Resolution Complete Rapidly-Exploring Random Trees

Peng Cheng

Steven M. LaValle

Dept. of Computer Science
University of Illinois
Urbana, IL 61801 USA
{pchengl, lavalle}Qcs.uiuc.edu

Abstract

Trajectory design for high-dimensional systems with
nonconver constraints has gained considerable attention
recently. This paper addresses the issue of establish-
ing resolution completeness for trajectory design algo-
rithms by wutilizing Lipschitz conditions and an accessi-
bility graph. By combining systematic search ideas with
randomized techniques, we introduce resolution complete
rapidly-exploring random trees, which obtain both fast ex-
perimental performance and eventual deterministic res-
olution completeness. Some illustrative trajectory design
examples from our implemented algorithms are shown.

1 Introduction

Trajectory design for high-dimensional nonlinear sys-
tems with nonconvex constraints attracts more and
more attention in current research. A challenging prob-
lem is shown in Figure 1. In most previous work
[1, 5, 6, 8, 15, 16, 18], dynamic programming varia-
tions are developed to produce optimal solutions for low-
dimensional problems. Randomized techniques that find
feasible non-optimal solutions to high-dimensional prob-
lems were introduced in [12, 13], based on the introduc-
tion of Rapidly-exploring Random Trees (RRTs). Their
application to autonomous vehicles [7] and nonlinear un-
deractuated vehicles [9, 19] has achieved good results.
The application of randomized techniques in trajectory
design is also considered in [10]. Many trajectory design
methods can be considered as a form of single-direction
or bidirectional search. To avoid searching the same
state repeatedly and to terminate the searching in a fi-
nite number of iterations, many methods have been used
to discretize the configuration or state space to yield a
finite number of nodes in the search graph. In [6], the
discretization is based on the grid built from accelera-
tion bounds and a fixed time step. Nonuniform boxes
are used to discretize the configuration space in [18]. In
[1], the configuration space is decomposed into disjoint
parallelpipeds of equal size and asymptotic completeness
is derived. More generally in [2], a partition is used to
discretize the state space, and there is no restriction on

Figure 1: A trajectory design for an underactuated 12-
dimensional spacecraft with three thrusters moving in a
3D grid.

the form of sets in the partition. However, choosing an
appropriate discretization resolution to guarantee that
the existing solution will be found is challenging.

We present extensions of the RRT that yield solutions
quickly in practice, and have theoretical guarantees of
resolution completeness, as obtained in many approaches
designed for lower-dimensional state spaces. Thus, we
can obtain both the advantages of fast randomized solu-
tions combined with systemic search in the worst case.
By considering an accessibility graph and Lipschitz con-
ditions, conditions are presented, which guarantee that
the planner will find an existing solution, if the dis-
cretization resolution is in a specified range. It is dif-
ferent from the asymptotic completeness in [1], which
requires that for a small-time locally controllable system,
the control period is small enough, the search depth is
big enough and the resolution is high enough.

2 Problem Formulation

The trajectory design problem, A, considered in this
paper is defined as a nine-tuple (X, Xfree, Zinit, Xgoal;
U,ét,p,7,f). The state space, X C R", is an n-
dimensional compact differentiable manifold; X ¢p.e C X
is the set of all states that satisfy global constraints, such
as collision avoidance and velocity bounds; Zinit € Xree
and Xg0q1 C Xyree are boundary conditions; U is the
set of inputs (we could also allow state-dependent input
sets); dt denotes the control period during which a con-
stant u € U is applied. A metric on the state space
is defined, p : X x X — [0,00) defined on X. A pre-
scribed solution tolerance 7 > 0 is given for achieving
a goal state. Finally, f gives the equation of motion,
z = f(z,u), which encodes kinematic and dynamic con-
straints.

The objective is to find a solution control function,
u : [to,tf] = U, in which ¢, is the starting time and ¢; =
to + K dt. Furthermore, u(t) is constant over each control
period, resulting in u(t) = u; € U during each control
period i. The solution path, 7 : [to,tf] = Xfree results
from integration of f over the control periods, and must
satisfy the boundary conditions as follows: 7 (tg) = Tint
and p(m(ts), Xgoa1) < 7 (note that p is measuring the
distance from a point to a set).

