
Survivability: Measuring and Ensuring Path Diversity

Lawrence H. Erickson and Steven M. LaValle
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA

{lericks4, lavalle}@uiuc.edu

Abstract— A novel criterion is introduced for assessing the
diversity of a collection of paths or trajectories. The mainidea
is the notion of survivability, which measures the likelihood
that numerous paths are obstructed by the same obstacle. This
helps to improve robustness with respect to collision, which
is an important challenge in the design of real-time planning
algorithms. Efficient algorithms are presented for computing
the survivability criterion and for selecting a subset of paths that
optimize survivability from a larger collection. The algorithms
are implemented and solutions are illustrated for four different
systems. Chi-square tests are used to show uniform coverage
obtained by using the computed paths in a simple breadth-first
search. Random obstacle placement is used to show superior
robustness of these primitives compared to uniform sampling
of the control space.

I. I NTRODUCTION

For over a decade, planning algorithms have been ham-
pered by the challenging issue of designing effective motion
primitives. This is particularly an issue with nonholonomic
and kinodynamic planning, in which it becomes important to
efficiently overcome differential constraints while simultane-
ously searching for a collision-free trajectory. A discussion
of this issue in the context of rapidly exploring random
trees appears in [6]. For particular systems, the careful
construction of effective primitives dramatically improved
performance in [2], [3]. In much earlier work, an efficient
nonholonomic planner was made by using Dubins curves as
primitives [4]. Given the recent technological advances in
autonomous vehicles, there has been substantial interest in
real-time planning in cluttered, unpredictable environments.
This has prompted the development of methods that design
motion primitives for outdoor vehicle navigation [7], [10].

With all of the practical demonstrations that finding the
“right” primitives dramatically helps in planning algorithms,
we wonder what criterion should one optimize in choosing
them? If this issue becomes well-understood, then it should
be possible to automate the design of effective motion
primitives as problems arise in new contexts.

The quest for a good collection of paths is related to
basic sampling issues that have arrived in many contexts.
For example, selecting points that optimizediscrepancyis
important for numerical integration [9]. Choosing samples
in configuration space that reducedispersion(radius of the
largest empty ball) is desirable in optimization [9], [12] and
motion planning [5]. An interesting extension of discrepancy
to the space of paths, which is more closely related to the

current paper, appears in [11].

Our paper is inspired by the recent works of Branicky,
Knepper, and Kuffner, in which they introduce the notion
of path diversityfor designing a robust, efficient collection
of paths or trajectories [1]. They discretize the environment
into square segments and then greedily choose paths that
minimize the number of squares that the paths hold in
common. This makes important progress toward designing
better primitives and improving our understanding; however,
some issues remain. One limitation is that the definition
depends on an arbitrary discretization of the state space into
boxes. If the discretization is much coarser than the obstacles,
then the method may report that two well-separated paths are
likely to be blocked by the same obstacle. On the other hand,
if the discretization is much smaller than the typical obstacle
size, then two paths that might in fact be very close to each
other could be reported as being well-separated.

In this paper, we introduce a new criterion, calledsurviv-
ability, which tries to assess the likelihood that other paths
survive when a path in the collection is destroyed by an
obstacle. The idea is to bombard each path by obstacles and
characterize the collateral damage to other paths. Rather than
fixing a particular resolution for obstacles, our survivability
definition averages over all resolutions, thereby avoidingthe
discretization sensitivity in the path diversity definition from
[1].

Section II introduces the mathematical definition of sur-
vivability, which is expressed in terms of integrals over all
paths and obstacle sizes. Section III introduces an algorithm
that computes the survivability in timeO(n2p lg2 p), in
which n is the number of paths in the collection andp
is the number of sample points chosen along each path to
evaluate the integrals. Section IV then uses the algorithm
to develop anO(Nn2p lg2 p)-time algorithm that selects
a set of n paths from a larger collection ofN paths
by optimizing the computed survivability. The algorithms
are implemented, and Section V presents experiments on
four systems: a hovercraft, a double integrator, Dubins car,
and a car pulling four trailers. The experiments show that
primitives selected by optimizing survivability have better
uniform exploration properties and robustness with respect
to obstacles in comparison to primitives chosen by uniformly
sampling the control space and primitives chosen at random.

r τ(eτ)

xroot

τ

T

Fig. 1. An illustration of the inner integral of Equation 1. An obstacle of
constant radius is dragged alongτ .

