Survivability: Measuring and Ensuring Path Diversity

Lawrence H. Erickson and Steven M. LaValle
Department of Computer Science
University of lllinois at Urbana-Champaign
Urbana, IL 61801 USA
{lericks4, lavallé @uiuc.edu

Abstract— A novel criterion is introduced for assessing the current paper, appears in [11].
diversity of a collection of paths or trajectories. The mainidea
is the notion of survivability, which measures the likelihad Our paper is inspired by the recent works of Branicky,

that numerous paths are obstructed by the same obstacle. Thi Knepper, and Kuffner, in which they introduce the notion
helps to improve robustness with respect to collision, whit ¢ oy giversityfor designing a robust, efficient collection

is an important challenge in the design of real-time plannirgy
algorithms. Efficient algorithms are presented for computing of paths or trajectories [1]. They discretize the environme

the survivability criterion and for selecting a subset of pahsthat INt0 square segments and then greedily choose paths that
optimize survivability from a larger collection. The algorithms ~ minimize the number of squares that the paths hold in

are implemented and solutions are illustrated for four different common. This makes important progress toward designing

systems. Chi-square tests are used to show uniform coverage o . ; T
obtained by using the computed paths in a simple breadth-firs better prlmltlves anq |mpr0V|ng .our. understandlng, ho‘f"‘?‘.’e
some issues remain. One limitation is that the definition

search. Random obstacle placement is used to show superior) ; et X
robustness of these primitives compared to uniform samplig depends on an arbitrary discretization of the state spdoe in
of the control space. boxes. If the discretization is much coarser than the oletac

then the method may report that two well-separated paths are
|. INTRODUCTION likely to be blocked by the same obstacle. On the other hand,

For over a decade, planning algorithms have been hadhthe discretization is much smaller than the typical oblta

pered by the challenging issue of designing effective nmotioSiZ€; then two paths that might in fact be very close to each
primitives. This is particularly an issue with nonholonemi ©ther could be reported as being well-separated.

a?f_d _klncl)dynamlc plag_r;flng, n V;’h'Ch It b_ecomﬁﬁ mmant 00 | this paper, we introduce a new criterion, callgviv-
e |cI|enty O\ﬁrco;ne i e{lt_ar!tla fconstralmtS w 'z Z'. M- ability, which tries to assess the likelihood that other paths
ously searching for a collision-iree trajectory. ISAO8S g rvive when a path in the collection is destroyed by an

of this issue n the context Of. rapidly exploring randomy,,qa 016 The idea is to bombard each path by obstacles and
trees appears in [6]'. For .pa.r_tlcular systems, t.he CarefHEaracterize the collateral damage to other paths. Rdthar t

construction Qf effective primitives dramatlcally Imp@ fixing a particular resolution for obstacles, our surviVipi
performance in [2], [3]. In much earlier work, an eI’T'C'emdefinition averages over all resolutions, thereby avoidirey

nqnhqlonomlc pl_anner was made by usmg_Dublns CUIVES Gfscretization sensitivity in the path diversity definitifrom
primitives [4]. Given the recent technological advances |tr[x
I

autonomous vehicles, there has been substantial interes
real-time planning in cluttered, unpredictable environise Section Il introduces the mathematical definition of sur-
This has prompted the development of methods that desigivability, which is expressed in terms of integrals over al
motion primitives for outdoor vehicle navigation [7], [10] paths and obstacle sizes. Section Il introduces an aklgorit
With all of the practical demonstrations that finding thethat computes the survivability in timé(n2plg®p), in
“right” primitives dramatically helps in planning algdnins, which n is the number of paths in the collection apd
we wonder what criterion should one optimize in choosings the number of sample points chosen along each path to
them? If this issue becomes well-understood, then it shouValuate the integrals. Section IV then uses the algorithm
be possible to automate the design of effective motioto develop anO(Nn2plg? p)-time algorithm that selects
primitives as problems arise in new contexts. a set of n paths from a larger collection ofV paths
The quest for a good collection of paths is related tdy optimizing the computed survivability. The algorithms
basic sampling issues that have arrived in many contexte implemented, and Section V presents experiments on
For example, selecting points that optimidiescrepancyis four systems: a hovercraft, a double integrator, Dubing car
important for numerical integration [9]. Choosing samplesind a car pulling four trailers. The experiments show that
in configuration space that redudépersion(radius of the primitives selected by optimizing survivability have hsett
largest empty ball) is desirable in optimization [9], [12]jda uniform exploration properties and robustness with respec
motion planning [5]. An interesting extension of discrepan to obstacles in comparison to primitives chosen by unifgrml
to the space of paths, which is more closely related to theampling the control space and primitives chosen at random.

