithm could efficiently reduce gaps,
then ISAs can find high precision solutions faster by
first finding low precision solutions and converting them
into high precision solutions. One way to reduce gaps
is to use steering algorithms [5], [33], [23], [25], [37].
Steering methods are only available for few classes of
systems, such as kinematically controllable systems [5]
and differentially flat systems [37]. Furthermore, obstacle
constraints are difficult to incorporate explicitly in steering
methods. Another problem in our context is that the cost of
the resulting trajectories might be dramatically increased at
the gaps. Instead of steering to eliminate gaps in a control
history, we have developed a method [9] that exploits
geometric properties of dynamical systems to reduce gaps
by efficiently perturbing the control history. Besides our
work, avoiding obstacles by optimizing computed paths for
nonholonomic systems is presented in [24]. In this paper,
we design new planners by combining an RC-RRT [10]
with the gap reduction method, and use the new planner
to solve several challenging motion planning problems
with differential constraints. Also, we show how the gap
reduction idea can be used to construct a PRM [19] when
a steering method is not available.

II. THE DISCRETIZED MOTION PLANNING PROBLEM

In this section, we first define the original motion
planning problem we wish to solve, and then define a
discretized version, used for sampling based planners.

Motion planning with differential constraints: A mo-
tion planning problem with differential constraints, denoted
as P , is a tuple, (X, ρ,D, xinit, Xgoal,U , f). The state
space, X, is a compact differentiable manifold of dimen-
sion n with a metric function ρ. The constraint function
D is a map from X to R and D(x) ≤ 0 means that the
state x ∈ X is violation free. The initial state is xinit, and
the set of goal states is Xgoal. The input space U ⊂ R

m

is compact, and m ≤ n. The dynamics of the system,
assumed to be time-invariant, are described by a set of
Ordinary Differential Equations (ODE) of the form

ẋ(t) = f(x(t), u(t)), (1)

in which x(t) ∈ X, u(t) ∈ U , and ẋ(t) denotes the time
derivatives of the state.

Consider a piecewise continuous open-loop control his-
tory π : [0, tf ) → U . Let Φπ : X × [0, tf ) → X denote
the state transition map for (1) under the action of π, i.e.,
Φπ(x0, t), with t ∈ [0, tf ), is the solution of the initial
condition problem ẋ(t) = f(x(t), π(t)), with x(0) = x0.
Clearly, Φπ(x0, 0) = x0.

Discretized motion planning problems: Most sam-
pling based planners restrict the search for a solution to
the motion planning problem by discretizing time and the
control inputs. In other words, given a sampling interval
∆t, and a finite set Ũ ⊂ U , solutions are parameterized by
a finite array of control values π̃ = (π̃0, . . . , π̃k−1) ∈ Ũk,
for some k ∈ N, in the sense that π(t) = π̃bt/∆tc. This
transforms P into a discretized motion planning problem
P̃ = (X, ρ,D, xinit, Xgoal, Ũ ,∆t, f).

We say that the policy π is an exact solution to P if
the following conditions are satisfied: 1) D(Φπ(xinit, t)) ≤
0,∀t ∈ [0, tf ), and 2) ∃tgoal ∈ [0, tf ) : Φπ(xinit, tgoal) ∈
Xgoal. Since (finite-length) exact solutions do not exist
in general for the discretized problem, approximate so-
lutions must be considered in that case. We say that the
control policy π—or its discrete parameterization π̃—is
a solution with tolerance επ if: 1) D(Φπ(xinit, t)) ≤
0,∀t ∈ [0, tf ), and 2) ∃tgoal ∈ [0, tf ), xgoal ∈ Xgoal :
ρ(Φπ(xinit, tgoal), xgoal) < επ . In the remainder of the
paper, we will often use the shorthand notation Φt

π(x0) :=
Φπ(x0, t).

III. SAMPLING-BASED PLANNERS AND SOLUTION

GAPS

We will first analyze the ISAs to see how gaps are gen-
erated. Then gaps in roadmap based planners are discussed.