II. SURVIVABILITY

This section introduces a new measure, calledsurvivabil-
ity, for a collection of paths. LetX ⊂ R

n be astate space,
which is assumed to be a typical manifold resulting from
the configuration spaceof a robot, or possibly thephase
space, which includes configuration and velocity variables.
Let ρ : X ×X → [0,∞) denote the distance metric onX .

Let τ : [0, eτ] → X denote a continuous, finite-length,
path parameterized with constant speed, in whicheτ > 0
is the endpoint of the path domain. LetT be any finite
collection of such paths, with the assumption that there is
some fixed statexroot called theroot, for whichτ(0) = xroot

for all τ ∈ T . The domain endpointeτ may be different for
eachτ ∈ T . The path parameters ∈ [0, eτ] may or may not
correspond to time.

The main idea will be to evaluate paths based on whether
they can “survive” an obstacle inX that blocks them. For an
obstacleO ⊂ X , a path is said to beblockedif there exists
somes ∈ [0, eτ] for which τ(s) ∈ O. Let r-survivability
α(T, r, x) ∈ [0, 1] be the fraction of paths inT that are
blocked by a ball of radiusr centered atx. Since the
choices ofr andx are arbitrary, consider averaging over all
possibilities. This yields thesurvivability στ (T) of a pathτ
in the collectionT , which is defined as

στ (T) =
1

eτ

∫
∞

0

∫ eτ

0

α(T, r, τ(s))dsdr. (1)

Note that the upper bound of∞ on the outer integral may
be replaced byℓmax, the maximum length over all paths in
T . All paths inT are blocked for radii larger thenℓmax and
therefore nothing more contributes toστ (T).

The survivability of a set T of paths is defined by
averaging (1) over allτ ∈ T to obtain:

σ(T) =
1

|T |

∑
τ∈T

στ (T − τ). (2)

Note that because the limits of integration are independent
of each other the integration order can be swapped.

Intuitively, σ(T) attempts to measure the amount of collat-
eral damage a single pathτ is likely to do to the other paths
in T if it is blocked by some obstacle. A pathτ that has
many intersections with other paths is problematic because
an obstacle that blocksτ is likely to block the paths that
intersectτ . Paths that almost intersect are also dangerous
for the same reason. A pathτ for which most of its image

is close toxroot is extremely dangerous because an obstacle
placed along it would likely blockxroot and consequently
all paths inT .

III. C ALCULATING THE SURVIVABILITY

For very simple types of paths, such as straight lines origi-
nating fromxroot, it is possible to computeσ(T) analytically.
However, as the dimension of the problem increases and the
paths become more complicated, finding an exact value of
σ(T) becomes difficult or impossible. In these situations, we
represent each path as a sequence of evenly-spaced points in
X :

τ ≈ τ̂ = (τ(s1), τ(s2), τ(s3), . . . , τ(sn)), (3)

for which 0 ≤ s1 < · · · < sn ≤ eτ .
Let T̂ be the set in which eachτ ∈ T is replaced bŷτ . The

building block of computing survivability is Algorithm 1. It
uses a subroutine called NEAREST(x, τ̂c) which returns the
element inτ̂c that is closest tox.

Algorithm 1 ORDERED PAIRWISE(τ̂ , τ̂ ′)

a← 0
n is the number of points in̂τ
for i = 1 to n do

xc =NEAREST(τ(si), τ̂
′)

a← a + ρ(τ(si), xc)
end for
Returna/n

Algorithm 1 approximately calculates (1) forστ (T) with
the condition that the only member ofT is τ ′. Sinceστ (T)
simply evaluates the fraction of surviving paths for different
obstruction sizes and different points, it can be approximately
computed by simply running Algorithm 1 for everŷτ ′ ∈ T̂
and averaging over the results, giving Algorithm 2.