T is close tox,.,.; is extremely dangerous because an obstacle
placed along it would likely block:,..,, and consequently
all paths inT.

Troot

IIl. CALCULATING THE SURVIVABILITY

For very simple types of paths, such as straight lines origi-
nating fromz,...:, it is possible to compute(7") analytically.
However, as the dimension of the problem increases and the
Fig. 1. An illustration of the inner integral of Equation 1nAbstacle of paths become more complicated, finding an exact value of

constant radius is dragged along o(T) becomes difficult or impossible. In these situations, we
represent each path as a sequence of evenly-spaced points in
X:

Il. SURVIVABILITY

. TRT= (7(51)77(52)a7(53)a'-'aT(Sn))v 3

This section introduces a new measure, cafiedvivabil-
ity, for a collection of paths. LeX C R" be astate space for which0 <s; <--- <s, <e;.
which is assumed to be a typical manifold resulting from LetT be the setin which eache T'is replaced by". The
the configuration spaceof a robot, or possibly thgphase building block of computing survivability is Algorithm 11 |
space which includes configuration and velocity variablesuses a subroutine called NEAREGT7.) which returns the
Letp: X x X — [0,00) denote the distance metric 0. element in7. that is closest ta.

Let 7 : [0,e;] — X denote a continuous, finite-length,
path parameterized with constant speed, in which> 0 Algorithm 1 ORDEREDPAIRWISE(7,7’)
is the endpoint of the path domain. L&t be any finite a<—0
collection of such paths, with the assumption that there is n is the number of points i

some fixed state, ... called theroot, for which7(0) = 0t for i =1tondo

for all 7 € T'. The domain endpoint, may be different for x. =NEAREST(7(s;),7)
eachr € T. The path parametere [0, e;] may or may not a+—a+ p(7(si),)
correspond to time. end for

The main idea will be to evaluate paths based on whetherReturna/n
they can “survive” an obstacle iN that blocks them. For an
obstacleO C X, a path is said to bblockedif there exists
somes € [0,e,] for which 7(s) € O. Let r-survivability
a(T,r,xz) € [0,1] be the fraction of paths iff" that are
blocked by a ball of radius: centered atz. Since the
choices ofr andx are arbitrary, consider averaging over all
possibilities. This yields thesurvivability o, (T) of a pathr
in the collectionT’, which is defined as

Algorithm 1 approximately calculates (1) for.(T') with
the condition that the only member @fis 7’. Sinceo, (1)
simply evaluates the fraction of surviving paths for diffiet
obstruction sizes and different points, it can be approigfya
computed by simply running Algorithm 1 for evefy € T
and averaging over the results, giving Algorithm 2.

o (T) = L/ / " (T, 7, 7(s))dsdr- (1) Algorithm 2 SINGLE.PATH_SURVIVABILITY (7,T)
érJo Jo a+—0

Note that the upper bound of on the outer integral may n «— |T|
be replaced by,,.., the maximum length over all paths in for i =1 to n do
T. All paths inT are blocked for radii larger thefy,,,,. and a +— a+ORDEREDPAIRWISE(7, Ti)
therefore nothing more contributes &g (7). end for

The survivability of a setT of paths is defined by Returna/n
averaging (1) over ali- € T' to obtain:

1
o(T) = ol > o (T =) 2)

Algorithm 3 calculates (2) by iterating Algorithm 2 over
all 7 eT.