Incremental search algorithms: The general form of
ISAs is shown in Fig. 2. An ISA will take P̃ and εs as
parameters and iteratively build a search graph for the
solution, in which εs is the gap tolerance. To obtain a
solution with tolerance επ , εs is normally much smaller
than επ (A quantitative relationship between εs and επ is
conservatively estimated in [10]). The search graph is a
directed graph G〈N,E〉, in which each node n in N is
associated with a state x(n) ∈ X , and each edge e ∈ E is
associated with an input u(e) ∈ Ũ .

In Line 1, the search graph G is initialized with any
starting states. In a single-directional search method, G
initially contains a single node, ninit, associated to xinit.
For a bidirectional search method, G also contains ngoal,
associated to xgoal. Similarly, more initial nodes could
also be added. Line 3 selects a node, ncur ∈ N , and
determines the control input Uncur

∈ Ũ for extension. Line
4 selects a state, xint that may serve as an intermediate
goal. A local planner chooses from Uncur

an input, unew,
which drives the system from x(ncur) toward xint over
a time interval ∆t, generating the new state xnew. Line
6 determines whether the new trajectory portion satisfies
the constraints (this could alternatively be accomplished



INCREMENTAL SEARCH(P̃, εs)
1 E ← ∅; N ← some starting states;
2 repeat
3 ncur, Uncur

← SelectCurrentNode(G);
4 xint ← SelectIntermediateGoalState(G);
5 unew, xnew ← LocalP lan(x(ncur), xint, Uncur

, ∆t);
6 if unew leads to a violation-free trajectory then
7 G.InsertNode(xnew);
8 G.InsertDirectedEdge(ncur, nnew, unew);
9 SolutionCheck(nnew, P̃, G, εs)
10 until TerminationCondition(G)
11 return Failure;

Fig. 2. A general template for incremental search algorithms.

in the local planner). If so, then a new node with state
xnew and a new edge with input unew are added to G. In
Line 9, whether a solution exists will be checked against
xnew. If ρ(x(nnew), x(n)) < εs for some n ∈ N , then
nnew is identified with n in G. Furthermore, if there is a
directed path in G passing nnew from ninit to ngoal, the
control sequence in the path will be returned as a solution.
Otherwise, the process is iterated, until a solution is found
or a termination condition is met, at which point the ISA
has failed to find a solution. This might occur, for example,
after a specified number of iterations.

Gaps in the solutions: For an edge e ∈ E connecting
n1 and n2 in N , we say that there exists a gap in e
if Φ∆t

u(e)(x(n1)) 6= x(n2), in which u(e) is the control

associated with the edge. When a solution of P̃ contains a
policy which is associated with an edge with a gap, we say
that a solution has a gap. Gaps could be induced by many
reasons, such as state space discretization, control space
discretization, local planners, and numerical integrations.
If the state space is discretized into small voxels [2], all
states in one voxel will be represented by only one state
such that gaps are induced between these states. Gaps also
happen when an edge is associated with a control which is
designed by a non-exact local planner and does not exactly
connect two states. Similarly, numerical integration causes
gaps since its results are only an approximation of the
actual value. To be concise, only gaps induced by the gap
tolerance at Line 9 are considered in the paper. However,
methods for this type of gaps could easily be extended to
other types of gaps.

ISAs normally are single- or bi-directional tree based
search. There are no gaps in edges in the trees because one
end state of an edge is obtained by integrating the control
associated the edge from the other end state. The only gap
happens when we check the existence of a solution with
εs. Take a single directional ISA for example, the gap of
a solution π only exists between Φ

tf
π and some xgoal in

Xgoal. Bidirectional ISAs will have only one gap in the
middle of a solution.