Algorithm 2 SINGLE PATH SURVIVABILITY (τ̂ , T̂)

a← 0
n← |T̂ |
for i = 1 to n do

a← a+ORDERED PAIRWISE(τ̂ , T̂i)
end for
Returna/n

Algorithm 3 calculates (2) by iterating Algorithm 2 over
all τ̂ ∈ T̂ .

Algorithm 3 SURVIVABILITY (T̂)

a← 0
n← |T̂ |
for i = 1 to n do

a ← a+SINGLE PATH SURVIVABILITY (τ̂i, T̂ −
τ̂i)

end for
Returna/n

Algorithm 3 executes quickly. If all of the paths are
organized into kd-trees, which enableO(n lg n) construction
time andO(lg n) lookup time, then, assuming that all paths
have fewer thanp points, Algorithm 1 takesO(p lg2 p) time.
There are two nested loops in Algorithms 2 and 3 that each
run in O(n) time; hence, the entire calculation runs in time
O(n2p lg2 p), in which n is the number of paths inT .

IV. SELECTING THE BEST PATHS

Suppose you are given a very large set ofN pathsTall, and
you want to select a small subset ofn paths that maximize
the survivability. Choosing the optimal set ofn paths from
a master setTall of N paths would require checking every
n-sized subset ofTall. Unfortunately, that would takeO(n!)
time. However, if a subsetTsub of n− 1 paths is provided,
it is easier to find the best path to add to the subset. Simply
running Algorithm 3 on the(n− 1)-path subset augmented
with every possible path would takeO(Nn2p lg2 p) time
(assumingN is very large relative ton). Naively constructing
ann-path subset step-by-step from one or two starting paths
would therefore takeO(Nn3p lg2 p). However, adding a
single path by completely recomputing Algorithm 3 for every
possible added path ignores any previous computation that
may have been done.

If Algorithm 3 has already been performed onTsub, then
the next best path to add can be found in linear time relative
to n. Essentially, Algorithm 3 performs Algorithm 1 on every
ordered pair of different paths in the input set. A set of size
n has n2 − n ordered pairs of distinct elements. When a
new pathτnew is added to the set, Algorithm 1 does not
have to be executed on pairs that do not involveτnew . If
a new pathτnew is added to a set ofn paths, there are
2n invocations of Algorithm 1 that involveP , meaning
that a new path can be found inO(n) time. Algorithm 4
calculates the value of SURVIVABILITY(T̂sub + τ̂new),
where T̂sub is a pre-existing set of approximate paths,
τ̂new is an approximate path to be added to the set, and
x =SURVIVABILITY (T̂sub).

Algorithm 4 CHECK SINGLE PATH(T̂ , τ̂new , x)

w0 ← |T̂ |(|T̂ | − 1)
a← w0x
for i = 1 to |T̂ | do

a← a+ORDERED PAIRWISE(T̂i, τ̂new)
a← a+ORDERED PAIRWISE(τ̂new , T̂i)

end for
wf ← (|T̂ |+ 1)|T̂ |
a← a/wf

Returna

Building an n path set from1 or 2 starting paths using
this method would takeO(Nn2p lg2 p) time. This begs the
question of how to select some constant number of starting
paths that can be used as a nucleus upon which the rest of
the set can be built. The easiest method is to declare the
first member of the master setTall to be the first member

of the subset, as in [1]. This method is certainly quick, but
it can be dangerous if the first pathTall is some extremely
suboptimal path, such as one that closely circles the root
for its entire length. A better method is to iterate through
the master set some constant number of timesK (we use
K = 3) and look for the path that is most different from
the one selected in the previous iteration, as demonstrated
in Algorithm 5, which takes a master set̂Tall as input and
returns two reasonable paths to use as a nucleus, along with
their survivability value.