Note that because the limits of integration are independemgorithm 3 SURVIVABILITY (T)
of each other the integration order can be swapped. p—
Intuitively, o(T") attempts to measure the amount of collat- n — |7
eral damage a single pathis likely to do to the other paths for i — 1 to n do
in T if it is blocked by some obstacle. A path that has o — a+SINGLE PATH_SURVIVABILITY (4 7
many intersections with other paths is problematic because #) B v
an obstacle that blocks is likely to block the paths that endz for
intersectr. Paths that almost intersect are also dangerousRetuma/n
for the same reason. A pathfor which most of its image

Algorithm 3 executes quickly. If all of the paths are
organized into kd-trees, which enaltkn lg n) construction

of the subset, as in [1]. This method is certainly quick, but
it can be dangerous if the first paihy; is some extremely

time andO(Ign) lookup time, then, assuming that all pathssuboptimal path, such as one that closely circles the root

have fewer thamp points, Algorithm 1 take®)(plg® p) time.

for its entire length. A better method is to iterate through

There are two nested loops in Algorithms 2 and 3 that eadhe master set some constant number of tifkegwe use
run in O(n) time; hence, the entire calculation runs in timekX = 3) and look for the path that is most different from

O(n2plg? p), in which n is the number of paths if’.

IV. SELECTING THE BEST PATHS

Suppose you are given a very large seNopathsTy,;;, and
you want to select a small subsetofpaths that maximize
the survivability. Choosing the optimal set afpaths from
a master sefy,; of N paths would require checking every
n-sized subset df,;;. Unfortunately, that would tak&®(n!)
time. However, if a subsefy,;, of n — 1 paths is provided,

the one selected in the previous iteration, as demonstrated
in Algorithm 5, which takes a master sét, as input and
returns two reasonable paths to use as a nucleus, along with
their survivability value.

Algorithm 5 CHOOSE2_START(7,.;;)

a+1

n T
for i =1to K do

it is easier to find the best path to add to the subset. Simply ; « —1

running Algorithm 3 on then — 1)-path subset augmented
with every possible path would tak€(Nn?plg®p) time
(assumingV is very large relative ta). Naively constructing

ann-path subset step-by-step from one or two starting paths

would therefore takeO(Nn?plg? p). However, adding a

single path by completely recomputing Algorithm 3 for every
possible added path ignores any previous computation that

may have been done.
If Algorithm 3 has already been performed @k, then

the next best path to add can be found in linear time relative

to n. Essentially, Algorithm 3 performs Algorithm 1 on every
ordered pair of different paths in the input set. A set of siz

n hasn? — n ordered pairs of distinct elements. When a

b— —1
for j=1ton do
2 —SURVIVABILITY (1, +
if © > m then
m «— X

;)

b—1j

end if
end for
if i # K then

a=>b
else

ReturnT,, 1), andm
end if

e

new pathr,., is added to the set, Algorithm 1 does not end for

have to be executed on pairs that do not involyg, . If

a new pathr,., is added to a set of paths, there are
2n invocations of Algorithm 1 that involveP, meaning
that a new path can be found {fi(n) time. Algorithm 4
calculates the value of SURVIVABILITY sup + Trew),
where T}, is a pre-existing set of approximate paths

In most models that have some sort of angular control, this
method will quickly choose two paths that steer in opposite
directions with high magnitude. However, this method is
imperfect, and finding a superior way to choose some initial
constant set is a subject of current research.

Thew 1S @N approximate path to be added to the set, and For certain extremely simple systems, such as the case

2 =SURVIVABILITY (Tyyu).

Algorithm 4 CHECK_SINGLE_PATH(T, #e0,)

wy — |F|(1] - 1)

a <— wWoT

for i =1 to |T| do
a «— a+ORDERED.PAIRWISE(ﬁ,%new)
a — a+ORDERED_PAIRWISE(%new,ﬁ)

end for R

wy — (1T + D[]

a«—ajwys

Returna

Building ann path set froml or 2 starting paths using

where all motion primitives are all straight lines in the
DDy Plane emanating from,,., this method will choose
primitives that are as close as possible to uniform sampling
Notice the Van der Corput sequence-like behavior ([13]) of
the algorithm as it selects more primitives in Figure 2.