A solution 7 will be represented for convenience by
either an input sequence m, = {uy,us, - -,ux} in which
u; = u(to + (i — 1)dt) or a state sequence m, = { zo =
Tinit, 1, ", Tk} in which x; = 7(to + 16t).

3 The Accessibility Graph

The problem, A, represents a multi-stage process.
Each stage corresponds to a time and has a set of ac-
cessible states. In related work, stability and accessibil-
ity have been studied in the context of quantized control
systems [4, 17]. In this section, we present an acces-
sibility graph, which characterizes the set of all possible
discrete-time trajectories for a given A (starting in z;p,
and reaching anywhere in Xy,..).

We first consider the transition that occurs from the
application of a constant input v € U, at a state
z(t) € X, for the control period dt. Let the system tran-
sition equation, s(u,x,t,6t) represent the resulting state
by integration:

40t
s(u,z,t,0t) = x +/ f(z,u)dt.
t

Note that this formulation does not take into account
Xfree- Therefore, we also define a wiolation-free sys-
tem transition equation, §(u,x,t,dt), which simply re-
stricts the domain of s to include only inputs the yield a
violation-free trajectory from time ¢ to time ¢ + dt. Let
U(z) denote this state-dependent set of inputs.

Let Ny, be the set of accessible states at time to + (k —
1)6t. At first, Ny = {z | = Zini }- Next,

Ny ={z | z = 5(u,2',to,6t),u € U(z'),z' € N1 }.

For the kt stage,
Ne={z |z = 5(u, 2, ty,0t),u € U(z"), 2’ € Np_1},

in which ¢, = to + (k — 1)5t.

Based on the above sequence, the (directed) accessi-
bility graph, Goo(Neo, Exo), for a given A, is defined by
the set, Noo = U32; N}, of nodes, and the set,

Eo = {e(z,2') | # € Noo, Ju € U(z), 2" = 5(u,z,t,6t)},

of edges.

If 3z; € N; and 3z; € N; such that ¢ # j and z; = 5,
then we say G has cyclic paths and the corresponding
A is cyclic; otherwise, A is acyclic. If Im > 1 such that
Ny — U;”;ll N, = @, then N, is finite; otherwise, N
is infinite.

We view incremental planning algorithms as tech-
niques that explore Go. During each iteration of a
search algorithm, more of G, is revealed. If there ex-
ists a solution path from z;ni t0 T40a; under the control
period §t and tolerance 7, it must exist in G,. Let
G sub(Nsup, Esup) denote the graph of trajectories that
are explored by a search algorithm. If exact computa-
tions are assumed then G,y is a subgraph of G, that
is explored by a search algorithm. In Section 4, we
present RRT-based algorithms that incrementally reveal
G (also, numerical errors are taken into account). The
analysis in Section 5 applies to these algorithms; more-
over, the general theory can be adapted to other incre-
mental search algorithms by considering the appropriate
G sup Obtained by the algorithm.

4 RRT-Based Planners

Resolution complete RRT (RC-RRT) planning algo-
rithms are given here. The basic RRT algorithm is pre-
sented in [12]. Initially, 2;p:: is the only node of Gyp.
For each iteration, a random state z,,nq € X is cho-
sen, and Zpeqr € Nsup i selected as the nearest state to
Zrend according to a metric function p. For z,,¢4,, an in-
put upest is chosen to generate a new state ¢, which is
closest to z,qnq among all states generated by applying
a constant control from Z,e- over the control period. If
Tnew satisfies the global constraints, then z,e,, will be
added to Ggyp- The performance of RRTs degrades when
p poorly approximates the real path cost [3, 13]. Time
is often wasted choosing states destined to eventually
violate the global constraints, and the probability of ex-
panding further along the solution path might decrease
with more and more iterations.