Algorithm 5 CHOOSE2 START(T̂all)

a← 1
n← |T̂ |
for i = 1 to K do

m← −1
b← −1
for j = 1 to n do

x←SURVIVABILITY (T̂a + T̂j)
if x > m then

m← x
b← j

end if
end for
if i 6= K then

a = b
else

ReturnT̂a, T̂b, andm
end if

end for

In most models that have some sort of angular control, this
method will quickly choose two paths that steer in opposite
directions with high magnitude. However, this method is
imperfect, and finding a superior way to choose some initial
constant set is a subject of current research.

For certain extremely simple systems, such as the case
where all motion primitives are all straight lines in the
pxpy plane emanating fromxroot, this method will choose
primitives that are as close as possible to uniform sampling.
Notice the Van der Corput sequence-like behavior ([13]) of
the algorithm as it selects more primitives in Figure 2.

V. EXPERIMENTS

Two different types of experiments were performed. In
the first set of experiments, a set of primitives was chosen
to maximize survivability. These primitives were used to
construct a tree in the workspace. The quality of these trees
was gauged by a chi-squared measure, which rewards an
even distribution of nodes and wide exploration, and punishes
clumping of the nodes. A different robotic model was used
in each experiment. In the second set of experiments, random
obstacles were placed in the workspace, and the amount
of surviving paths was measured. The primitives chosen to
maximize survivability were compared to primitives chosen
at random from the master set and primitives created by
uniform sampling of the control space.

Fig. 2. The results of incrementally choosing 3, 4, 5, 6, 12, and 24 paths
from an initial set of 100,000 linear paths. Two initial paths were chosen
with Algorithm 5, and the other paths were chosen incrementally by iterating
through the master set of paths while repeatedly calling Algorithm 4 to
determine the most survivability-preserving path that wasnot already present
in the subset. Every added path goes in the middle of the largest gap left
from the previous iteration, producing a result that would be identical to
uniform sampling if the proper primitives had been available from the input
set.

A. Hovercraft

The hovercraft is a robot that can propell itself forward
in the plane with the use of a large jet. However, since it
hovers over the ground, it is not subject to friction, so the
only way it can slow itself down is by rotating itself around
and thrusting in a direction opposite to its movement. It is
also equipped with two other jets that can be pointed in
opposite directions to allow rotation.

The effectiveness of this method was tested by performing
a chi-square test on a trees formed from primitives chosen
with this algorithm, and comparing the results to both sets of
randomly selected paths from the master set and sets of paths
generated from uniformly sampled controls. The hovercraft
model used in these tests has following state variables,x, y,
vx, vy , and θ, denoting thex position, they position, the
x velocity, they velocity, and the robot’s orientation. It has
two controls,ua anduω. The state transition equation is

ṗx = vx

ṗy = vy

v̇x = ua cos θ

v̇y = ua sin θ

θ̇ = uω.

(4)

The value ofua can range from0 to 1, and the value of
θ̇ (in radians per second) can range from−.25 to .25.

A set of 3000, 15-second long primitives were calculated
from a non-moving initial state pointed in the+x direction.
Note that this means every path in the configuration has a
different length in the state space. A weightedL2 metric was
used to calculate the distance between statesx1 and x2 on
the paths. Every set had 9 primitives in it. The environment
was split into 95 buckets for the chi-squared calculation
(every dimension was split into nine segments), and the sets
of primitives were built into trees of depth 4 (for a total
of 7381 nodes). Since the starting orientation, position, and

velocity were all zero, and the trees were 60 seconds deep,
the minimum and maximum reachable values for everyR

component are as follows:
dimension minimum maximum

px −1125 1800
py −1666 1666
vx −47.44 60
vy −57.72 57.72

Of course, not all combinations of these minimum and
maximum values are actually reachable by the robot, but
this is not very important when simply comparing the per-
formance of primitive sets.