V. EXPERIMENTS

Two different types of experiments were performed. In
the first set of experiments, a set of primitives was chosen
to maximize survivability. These primitives were used to
construct a tree in the workspace. The quality of these trees
was gauged by a chi-squared measure, which rewards an
even distribution of nodes and wide exploration, and pugssh
clumping of the nodes. A different robotic model was used
in each experiment. In the second set of experiments, random

this method would takeé)(Nn?plg® p) time. This begs the obstacles were placed in the workspace, and the amount
guestion of how to select some constant number of startirgf surviving paths was measured. The primitives chosen to
paths that can be used as a nucleus upon which the restnadiximize survivability were compared to primitives chosen
the set can be built. The easiest method is to declare the random from the master set and primitives created by
first member of the master sét,;; to be the first member uniform sampling of the control space.

velocity were all zero, and the trees were 60 seconds deep,
the minimum and maximum reachable values for evRry
component are as follows:

dimension| minimum | maximum

P 1125 1800
Dy —1666 1666
Uy —47.44 60

vy —57.72 57.72

Of course, not all combinations of these minimum and
maximum values are actually reachable by the robot, but
this is not very important when simply comparing the per-

formance of primitive sets.
Fig. 2. The results of incrementally choosing 3, 4, 5, 6, 1] a4 paths ; : !
from an initial set of 100,000 linear paths. Two initial pativere chosen Two different uniform path sets Were_ generated. The first
with Algorithm 5, and the other paths were chosen increnigrtig iterating ~ One resulted from actual uniform sampling,®p= 0, u, =
through the master set of paths while repeatedly callingoAtigm 4 to 1/2' or u, = 1. However, this creates a Iarge number of

determine the most survivability-preserving path that neisalready present : : : P :
in the subset. Every added path goes in the middle of thedaggmp left points that S|mply sit at the ongmn, so a second uniform set

from the previous iteration, producing a result that woutd identical to ~ Was also generated whetg = 1/3, u, = 2/3, or u, =

uniform sampling if the proper primitives had been avagattbm the input 1. In both uniform setsu, = —.25, u, = 0, or u, =

set. .25. Twenty randomly chosen sets of primitives were also
tested. The chi-squared test results of three of the sets are

A. Hovercraft shown individually, along with the average of the results of

OIall twenty sets. All results are normalized so the result of

The hovercraft is a robot that can propell itself forwar he primitiv lculated to maximiz rvivability 000
in the plane with the use of a large jet. However, since |It €p es calcuated to ma € survivabiiity '

hovers over the ground, it is not subject to friction, so the calczelfflted chl-sqluz(i)ge(;j resul
only way it can slow itself down is by rotating itself around random 1 5'532
and thrusting in a direction opposite to its movement. It is random 2 2'142
also equipped with two other jets that can be pointed in random 3 11' 289
opposite directions to allow rotation. 20 random avg 4 696

The effectiveness of this method was tested by performing uniform 1 6.374
a chi-square test on a trees formed from primitives chosen uniform 2 4'559

with this algorithm, and comparing the results to both séts o

randomly selected paths from the master set and sets of paﬁh Figure 3 shows the results (in the—p, plane) of building

aepth 4 tree with three different primitive sets. The blue
oints represent the tree nodes, and the red lines are the
edges. Note that the tree made from the primitives chosen to
maximize the survivability have formed a tree that explores
almost evenly in every direction. The uniformly sampled
primitives (specifically, the uniform 2 set) explores fartlre

+p, direction, but little in the other directions. The randomly

generated from uniformly sampled controls. The hovercra
model used in these tests has following state variableg,
Vg, Uy, and g, denoting thex position, they position, the
x velocity, they velocity, and the robot’s orientation. It has
two controls,u, andu,,. The state transition equation is

Pz = Uz chosen set (the random 1 set) explores only a very small
Dy = Uy space.