A basic RC-RRT In [3], we presented a basic RC-
RRT algorithm, named here as RC-RRTy, in which ez-
ploration information and the constraint violation fre-
quency (CVF) are collected and used during the explo-
ration to reduce metric sensitivity. Exploration informa-
tion records whether an input has already tried from a

state, so that it is not repeated in the future. The CVF
provides an underapproximation to the percentage of tra-
jectories from that state which ultimately leave Xy ce.
To choose Zpeqr, exploration information, the CVF, and
p are used. If all of the inputs have been expanded from
a state z, it will be precluded in future iterations. In
each iteration, while considering nearest states, a state
will be skipped with a probability that is the CVF of z.
If no node is chosen, the nearest node with unexpanded
inputs will be chosen. To choose upest, exploration in-
formation and p are used, and upes: is applied to Tpest
to generate x,,,,,. From Zpes, only inputs that were not
expanded in previous iterations will be considered. The
violation-free z!,.,, with the shortest distance to Z,qng
will be added to Geup. If 2., & Xfree, the CVF in-
formation is propagated up the tree (see [3] for details).
RC-RRT]; exhibits good experimental performance in [3];
however, completeness only occurs if G is acyclic with
finite No. Two extensions are presented next, which
lead to resolution complete planners for general G .

An improvement via neighborhood analysis The
RC-RRT; employs only exploration information to ex-
clude repeated states; however, if G, is cyclic or has
infinite N, the planner might continue running forever.
To ensure that the planner terminates in finite time for
any A, a covering of X, II(X), is used to yield a finite
approximation to X. We define a collection of balls,
each of which is centered on an element of Ng,;. Let
rp > 0 be the radius of each of these balls. Thus, for any
x € Ngup, let B(z,rp) = {z' € X | p(z,2") < rp} denote
its corresponding ball. Let B(Ngyp) denote the union of
B(xz,rp) for all z € Ngyp. RC-RRT, uses these balls, and
a new node is added to Ggyp only if Tye € B(Ngyup)-
Thus, there will be at most one node per neighborhood,
which is similar to the effect obtained in [1] but using
a grid. Here, however, we do not explicitly construct a
grid; grid-like coverage of accessible states will be ob-
tained in the limit if a solution is not found early. Of
course, rp, needs to be small enough to avoid missing
a solution for a given tolerance, but it should be large
enough with respect to numerical precision errors. If ex-
act arithmetic is used, then r, can be made arbitrarily
small to yield true asymptotic convergence.

Converging to optimal solutions Once neighbor-
hood is introduced, once can also allow iterative refine-
ment of trajectories into optimal solutions. Dynamic
programming (e.g., [1]) explores all of the state space
(up to some resolution) and returns an optimal solu-
tion; however, randomized methods sacrifice optimality
by only exploring part of the state space. In RC-RRT3,
we combine optimizations with the RRT to yield opti-
mal solutions on the part of the space so far explored.
In the limit, this converges to finding globally optimal
paths. Assume that a standard stage-additive loss func-
tional is defined on the space of trajectories. Assume the

CMC(X new) CMC(X new)
< >=
XXL(X 1) CMC(X ;)
Xo X1
.\tp

Figure 2: The current minimum path cost, L(z), is main-
tained for the repeated state.

current minimum path cost, L(x), from z;,; to z, is cal-
culated for all € Ngyp. As shown in Figure 2, consider
an RRT iteration in which z,,,, is successfully generated
from x,. If Tpew & B(Nsyp), then zpe, will be added to
Ngup, and its path cost L(Zpew) = L(zp) + U(zp,u, 0t)
is stored, in which u € U is the input that leads z, to
Znew; and l(zp,u,0t) is the per-stage loss. Otherwise, if
Tnew € B(x',rp) for some x' € Ny, there are two possi-
bilities. If L(Zpew) > L(z'), then x,.,, will be discarded.
If L(%new) < L(x1), then X, replaces ' in Ngyp. In
addition to the edge from z, t0 %y, , the new state in-
herits all in and out edges from z'. This generally leads
to small gaps in the solution trajectories, but conver-
gence is still obtained due to Lipschitz conditions. Using
RC-RRTj3, the minimum-loss path among all paths so
far considered will be obtained. In the limiting case, all
actions and states will be considered, which results in
convergence to a global optimum.