Roadmap based planners: For roadmap based meth-
ods, the roadmap is built by using the local planner to con-
nect states associated with milestones. If only approximate

local planners are available, the gap tolerance εs is used to
check the connectivity of those states, i.e., if a control u :
[0, tu) → U is designed by an approximate local planner
to connect state x1 and x2 and ρ(Φtu

u (x1), x2) < εs, x1 is
considered to be connected to x2 by u. In other words, a
gap might be induced in each edge in the roadmap. There
could exist more than one gaps in a solution when the
solution path passes through several edges in the roadmap.
Generally, bidirectional and roadmap based methods are
much more efficient than single directional methods since
they have less search depth and more chance to detect
solutions. However, especially for roadmap based planners,
since only few simple robotic systems (e.g., the Reeds-
Shepp car [35]) have analytical steering algorithms to
exactly connect two states, multiple gaps in the roadmap
could seriously affect the precision of the returned solu-
tions. This might be one of the main difficulties associated
with extending roadmap planners to motion planning with
differential constraints.

IV. GAP REDUCTION ALGORITHMS

In this section, we will review the main ideas of the gap
reduction algorithms in [9]. First, the geometric properties
of a class of robotic systems, which are the key to the
efficiency of our algorithms, are presented. Following this,
we provide the gap reduction algorithms.

Symmetries in systems: Consider a Lie group G, with
identity element e, acting on the state of the system through
the (left) action Ψ : G × X → X; we will often use
the shorthand Ψg(x) := Ψ(g, x). We call G a symmetry
group for the system (1) if the system’s dynamics are
invariant with respect to the action of G. Invariance is
equivalent to the following statement. Given any trajectory
t 7→ (x(t), u(t)) ∈ X×U which is a solution to Equation
(1), the trajectory t 7→ (Ψ(g, x(t)), u(t)) is also a solution
to equation 1 for all g ∈ G. It can be verified that invariance
implies that group actions commute with state transitions.
If xf = Φ

tf
u (xinit), then Ψg(xf ) = Φ

tf
u (Ψg(xinit)), i.e.,

Ψg ◦ Φ
tf
u = Φ

tf
u ◦ Ψg .

For many robot systems with symmetries, X can be
partitioned, at least locally, into the Cartesian product of
two manifolds X = G × Z . For simplicity of exposition,
we will assume that Z = R

nz , nz < n. Accordingly, we
write the generic point x ∈ X as the pair (g, z) ∈ G × Z .
Following conventions from differential geometry, Z is the
base space, G is the fiber, and their product X is a principal
fiber bundle; see [21].

Gap reduction algorithms: Consider a policy u :
[0, tu) → U obtained from a discrete policy π̃ re-
turned from an ISA. Assume that there is a gap be-
tween Φtu

u (xinit) and xg, a gap elimination algorithm
aims at perturbing u into a new policy v : [0, tv) → U
such that D(Φt

v(xinit)) ≤ 0 for all t ∈ [0, tv) and
ρ(Φtv

v (xinit), xg) ¿ ρ(Φtu
u (xinit), xg). In principle, the

gap reduction problem can be formulated and solved as
nonlinear programming problem with objective function
ρ(Φtu

u (xinit), xg). Such an approach is however unpractical



for nonlinear systems, since the number of degrees of
freedom in the choice of the control perturbation v is very
large, and computing the effect of a perturbation applied at
time t ∈ [0, tf ) requires an ex-novo integration of the ODE
(1) over [t, tf ). In other words, since the final state xf =
Φtu

u (xinit) = Φ∆t
π̃k−1

◦ · · · ◦Φ∆t
π̃1

◦Φ∆t
π̃0

(xinit) and each state
transition generally corresponds to an expensive numerical
integration, perturbing ui normally requires to recalculate
state transitions for {π̃j}j=i,··· ,k−1 which considerably
affects the running time of the optimization.