Two different uniform path sets were generated. The first
one resulted from actual uniform sampling, soua = 0, ua =
1/2, or ua = 1. However, this creates a large number of
points that simply sit at the origin, so a second uniform set
was also generated whereua = 1/3, ua = 2/3, or ua =
1. In both uniform sets,uω = −.25, uω = 0, or uω =
.25. Twenty randomly chosen sets of primitives were also
tested. The chi-squared test results of three of the sets are
shown individually, along with the average of the results of
all twenty sets. All results are normalized so the result of
the primitives calculated to maximize survivability is1.000.

set chi-squared result
calculated 1.000
random 1 5.532
random 2 2.142
random 3 11.289

20 random avg. 4.696
uniform 1 6.374
uniform 2 4.559

Figure 3 shows the results (in thepx−py plane) of building
a depth 4 tree with three different primitive sets. The blue
points represent the tree nodes, and the red lines are the
edges. Note that the tree made from the primitives chosen to
maximize the survivability have formed a tree that explores
almost evenly in every direction. The uniformly sampled
primitives (specifically, the uniform 2 set) explores far inthe
+px direction, but little in the other directions. The randomly
chosen set (the random 1 set) explores only a very small
space.

B. Dubins Car

These experiments were also performed for more basic
robotic models. The Dubins car has one input (the rate of
the change in headinguω, which can vary from0 to 1) and
the state transition equation

ṗx = cos θ

ṗy = sin θ

θ̇ = uω.

(5)

These nine primitive sets were also drawn from a master
set of 3000, were also 15 seconds long, and were also
constructed into trees of depth 4. The path from the tree
root to a leaf is 60 seconds long; the maximum and minimum

Fig. 3. [top] The entire 3000 path master set. [top middle] The primitives
chosen to maximize survivability. [middle] The depth 4 treemade by the
primitives chosen to maximize survivability. [bottom middle] The depth
4 tree made by uniform primitives. [bottom] The depth 4 tree made by
randomly selected primitives.

reachable values for everyR component are contained in the
table below.

dimension minimum maximum
px −(60− π) 60
py −(60− π/2) 60− π/2

These chi-squared experiments divided the state space into
93 boxes. The normalized results are shown in the table
below.

set chi-squared result
calculated 1.000
random 1 1.412
random 2 1.783
random 3 1.623

20 random avg. 1.715
uniform 5.588

Figure 4 shows the distributions in thepxpy plane of the
points in the trees generated by primitives found to maximize
survivability, the points generated by uniform sampling, and
the points generated by the random 3 set. Notice that, despite
the kinodynamic limitations of the Dubins car, the primitives
chosen to maximize survivability search almost isotropically,
while the uniform set clumps into certain branches. The
random set has a distinct ditch near the top of its range.

C. Double Integrator

The double integrator has two state variables,px andvx,
and one input,ua, which for these experiments varied from
−1 to 1. The state transition equation is

ṗx = vx

v̇x = ua.
(6)

These nine primitive sets were also drawn from a master
set of 3000, were also 15 seconds long, and were also
constructed into trees of depth 4. The path from the tree
root to a leaf is 60 seconds long; the maximum and minimum
reachable values for every dimension in the table below.

dimension minimum maximum
px −1800 1800
vx −60 60

The state space was divided into92 boxes for the chi-
squared calculation. The normalized results are shown in the
table below.

set chi-squared result
calculated 1.000
random 1 7.471
random 2 4.835
random 3 3.877

20 random avg. 7.019
uniform 1.178

The primitives chosen to maximize survivability have
excellent internal coverage. The uniform set produces a
lattice, but many points lie on top of each other, which
severely reduces the diversity of the point set and is a sign
of poor internal coverage. The random set (random 2) in
Figure 5 shows clear clumping in the upper right side, and
it explores the space poorly.

Fig. 4. [top] The depth 4 tree made by the primitives chosen tomaximize
survivability. [middle] The depth 4 tree made by uniform primitives.
[bottom] The depth 4 tree made by randomly selected primitives.