Building planners from RC-RRTs Practical plan-
ners can formed from RRTs in many ways; see [14] for
many examples. Single tree planners can be constructed
by biasing the sampling toward the goal. For example,
with a small probability, instead of picking a random
sample in X, a sample in X ,,; can be chosen. Using
bidirectional search ideas, dual-tree planners can be con-
structed that divide their time between exploring and
attempting to connect to each other. One tree is rooted
at the initial state and the other is rooted at a goal state.
A trajectory is found when the two trees meet. The RC-
RRT can be used as a replacement to the RRT in any
existing RRT-based planners.

5 Resolution Completeness Analysis

The analysis is divided into two parts. First, in The-
orem 5.1 it is shown that in spite of discretization of the

system and numerical rounding errors, the search graph
to be explored by the RC-RRT algorithms contains a so-
lution trajectory that falls within the specified solution
tolerance, if a solution exists for the exact, continuous-
time problem. If G, is finite, then Theorem 5.1 implies
that a solution will be found after a finite number of it-
erations. If G, is infinite, then Theorem 5.2 is needed
to show that RC-RRTy and RC-RRT3 find a solution
after a finite number of iterations. We give an explicit
bound based on the resolution parameters and number of
inputs. We note that the analysis here provides worst-
case assurances that our planners are resolution com-
plete; however, it does not characterize the good com-
putational performance observed in practice. RRTs are
designed to find a solution to most problems long before
systematic coverage of the state space occurs.

For a given A, recall that G, is fixed. If every pa-
rameter is represented algebraically, an exact geometric
computation method [20] can be used, and no numeri-
cal computation error will exist. In this case, RC-RRTs
generate Ggyp C G- If floating point numbers are used
to represent the parameters, then the search graph will
approximate G, with the numerical computation error.
The algorithm might report a wrong solution when the
computation error causes a non-solution path to enter
the neighborhood of X,4;. The numerical computation
error is related to the computer architecture, numerical
algorithms, and state transition equation integration. It
is difficult to analyze all of these factors. To characterize
the effect of the computation error on the resolution com-
pleteness, only round-off error is considered here, and all
other computations are assumed to be accurate.

Theorem 5.1 Suppose & is the round-off value of z, and
p(z, %) is bounded by some fized n > 0 for all z € X.
If there exists a solution © of length K with tolerance
5 for a given A, then choosing T to satisfy the follow-
ing conditions ensures that the graphs being explored by
RC-RRT> and RC-RRT; using B(x,€) contain a solu-
tion with tolerance 7. If G is acyclic and N, is finite,
then RC-RRT; will find a solution with tolerance T.

1. The system transition equation s(u,x,t,dt) meets
the Lipschitz condition: Yu € U, Vt € [to,ty]
and Vxi,zo € X, p(s(u,z1,t,0t),s(u,x2,t,0t)) <
Lgsp(x1,22).

2. The round-off error bound n < %
° K.+1 _ 1
3. The ball region radius, € satisfies 5117117 <
s —

- i{T(LS—l) LA+ 1 : (nto +
min - min
¢ 9LK —L,) LK —L, "k=onk—1 P70
két), w(to + (k + 1)t))}, in which K. is the path length
of the largest cyclic path in the search graph G .

4. There exists a violation-free “tunnel” around w

such that © € Xgpee for all x € {z | p(z,n(t)) < 7,t €
[to, t4]}.!
!The “tunnel” here is different from the “tube” in [6]. The

1 2 3 d K
K-1
dy— -
do ~ -
TX

Path with computation error

Path with no computation error
< LK+1-1
di<n - d< ———n

i=0,1,..,K Ls-1

Figure 3: Accumulated computation error results from
the round-off error.

Proof: Completeness arguments are given in three parts
based on properties of Goo:

Part I (finite N, and acyclic G,) In this case, all
RC-RRTs have resolution completeness without consid-
ering neighborhoods. Only completeness conditions of
RC-RRT; are presented here because conditions for RC-
RRT> and RC-RRT3 for this G, are the same as those
for more general G, which will be discussed in Part II.