The idea behind our approach to gap elimination is
the following. Suppose that it is possible to perturb the
control input π̃i into v : [0, tv) → U , in such a way
that Φtv

v = Ψg ◦ Φ∆t
π̃i

for some g ∈ G. Then, since the
group action Ψ and the state flow Φ commute, the new
final state x′

f = Ψg ◦ xf , which intuitively means that the
remaining part of the trajectory can be “rigidly translated,”
without need for re-integration. If it is possible to find
a class of perturbations on the control input that satisfy
the stated condition, then the final state of the trajectory
can be written as an algebraic function of the perturbation
parameters—without need for numerical integration.

In [9], we identified gap-reduction techniques applicable
to systems with feedback-linearizable base dynamics, and
with affine in control based dynamics. In this paper, we will
consider only one technique, which according to simulation
experiments, reported in the same paper, yielded by far
the best results. Consider, for simplicity, a system on a
principal fiber bundle, whose dynamics are expressed as
ġ(t) = g(t)ξ(z(t)), and ż(t) = fz(z) + gz(z)u. If at time
t̄, there exists ū ∈ U such that

fz(z(t̄)) + gz(z(t̄))ū = 0, (2)

then a trajectory segment can be inserted after t̄, over which
the base variables remain constant, and the fiber variable
evolves according to ġ(t) = g(t)ξ(z(t̄)). Given any t ∈
(t̄, tf ), the generic point in the original trajectory can be
written as

Φt
u(x0) = Φt−t̄

u2
◦ Φt̄

u1
(x0),

where u1 and u2 are the restrictions of the control input
history u to [0, t̄), and [t̄, tf ), respectively. Define the
perturbed control input vτ : [0, tf + τ) → U as follows:

vτ (t) =







u(t), if t < t̄;
ū, if t < t̄ + τ ;
u(t − τ), if t > t̄ + τ.

Then, it can be verified that

Φt+τ
vτ

(x0) = Φt−t̄
u2

◦ Ψh ◦ Φt̄
u1

(x0) = Ψh ◦ Φt
u(x0), (3)

with h = exp(ητ), and η = g(t̄)ξ(z(t̄))g−1(t̄), i.e., the
perturbed final state can be obtained by applying a certain
group action to the unperturbed final state, corresponding
to a flow along the vector field η for time τ ≥ 0.

The same argument can be repeated for a finite number
of times t̄1, . . . , t̄k for which (2) holds; correspondingly,

(3) can be written as

Φt+τ
vτ

(x0) = Ψhk
◦ . . . ◦ Ψh1

◦ Φt
u(x0).

The significance of the above equation is that it shows
that the perturbed final state can be obtained from the un-
perturbed final state, through the combination of (positive)
flows along the vector fields ηi. An immediate consequence
of this is that, if the set {g ∈ G : g =

∏

i exp(ηiτi), τi ≥
0∀i} is equal to G, then gaps can be eliminated completely
(ignoring obstacles). A catalog of vector fields that satisfy
this conditions in cases of interest, together with formulas
for inversion, is presented in [32].

V. IMPROVING PLANNERS BY GAP REDUCTION

In this section, how to use the gap reduction algorithm
[9] to improve sampling based planners will be presented.
As we mentioned in Section III, obtaining high precision
solutions normally requires a small gap tolerance. Accord-
ing to our experimental results in Fig. 4, the computa-
tional cost increases dramatically with the gap tolerance
decreasing. Therefore, the key idea for the improvement
is to plan low precision solutions with big gaps, and then
refine solution quality by reducing the gaps. If the gaps
in a low precision solutions are reduced successfully, a
high precision solution is obtained. Since it is relatively
easy to find a low precision solution and the gap reduction
algorithm is very efficient, a high precision solution could
be returned much faster.

Gaps induced by the gap tolerance in a low precision
solution will be reduced in two steps since in the motion
planning process these gaps exist in both the fiber and base
space. The gaps in the base space are reduced first because
the gap reduction algorithm in [9] reduces the gaps in the
fiber space while maintaining the base variables invariant.
Then after the gaps in the fiber space are reduced in the
second step, gaps in both fiber and base space are reduced.
To simplify the first reduction step, we only consider the
base dynamics while ignoring the fiber dynamics. Since
only systems with affine in control base dynamics are
considered in the paper, the base gap reduction is actually
a control design problem for systems affine in control.
Classical techniques for systems affine in control [11], [18],
[22] could be used to reduce the gaps in the base space
and are not discussed here for the sake of conciseness.