Vp = Ug COS O 4

‘ ¢ @ B. Dubins Car

Uy = Uq Sin 0

These experiments were also performed for more basic
robotic models. The Dubins car has one input (the rate of
_ The value ofu, can range fron® to 1, and the value of the change in heading,,, which can vary fromp to 1) and
0 (in radians per second) can range fren25 to .25. the state transition equation

A set of 3000, 15-second long primitives were calculated
from a non-moving initial state pointed in thiex direction.

0 = u,.

Note that this means every path in the configuration has a Pz = cosf
different length in the state space. A weightegdmetric was Dy = sind (5)
used to calculate the distance between stajeand z, on 0=u,.

the paths. Every set had 9 primitives in it. The environment

was split into 9° buckets for the chi-squared calculation These nine primitive sets were also drawn from a master
(every dimension was split into nine segments), and the setst of 3000, were also 15 seconds long, and were also
of primitives were built into trees of depth 4 (for a totalconstructed into trees of depth 4. The path from the tree
of 7381 nodes). Since the starting orientation, position a root to a leaf is 60 seconds long; the maximum and minimum

Fig. 3. [top] The entire 3000 path master set. [top middle¢ Pnimitives
chosen to maximize survivability. [middle] The depth 4 treade by the
primitives chosen to maximize survivability. [bottom midH The depth
4 tree made by uniform primitives. [bottom] The depth 4 treadm by
randomly selected primitives.

reachable values for evely component are contained in the

table below. o _
dimension| minimum | maximum
Da —(60 —) 60
Dy —(60 —7/2) | 60— 7/2

These chi-squared experiments divided the state space into
9% boxes. The normalized results are shown in the table
below.

set chi-squared result

calculated 1.000
random 1 1.412
random 2 1.783
random 3 1.623

20 random avg 1.715
uniform 5.588

Figure 4 shows the distributions in tgp, plane of the

points in the trees generated by primitives found to maxémiz
survivability, the points generated by uniform samplingd a
the points generated by the random 3 set. Notice that, @espit
the kinodynamic limitations of the Dubins car, the primts/
chosen to maximize survivability search almost isotrolpica
while the uniform set clumps into certain branches. The
random set has a distinct ditch near the top of its range.

C. Double Integrator

The double integrator has two state variabjgsand v,,
and one inputy,, which for these experiments varied from
—1 to 1. The state transition equation is

De = Vg

Vp = Ug.

(6)

These nine primitive sets were also drawn from a master
set of 3000, were also 15 seconds long, and were also
constructed into trees of depth 4. The path from the tree
root to a leaf is 60 seconds long; the maximum and minimum
reachable values for every dimension in the table below.

dimension| minimum | maximum
Pa —1800 1800
Vg ‘ —60 ‘ 60

The state space was divided in® boxes for the chi-
squared calculation. The normalized results are shownein th
table below.

set chi-squared result
calculated 1.000
random 1 7.471
random 2 4.835
random 3 3.877
20 random avg 7.019
uniform 1.178

The primitives chosen to maximize survivability have
excellent internal coverage. The uniform set produces a
lattice, but many points lie on top of each other, which
severely reduces the diversity of the point set and is a sign
of poor internal coverage. The random set (random 2) in
Figure 5 shows clear clumping in the upper right side, and
it explores the space poorly.