If exact computation is used, the completeness is

guaranteed by exploring until Ggup = Goo; there-
fore, assume numerical computation is used. Let
Us = (u1,u2,---,up) be a control sequence, and

®(Us,z,t0) = s(up, (s(up—1,---(s(u1,2,t0,6t)) ---,t0 +
(p — 2)dt,0t)),to + (p — 1)dt,5t) be the final state by
applying U, on state x at time ¢g. If numerical com-
putation is used, for the solution path m,, the ini-
tial state round-off error leads to the error bound
p((}('ﬁu,xz’m’t;to);(I)(ﬂ'u;fiim't;to)) < %T) at the

final state (Figure 3). If n < %, then

D (7y, Finit, to) Will have tolerance 7, and solution 7 will
be returned.

Part II (finite N, and cyclic G) Because only
exploration information is used in RC-RRT;, it might
run forever by exploring a cyclic path; however RC-RRT2
and RC-RRTj3 are resolution complete in this case.

Using exact computation, Ggyp generated by RC-
RRT; and RC-RRT3j is a subset of G If B(z,0) is used
to exclude repeated states, the completeness is achieved
by searching until Gsyp = Geo- If B(z,¢€) is used for
some € > 0, then some z, € Ny is a representative of
the node set S, = {z € Ny | p(z,) < €}. Considering
the solution 7, if x,, is the state in 7, that is replaced by
state z,, then p(®(Up, x;,to + pdt), ®(Up, 2p, to + pdt)) <
L Pe in which U, = {upy1,---,ux} C 7. In the
worst-case, if z1,%2, -, Zx_1 € 7, are replaced, then

€< % will guarantee a solution with tolerance 7

“tunnel” is used to guarantee the completeness and only related to
7w and 7; however, the “tube” is used for the safety consideration
and is related to robot sensors and velocity error correction rate.

will exist in the search graph.

Considering computation error, the limiting case of
B(z,0) cannot be reached because two identical states
resulting from a cyclic path might appear different be-
cause of the computation error. B(z,¢€), for some € > 0
must be used to account for the computation error. If
€ is too small, a single state may result in two different
state nodes in Ngyup. Assume that K. is the maximum
length of all of cyclic paths. If ball radius € is chosen

so that € > %n, then two identical states will

stay in the same ball region for any cyclic path in G-

Also, € < 2?1515{5:;1) - LE:;TL’SIU is needed to guarantee a
solution with tolerance 7 will be found.

Part III (infinite Ny, and G) Only RC-RRT>
and RC-RRT; using B(z,¢) for ¢ > 0 are suitable for
this problem. Clearly, Ny, must be finite because X
is compact and no two states in Ng,; may be within €
of each other. Similar to the above argument for ex-

act computation, € < % will guarantee resolution

comp}}et?ness; for numerical complll(taltion, the condition
is B < € < offe — et

Finally, we address several minor concerns. Because
of the computation error or the discretization, the path
generated by the planner will be close to w. It might
seem possible to miss a solution because the computed
path could be violate the global constraints, even though
w traverses X ... However, this cannot happen because
we required a violation-free “tunnel” around 7 such that
& € Xypee for Vo, p(z,m(t)) < 7 and ¢ € [to, t5].

Another concern is that to find the solution , the
planner has to add x € 7, to Ggsyp one by one. If € is
chosen such that m, € B(mg_1,€) for some k, then my
will not be added to Ggyp, and the solution will not be
found. If € < . min 1p(7r(t0 + két), m(to + (k +1)dt)),

the above situation will not happen, and the solution will
be eventually found. H

=0, —

Theorem 5.1 shows that resolution problems will not
prevent RC-RRTs from exploring until a solution is
found. Theorem 5.2 establishes that RC-RRTs will find
the solution after a finite number of iterations, which
corresponds to resolution completeness in the standard,
deterministic sense. By using this result, an RC-RRT-
based planner could iteratively improve the resolution
parameters each time failure occurs, terminating only
if a solution is found. This would yield the resolution
completeness behavior obtained for methods such as ap-
proximate cell decomposition (see [11] for a discussion of
resolution completeness in this context).