Modification to ISAs: The modification to the case
of the bi-directional tree based ISA is as follows and it
could be easily extended to other cases.

Let T1 and T2 be two trees generated from the ini-
tial and goal state, respectively. We can assume that
in one iteration, T1 generates a new node nnew and
ρ(x(nnew), x(n)) > εs for any n in T2. Normally, it will
take much longer time for T1 to generate n′

new such that
ρ(x(n′

new), x(n)) < εs for some n in T2. Now for each
node n in tree T2, we reduce the gap between x(nnew)
and x(n) in two steps shown above. If the final gap is less
than εs, then we find a solution. Note that since the fiber
dynamics is ignored in the first step, the gaps in the fiber



space could be either larger or smaller. We check the gap
in fiber space after the first reduction. If it is less than an
intermediate tolerance εb, which is normally much larger
than εs, then the gap reduction algorithm [9] is called to
reduce the gap in the fiber space.

Modification to roadmap based planners: When an-
alytical steering methods are not available, ISAs could
be used as local planners for roadmap based planners
[1]. Then construction and query time of roadmap based
planners will increases dramatically with the decreasing
gap tolerance since both construction and query depend
on the local planner. Therefore, a straightforward method
is to just improve the local planner with the gap reduction
algorithm. If it successfully reduces the gap to within some
tolerance, then the roadmap is updated. In the roadmap
construction phase, this may allow two milestones to be
connected. In the query phase, same approach may be
used to connect the initial and goal queries to the solution.
Finally, when a solution is produced, the gap reduction
may be further applied.

VI. SYSTEM MODELS USED IN SIMULATIONS

Our simulation includes three systems with affine-in-
control base dynamics, which are a car with dynamics, a
car-trailer system, and an underactuated spacecraft.

Car with dynamics: The state vector, in coordinates,
is (vy, ω, x, y, θ), in which x ∈ [0, 800], y ∈ [−800,−450],
and θ ∈ [−π, π] represent position and orientation; ω ∈
[−10, 10] is the angular velocity, vy ∈ [−10, 10] are
translational velocity along the y-axis of the local frame
fixed on the car. The input to the system is the steering
angle, u ∈ [−0.6, 0.6]. The equations of motion are v̇y =
−vxω+(fyf (u)+fyr(u))/M , ω̇ = (fyf (u)a−fyr(u)b)/I ,
ẋ = vx cos(θ) − vy sin(θ), ẏ = vx sin(θ) + vy cos(θ),
θ̇ = ω, in which vx = 88 is constant translational velocity
along x-axis of the local frame, M and I are the mass and
inertia, and fyf (u) and fyr(u) are affine in u and represent
forces acting on front and rear tires along the y-axis of the
local frame. The fiber of the system is (x, y, θ), and the
base is (vy, ω).

The car-trailer system: The car-trailer system con-
sists of a car pulling a trailer. The state of the system can
be represented using a local chart, as (x, y, θ1, v, θ2), in
which x, y, and θ1 are x-, y-coordinates and orientation
of the car, v is the translational velocity along x-axis of
the local frame, and θ2 is the orientation of the trailer.
The input to the system is (u1, u2), in which u1 is the
changing rate of v, and u2 controls the steering angle.
The motion equations of the trailer system are as follows:
ẋ = v cos(θ1), ẏ = v sin(θ1), θ̇1 = vu2/L1, v̇ = u1,
θ̇2 = v sin(θ1 − θ2)/L2, in which L1 is the length of the
car, L2 the length of the hitch. The system has affine-in-
control base dynamics could be seen by introducing the
transformation θd = θ1 − θ2 and change the last equation
above to θ̇d = vu2/L1 − v sin(θd)/L2. The fiber of the
system is (x, y, θ1) and the base is (v, θd). The state space
bounds are: x ∈ [0, 400], y ∈ [0, 400], θ1 ∈ [−π, π],