Fig. 4. [top] The depth 4 tree made by the primitives chosemaximize Fig. 5. [top] The depth 4 tree made by the primitives chosemaximize
survivability. [middle] The depth 4 tree made by uniform mitives. survivability. [middle] The depth 4 tree made by uniform rpitives.
[bottom] The depth 4 tree made by randomly selected prigstiv [bottom] The depth 4 tree made by randomly selected prigstiv

Pz = Uy €OS Oy

Dy = Uy Sin by
D. Car Pulling Four Trailers g = W
0= 7 tan ug

01 = F” in(f; — 6
0y = d
The car pulling four trailers has two inputs,, the current d
velocity, andu,, the angle of the pulling car’s front wheels, 6, = — cos(65 — 03 cos(fy — 02) cos(bp — 601) sin(5 — 04).
and seven state variables. For these tesis< u, < 1, and @)
—m/3 < ug < /3. To construct the trees, 10 primitives
were drawn from a pool of 3000, and trees of depth 3 were The maximum and minimum reachable values for €Rch
formed. There are also two constantsthe front car length component are listed in the table below.
and d, the trailer hitch length, which were chosen to be dimension| minimum| maximum
1/4 and 3/4 respectively. Our model is adapted from one Da —44.55 45
presented in [8]. The state transition equation is Dy ‘ —44.78 ‘ 44.78

)
cos(fy — 61) sin(f; — 63)
cos(fy — 63) cos(fp — 61) sin(f2 — 63)
()

Fig. 7. Views from thefy64 plane. [top] The depth 3 tree made by the
primitives chosen to maximize survivability. [bottom] THepth 3 tree made
by uniform primitives.

.)
o 3
A H
L i}
{':Eilli
L |

the poor coverage of the uniform primitives and the superior
coverage of the primitives that maximize survivability.

E. Random obstacle placement

These experiments involved placing a circular obstacle,
with randomly chosen position and radius, into a workspace
containing a set of 50 Dubins car paths and calculating
Fig. 6. [top] The depth 3 tree made by the primitives chosemaniimize the fraction of unblocked paths. Seven different sets were
[Sk;g;’tg’r?f])"%'e [d";'r‘)jt‘:]'es], t;lemdaed'[ghby3r;r%%mn?;‘;zl et;¥eé‘r;I?£ivmmves' tested, one with primitives chosen to maximize survivapili

one with primitives generated by uniform sampling of the
controls, and five sets consisting of primitives chosen at

For the chi-squared calculations, the state space was S\%ﬁ#dom from the master set. Each set was te;ted Wlt.h 5090
into 77 regions. The normalized results are in the table belo ierent obstacles, though a test was considered invalid

unless at least one path in the set was blocked. The results

set chi-squared result of the tests are shown in the table below
calculated 1.000 set average fraction of surviving paths

random 1 1.558 calculated 0.560

rangom g 1222 random 1 0.504
random)

random 2 0.501

20 ran_;jom avg 132;3 random 3 0.513
uniform .

random 4 0.500

Note that Figure 6 only shows the robot’s position in the random 5 0.489

p2py Plane. The uniformly sampled primitives explore a wide uniform 0:499

area, but they have poor internal coverage, and many of theapout 25 paths remained unblocked on average in the
nodes are clustered into a few small areas. The calculatgghdom and uniform sets, compared to about 28 paths on

primitives have more evenly distributed internal cover@® average remaining unblocked in the set designed to maximize
in the other tests, the randomly chosen primitives exploee t syryivability, representing 42% improvement.

space poorly.

Additionally, the uniform primitives explore some of the V1. CONCLUSION
other dimensions poorly. Figure 7 shows the distribution of We have presented a new method of measuring path
nodes in thedy0, plane. From this view, it is easy to seediversity and an algorithm that incrementally chooses the

ample would be a robot attempting to drive through a valley.
It may already have a path that it intends to follow, but
perhaps some boulders are now obstructing parts of that path
It would have to quickly devise a plan to navigate around
the boulders and get back on to its intended path. Since a
path set with high survivability minimizes the chance that
an obstacle blocking one path would also block the other
paths in the set, it seems unlikely that a robot equipped with
primitives that maximize survivability would be left withib

(1]

(2]

(31

Fig. 8. [top] The Dubins car paths chosen to maximize subiiig when

the angular component is given a very low weight. [bottom Thubins
car paths chosen to maximize survivability when the angctemponent is
given a very high weight.

(4

(5]

most diverse paths from a master set. However, there aié]
still areas that require further exploration.