D. Car Pulling Four Trailers

The car pulling four trailers has two inputs,uv, the current
velocity, anduφ, the angle of the pulling car’s front wheels,
and seven state variables. For these tests,−1 ≤ uv ≤ 1, and
−π/3 ≤ uφ ≤ π/3. To construct the trees, 10 primitives
were drawn from a pool of 3000, and trees of depth 3 were
formed. There are also two constants,L, the front car length
and d, the trailer hitch length, which were chosen to be
1/4 and 3/4 respectively. Our model is adapted from one
presented in [8]. The state transition equation is

Fig. 5. [top] The depth 4 tree made by the primitives chosen tomaximize
survivability. [middle] The depth 4 tree made by uniform primitives.
[bottom] The depth 4 tree made by randomly selected primitives.

ṗx = uv cos θ0

ṗy = uv sin θ0

θ̇0 =
uv

L
tan uφ

θ̇1 =
uv

d
sin(θ1 − θ0)

θ̇2 =
uv

d
cos(θ0 − θ1) sin(θ1 − θ2)

θ̇3 =
uv

d
cos(θ1 − θ2) cos(θ0 − θ1) sin(θ2 − θ3)

θ̇4 =
uv

d
cos(θ2 − θ3) cos(θ1 − θ2) cos(θ0 − θ1) sin(θ3 − θ4).

(7)

The maximum and minimum reachable values for eachR

component are listed in the table below.
dimension minimum maximum

px −44.55 45
py −44.78 44.78

Fig. 6. [top] The depth 3 tree made by the primitives chosen tomaximize
survivability. [middle] The depth 3 tree made by uniform primitives.
[bottom] The depth 3 tree made by randomly selected primitives.

For the chi-squared calculations, the state space was split
into 77 regions. The normalized results are in the table below.

set chi-squared result
calculated 1.000
random 1 1.558
random 2 1.553
random 3 1.305

20 random avg. 1.436
uniform 1.961

Note that Figure 6 only shows the robot’s position in the
pxpy plane. The uniformly sampled primitives explore a wide
area, but they have poor internal coverage, and many of the
nodes are clustered into a few small areas. The calculated
primitives have more evenly distributed internal coverage. As
in the other tests, the randomly chosen primitives explore the
space poorly.

Additionally, the uniform primitives explore some of the
other dimensions poorly. Figure 7 shows the distribution of
nodes in theθ0θ4 plane. From this view, it is easy to see

Fig. 7. Views from theθ0θ4 plane. [top] The depth 3 tree made by the
primitives chosen to maximize survivability. [bottom] Thedepth 3 tree made
by uniform primitives.

the poor coverage of the uniform primitives and the superior
coverage of the primitives that maximize survivability.

E. Random obstacle placement

These experiments involved placing a circular obstacle,
with randomly chosen position and radius, into a workspace
containing a set of 50 Dubins car paths and calculating
the fraction of unblocked paths. Seven different sets were
tested, one with primitives chosen to maximize survivability,
one with primitives generated by uniform sampling of the
controls, and five sets consisting of primitives chosen at
random from the master set. Each set was tested with 5000
different obstacles, though a test was considered invalid
unless at least one path in the set was blocked. The results
of the tests are shown in the table below.

set average fraction of surviving paths
calculated 0.560
random 1 0.504
random 2 0.501
random 3 0.513
random 4 0.500
random 5 0.489
uniform 0.499

About 25 paths remained unblocked on average in the
random and uniform sets, compared to about 28 paths on
average remaining unblocked in the set designed to maximize
survivability, representing a12% improvement.

VI. CONCLUSION

We have presented a new method of measuring path
diversity and an algorithm that incrementally chooses the

Fig. 8. [top] The Dubins car paths chosen to maximize survivability when
the angular component is given a very low weight. [bottom] The Dubins
car paths chosen to maximize survivability when the angularcomponent is
given a very high weight.

most diverse paths from a master set. However, there are
still areas that require further exploration.

Most importantly, our definition of survivability is highly
dependent on the distance metric used to define the ball in
(1). Using different distance metrics will result in different
optimal paths, as seen in Figure 8. It is highly probable that
different metrics will be suited to different applicationsof
the primitives. For example, if exploration of thepxpy plane
is the primary goal, then a metric that gives higher weights
to the differences betweenpx and py may be preferable.
However, if the problem involves a smallpxpy space relative
to the robot, but ensuring correct configuration is difficult
(i.e. backing a truck with a trailer attached into a garage,
where the workspace is the garage and a short driveway),
then a metric that gives higher weights to the variousS

1

components may be more desirable. Finding the best metric
for a given problem and robotic model is an open question.