Fig. 3. A spacecraft equipped with a star tracker, telescope and a
communication antenna. Note that this model is a fictional model.

v ∈ [0, 5], and θ2 ∈ [−π, π] . The bounds on inputs are
u1 ∈ [−1, 1] and u2 ∈ [−0.8, 0.8]. Note, we intentionally
set v, the forward speed, to be nonnegative so that the
system is not STLC, and the gap cannot be reduced by
trivially moving along the direction of Lie bracket.

The spacecraft with orientation constraints: This
problem is from [16] with some modifications. Dynamics
of both translation and rotation of the spacecraft is con-
sidered. Also, we assume that some of the thrusters on
the spacecraft (Fig. 3) do not work because of malfunc-
tion. The translational forces and rotational torques for
the spacecraft will only be provided from three pairs of
thrusters. Each pair could provide forces in opposite, in-
dependent directions, and these forces do not pass through
the mass center; the system is hence underactuated but con-
trollable. The state of the system is represented by (g, ξ), in
which g = (p,R) ∈ SE(3) represents position, p ∈ R

3 and
orientation, R ∈ SO(3), and ξ = (Ω̂, V ) ∈ se(3) denote
the translational and rotational velocity expressed in the
body frame. The skew matrix Ω̂ is defined as unique matrix
for which Ω̂v = Ω × v,∀v ∈ R

3. The motion equations
are: Ṙ = RΩ̂, ṗ = RV , Ω̇ = −J−1(Ω × (JΩ) − fΩ),
V̇ = V × Ω + fV /M, in which J is the inertial matrix,
M is the mass, fV = [u0, u1, u2]

T is the translational
force vector, fΩ = [−u2Lz, u0Lx, u1Ly]T is the rotational
torque vector and Lx, Ly , and Lz are vertical distance
from the mass center to the direction of forces generated
by thrusters. The input to the system is u0, u1 and u2.

Besides dynamics constraints and the space station
in the environment, constraints also come from the star
tracker, the telescope and the communication antenna on
the spacecraft. Specifically, the antenna should not be too



Current gap tolerance / Smallest gap tolerance
Model 1 10 20 30

1 78560.2 11265.2 3881.8 2647.4
2 143527.6 22395.3 420.9 193.92
3 570080.0 11044.4 6854.5 6735.2

Fig. 4. Total running times in seconds for 20 trials to use the old planner
to solve same problems with different gap tolerance, in which “1”, “2”
and “3” denote the problem with the car, the trailer, and the spacecraft
system, respectively.

far away from the direction of the Earth to maintain the
communication. To protect sensitive equipments, the star
tracker cannot be close to the direction of the Sun, and
the telescope cannot be close to the direction of any bright
objects (such as the Sun, Moon, Jupiter and Earth). In our
implementation, we assume that the antenna is at the top
of the spacecraft along the local z axis. The direction of
telescope and star tracker are along the local x and y axis,
respectively. In our implementation, sitting at the origin of
the inertial frame, the light from bright objects comes in
parallel from different directions. Specifically, we assume
that the light of the Earth is from the direction of (0, 0, 1),
the light of the Sun is from the direction of (1, 1, 1), the
light of the Jupiter is from the direction of (1, 1, 0), and
the light of the Moon is from the direction of (1, 0, 1).

VII. SIMULATION STUDIES

We improve the performance of two sampling-based
planners by gap reduction. One is a bidirectional ISA
based on Resolution Complete Rapidly-Exploring Random
Trees (RC-RRTs) [10], and the other is a basic PRM-
based planner. The simulation is done on a 2.0 Ghz PC
running Linux. The NAG library is used to solve nonlinear
programs in the gap reduction technique.