Theorem 5.2 Let m be the number of inputs in U. If
the resolution completeness conditions of Theorem 5.1
are satisfied, then RC-RRT> or RC-RRT3 needs at most
npym iterations to determine whether there exists a solu-
tion for A.

Proof: If the resolution completeness conditions of
Theorem 5.1 are satisfied, a covering set II(X) =
{S1,82,++-,8,,} can be constructed that satisfies X =
U2, Si and there exists some £ > 0 for all S; € II(X)

with
w(Si — U

je<1a2,"'7i_1ai+1,"',np>

Sj) > K,

in which p is the Lebesgue measure. Let r be the size of
the neighborhood satisfying the conditions from Theo-
rem 5.1, a ball neighborhood B(z,r) can be inserted one
by one to cover X and generate a II(X). Using II(X)
in the planner will also achieve the same resolution com-
pleteness. It is similar to the condition in Theorem 5.1,
except here the covering sets are built from the begin-
ning; in Theorem 5.1 they are incrementally built.

For a compact set X, u(X) is finite. Since each ele-
ment of uniquely covers at least k of u(X), so there are
only a finite number of sets in II(X) and n, is finite.

For a given A, whether G, has finite Ny, or infinite
N, a finite II(X) can always be constructed. Accord-
ing to the RC-RRT algorithms, there is at most one node
in any set in II(X), so there are at most n, in the ex-
plored graph. RC-RRT,-based planner and RC-RRT3-
based planner will stop searching when all of the inputs
for all state nodes existing in Ny, are expanded. Mark-
ing one input for a state node as expanded needs at most
one iteration. Thus, at most n,m iterations are required
to determine whether a solution exists for a given A. B

The following corollary follows from the previous the-
orems, and indicates that RC-RRT3 will find a solution
that is close to the optimal solution. By adding Lipschitz
conditions to the loss functional, we could additionally
ensure that the cost of the computed solution comes ar-
bitrarily close to the true optimum.

Corollary 5.3 If there exists a solution w of length K
with tolerance T for a given A, and m is optimal in
Gsup C Goo, RC-RRT5; will find m with tolerance T if
the conditions of Theorem 5.1 are satisfied and Ggyp is
generated by RC-RRT3 when 7 is found.

6 Experimental Evaluations

We briefly indicate some of the experimental advan-
tages of planners based on RC-RRTs. In addition to res-
olution completeness implied by the theory from Section
5, we have observed significant performance improve-
ment on challenging examples. For each experiment, we
first set up the problem to make sure a solution exists,
then ran the planners for 50 trials. The experiment ran
until all trials were successfully completed, or early ter-
mination occurred if one trial failed after 48 hours.

For the virtual driving experiment (Figure 4), the goal
biased RC-RRT;-based planner found the solution in
each trial with an average of 1629.62s, in which “goal
biased” means choosing zg0q in the place of Z,qndom

g
4 Gl O O,

Figure 4: The task is to drive a car (a 9D nonlinear
system with one steering input) at 72 k.p.h. recklessly
through a town while avoiding collisions with buildings.

with a small probability (0.05 in this case). For the cor-
responding planner using a regular goal-biased RRT, we
attempted fifty trials twice. In the first experiment, the
first trial failed after 48 hours; in the second experiment,
the eighth trial failed after 48 hours (although the first
seven trials averaged 406.36s).

Figure 1 shows a trajectory design problem for a float-
ing spacecraft (the equations of motion are in [3]). We
used the bidirectional planning algorithm called RRTEx-
tExt in [14], but replaced the RRT with RC-RRT;. The
new planner solved the problem fifty times with an av-
erage of 8059.31s. We attempted two trials using the
original RRTExtExt planner; they each failed after 48
hours. Thus, the RC-RRT offers considerable reliability
in solving very challenging trajectory design problems.

7 Conclusion

In this paper, based on the accessibility graph and
Lipschitz conditions, resolution complete RRT's were pre-
sented, analyzed, and shown to give good experimen-
tal performance on challenging trajectory design prob-
lems. The new planners can solve challenging problems
quickly, while offering the reliable advantages of system-
atic search techniques in the worst case. Additional effort
is required in future work to analyze the effects of other
errors, such as those due to numerical integration. Fur-
thermore, we hope to implement and evaluate RC-RRT,
and RC-RRTj in practice.