Additionally, finding the correct number of primitives to
choose given the differential constraints and the dimension of
the state space is an important task. Choosing too few would
unnecessarily restrict the robot’s movement, but choosing
too many would reduce the speed advantage granted by
restricting the robot to a small number of primitives. It is
unclear whether the number of primitives chosen should be
based primarily on the dimension of the state space, control
space, or some combination of the two.

A useful future experiment would be to use these prim-
itives on a robot navigating through a previously mapped
environment with additional unexpected obstacles. An ex-

ample would be a robot attempting to drive through a valley.
It may already have a path that it intends to follow, but
perhaps some boulders are now obstructing parts of that path.
It would have to quickly devise a plan to navigate around
the boulders and get back on to its intended path. Since a
path set with high survivability minimizes the chance that
an obstacle blocking one path would also block the other
paths in the set, it seems unlikely that a robot equipped with
primitives that maximize survivability would be left without
options when it encounters obstacles.

ACKNOWLEDGMENT

The authors are supported in part by NSF CISE grant
0535007.

REFERENCES

[1] M. S. Branicky, R. A. Knepper, and J. J. Kuffner, “Path andtrajec-
tory diversity: Theory and algorithms,” inProc. IEEE International
Conference on Robotics and Automation, 2008, pp. 1359–1364.

[2] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-basedmotion
planning for nonlinear systems with symmetries,”IEEE Transactions
on Robotics, vol. 21, no. 6, pp. 1077–1091, Dec. 2005.

[3] J. Go, T. Vu, and J. J. Kuffner, “Autonomous behaviors forinteractive
vehicle animations,” inACM SIGGRAPH Symposium on Computer
Animation, 2004.

[4] J.-C. Latombe, “A fast path planner for a car-like indoormobile robot,”
in Proceedings AAAI National Conference on Artificial Intelligence,
1991, pp. 659–665.

[5] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the
relationship between classical grid search and probabilistic roadmaps,”
International Journal of Robotics Research, vol. 23, no. 7/8, pp. 673–
692, July/August 2004.

[6] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” inAlgorithmic and Computational Robotics:
New Directions, B. R. Donald, K. M. Lynch, and D. Rus, Eds.
Wellesley, MA: A K Peters, 2001, pp. 293–308.

[7] D. Mateus, G. Avina, and M. Devy, “Robot visual navigation in
semi-structured outdoor environments,” inProc. IEEE International
Conference on Robotics and Automation, Apr. 2005, pp. 4691–4696.

[8] R. M. Murray and S. Sastry, “Nonholonomic motion planning: Steer-
ing using sinusoids,”IEEE Transactions on Automatic Control, vol. 38,
no. 5, pp. 700–716, 1993.

[9] H. Niederreiter,Random Number Generation and Quasi-Monte-Carlo
Methods. Philadelphia: Society for Industrial and Applied Mathe-
matics, 1992.

[10] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning con-
trol sets for constrained motion planning in discrete statespaces,” in
Proceedings IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2005.

[11] S. Ramamoorthy, R. Rajagopal, Q. Ruan, and L. Wenzel, “Low-
discrepancy curves and efficient coverage of space,” inProc. Workshop
on the Algorithmic Foundations of Robotics, New York, July 2006.

[12] A. G. Sukharev, “Optimal strategies of the search for anextremum,”
U.S.S.R. Computational Mathematics and Mathematical Physics,
vol. 11, no. 4, 1971, translated from Russian,Zh. Vychisl. Mat. i Mat.
Fiz., 11, 4, 910-924, 1971.

[13] J. G. van der Corput, “Verteilungsfunktionen I,”Akademie van Weten-
schappen, vol. 38, pp. 813–821, 1935.