A motion planning problem is constructed for each sys-
tem from Section VI. The problems and sample solutions
are shown in Figs. 5, 6 and 1, respectively.

The first set of simulations is used to show the relation-
ship between the running time and the gap tolerance. An
old RC-RRT based planner solves the same problems with
gap tolerance of different sizes. For each gap tolerance,
we run the old planner 20 times and report the total
running time. The smallest gap tolerance for problems with
the car, the trailer, and the spacecraft is 0.37, 0.1, and
3.0, respectively. The results are shown in Fig. 4, from
which we can see that the running time of the old planner
increases dramatically with the gap tolerance decreasing.

In the second set of simulations, we compare the
running time to find solutions with similar gap tolerance.
The search tolerance εs for all problems is around 0.1.
Both the old planner and the improved planner are used
to solve same problems 40 times. The average, maximum
and minimum running time are reported.

The comparison of running time is given in Table 7.
From the table, it is easy to see that the running time to
find high precision solutions is considerably reduced.

Fig. 5. Trajectory design for the car with dynamics.

Fig. 6. Trajectory design for the trailer system.

Finally, the PRM planner is test on a problem with a
unicycle car with the acceleration control. The car model
is ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = vu2/L1 and v̇ = u1,
in which (x, y, θ) are the position and orientation, v is
the forward speed (nonnegative in our simulation) in the
local frame, L1 is the length of the car, u1, u2 control
the acceleration and steering angle, respectively. The above
improved ISA is used as the local planner with the gap
tolerance 0.1. In the construction stage, a directed edge is
added between two states (including the velocity) when the
local planner successfully connects them. In the multiquery
stage, if both initial and goal states could be connected
to the roadmap, a solution is returned. After building the
roadmap for each 25 iterations, we will query solutions for
50 randomly chosen initial and goal state pairs. The results
are shown in Fig. 9 and a partial roadmap is in Fig. 8.



Improved Planner Old Planner
Model Av. Max. Min. Av. Max. Min.

(s.) (s.) (s.) (s.) (s.) (s.)
1 160 550 62 24256 69714 247
2 96 303 2 7176 20285 436
3 5562 33883 504 N/A N/A N/A

Fig. 7. Comparison of two planners on running time on different motion
planning problems, in which “1”, “2” and “3” represent the car, trailer,
and spacecraft system, “Av.”, “Max.” and “Min.” represent the average,
maximum, and minimum running time over all trials, “N/A” means that
no solution is found after about 72 hours.

Fig. 8. A partial roadmap built by the PRM-based nonholonomic planner.

VIII. CONCLUSION

This paper establishes the power of efficient gap re-
duction techniques in sampling-based motion planning
under differential constraints. New planners are designed
by combining the improved gap reduction algorithm [9]
with an RC-RRT based planner in [10] and a simple PRM
based planner. The comparison of RC-RRT based planners
with or without gap reduction on the running time to
solve same problems demonstrated dramatic performance
improvements. We expect that techniques such as this
will enable many new challenging problems to be solved.
Furthermore, the performance of the primitive PRM-based
planner showed how the gap reduction techniques can be
used to construct roadmaps without requiring an accurate
steering method. However, substantial work remains to
make this approach to PRMs viable for applications.
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Iteration C. T.(s) Q. T.(s) Success N.N. E.N.
25 378.73 210.99 3/50 13 19
50 2121.69 1161.22 21/50 38 118
75 2084.97 1819.72 25/50 61 213
100 1589.97 2453.82 25/50 85 309
125 1731.32 2365.04 24/50 107 398
150 1911.5 2776.65 34/50 130 501
175 1863.71 2646.88 36/50 151 607

Fig. 9. Simulation results for the PRM based nonholonomic planner, in
which “C.T.” is the construction time, “Q.T.” is the overall query time for
50 trials, “N.N.” is the number of milestones, and “E.N.” is the number
of edges in the roadmap.
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