Most importantly, our definition of survivability is highly
dependent on the distance metric used to define the ball iff]
(). Using different distance metrics will result in diféert
optimal paths, as seen in Figure 8. It is highly probable thaig)
different metrics will be suited to different application$
the primitives. For example, if exploration of thep, plane
is the primary goal, then a metric that gives higher weights
to the differences betweep, and p, may be preferable.
However, if the problem involves a smallp, space relative
to the robot, but ensuring correct configuration is difficult
(i.e. backing a truck with a trailer attached into a garage,
where the workspace is the garage and a short drivewa%}]
then a metric that gives higher weights to the variis
components may be more desirable. Finding the best metfi¢]
for a given problem and robotic model is an open question.

Additionally, finding the correct number of primitives to
choose given the differential constraints and the dimensfo (131
the state space is an important task. Choosing too few would
unnecessarily restrict the robot’s movement, but choosing
too many would reduce the speed advantage granted by
restricting the robot to a small number of primitives. It is
unclear whether the number of primitives chosen should be
based primarily on the dimension of the state space, control
space, or some combination of the two.

A useful future experiment would be to use these prim-
itives on a robot navigating through a previously mapped
environment with additional unexpected obstacles. An ex-

options when it encounters obstacles.

ACKNOWLEDGMENT

The authors are supported in part by NSF CISE grant
0535007.

REFERENCES

M. S. Branicky, R. A. Knepper, and J. J. Kuffner, “Path amajec-
tory diversity: Theory and algorithms,” ifProc. IEEE International
Conference on Robotics and Automafi@®08, pp. 1359-1364.

E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-basedtion
planning for nonlinear systems with symmetrieSEE Transactions
on Roboticsvol. 21, no. 6, pp. 1077-1091, Dec. 2005.

J. Go, T. Vu, and J. J. Kuffner, “Autonomous behaviors ifderactive
vehicle animations,” inACM SIGGRAPH Symposium on Computer
Animation 2004.

J.-C. Latombe, “A fast path planner for a car-like indooobile robot,”

in Proceedings AAAI National Conference on Atrtificial Intgdince
1991, pp. 659-665.

S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the
relationship between classical grid search and probabitisadmaps,”
International Journal of Robotics Reseayafol. 23, no. 7/8, pp. 673—
692, July/August 2004.

S. M. LaValle and J. J. Kuffner, “Rapidly-exploring ramh trees:
Progress and prospects,” Algorithmic and Computational Robotics:
New Directions B. R. Donald, K. M. Lynch, and D. Rus, Eds.
Wellesley, MA: A K Peters, 2001, pp. 293-308.

D. Mateus, G. Avina, and M. Devy, “Robot visual navigation
semi-structured outdoor environments,” froc. IEEE International
Conference on Robotics and Automati@pr. 2005, pp. 4691-4696.
R. M. Murray and S. Sastry, “Nonholonomic motion plarguirSteer-
ing using sinusoids [EEE Transactions on Automatic Contrebl. 38,
no. 5, pp. 700-716, 1993.

H. Niederreiter,Random Number Generation and Quasi-Monte-Carlo
Methods Philadelphia: Society for Industrial and Applied Mathe-
matics, 1992.

] M. Pivtoraiko and A. Kelly, “Generating near minimalaming con-

trol sets for constrained motion planning in discrete stmaces,” in
Proceedings IEEE/RSJ International Conference on Igetit Robots
and Systems2005.

S. Ramamoorthy, R. Rajagopal, Q. Ruan, and L. Wenzetw-L
discrepancy curves and efficient coverage of spacdrae. Workshop
on the Algorithmic Foundations of Robotiddew York, July 2006.

A. G. Sukharev, “Optimal strategies of the search foreatremum,”
U.S.S.R. Computational Mathematics and Mathematical Bfys
vol. 11, no. 4, 1971, translated from Russidh, Vychisl. Mat. i Mat.
Fiz., 11, 4, 910-924, 1971.

J. G. van der Corput, “Verteilungsfunktionen Rkademie van Weten-
schappenvol. 38, pp. 813-821, 1935.