Acknowledgments We thank Jim Bernard his help with
vehicle dynamics and Andrew Olson for constructing the
spacecraft example. This work was funded in part by NSF
CAREER IRI-9875304 and NSF IIS-0118146.

References

[1] J. Barraquand and J.-C. Latombe. Nonholonomic multi-
body mobile robots: Controllability and motion plan-
ning in the presence of obstacles. Algorithmica, 10:121—
155, 1993.

[2] D. P. Bertsekas. Convergence in discretization proce-
dures in dynamic programming. IEEE Trans. Autom.
Control, 20(3):415-419, June 1975.

[3] P. Cheng and S. LaValle. Reducing metric sensitivity in
randomized trajectory design. In IEEE/RSJ Int. Conf.
on Intelligent Robots € Systems, 2001.

[4] D. F. Delchamps. Stabilizing a linear system with
quantized output record. IEEE Trans. Autom. Control,
35(8):916-926, 1990.

[6] B. R. Donald and P. G. Xavier. Provably good approx-
imation algorithms for optimal kinodynamic planning:

Robots with decoupled dynamics bounds. Algorithmica,
14(6):443-479, 1995.

[6] B. R. Donald, P. G. Xavier, J. Canny, and J. Reif. Kin-
odynamic planning. Journal of the ACM, 40:1048-66,
November 1993.

[7] E. Frazzoli, M. A. Dahleh, and E. Feron. Robust hybrid
control for autonomous vehicles motion planning. Tech-
nical Report LIDS-P-2468, Laboratory for Information
and Decision Systems, Massachusetts Institute of Tech-
nology, 1999.

[8] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-
optimal trajectories for a robotic manipulator: A prov-
ably good approximation algorithm. In IEEE Int. Conf.
Robot. & Autom., pages 150-155, Cincinnati, OH, 1990.

[9] T. Karatas and F. Bullo. Randomized searches and non-
linear programming in trajectory planning. In IEFEE
Conference on Decision and Control, 2001.

[10] R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock. Kino-
dynamic motion planning amidst moving obstacles. In
IEEE Int. Conf. Robot. & Autom., 2000.

[11] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA, 1991.

[12] S. M. LaValle. Rapidly-exploring random trees: A new
tool for path planning. TR 98-11, Computer Science
Dept., Iowa State University., Oct. 1998.

[13] S. M. LaValle and J. J. Kuffner. Randomized kinody-
namic planning. In IEEE Int. Conf. Robot. & Autom.,
1999.

[14] S. M. LaValle and J. J. Kuffner. Rapidly-exploring ran-
dom trees: Progress and prospects. In Workshop on the
Algorithmic Foundations of Robotics, 2000.

[15] S. M. LaValle and P. Konkimalla. Algorithms for com-
puting numerical optimal feedback motion strategies.
Int. J. Robot. Res. 20(9):729-752, 2001.

[16] K. M. Lynch and M. T. Mason. Stable pushing: Mechan-
ics, controllability, and planning. Int. J. Robot. Res.,
15(6):533-556, 1996.

[17] A. Marigo and B. Piccoli and A. Bicchi Reachability
Analysis for a Class of Quantized Control Systems. In
Proc. IEEE Conf. on Decision and Control, 2000.

[18] J. Reif and H. Wang. Non-uniform discretization ap-
proximations for kinodynamic motion planning. In J.-
P. Laumond and M. Overmars, editors, Algorithms for
Robotic Motion and Manipulation, pages 97-112. A K
Peters, Wellesley, MA, 1997.

[19] G. J. Toussaint, T. Bagar, and F. Bullo. Motion plan-
ning for nonlinear underactuated vehicles using hinfinity
techniques. Coordinated Science Lab, University of Illi-
nois, September 2000.

[20] C. Yap and T. Dubé. The ezact computation paradigm.
World Scientific Press, 1995.

