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Abstract— Suppose that two members of a finite point guard
setS within a polygon P must be given different colors if their
visible regions overlap, and that every point inP is visible from
some point inS. The chromatic art gallery problem, introduced
in [7], asks for the minimum number of colors required to color
any guard set (not necessarily a minimal guard set) ofP .

We study two related problems. First, given a polygonP
and a guard setS of P , can the members ofS be efficiently
and optimally colored so that no two members ofS that have
overlapping visibility regions have the same color? Second,
given a polygonP and a set of candidate guard locationsN ,
is it possible to efficiently and optimally choose the guard set
S ⊆ N that requires the minimum number of colors? We
provide an algorithm that solves the first question in polynomial
time, and demonstrate the NP-hardness of the second question.
Both questions are motivated by common robot tasks such as
mapping and surveillance.

I. I NTRODUCTION AND PROBLEM DEFINITION

Suppose a robot is navigating in a planar region containing
a number of partially distinguishable landmarks. These land-
marks could be radio towers (some of which may broadcast
at the same frequency), colored signs (some of which may
share the same color), or something else. The robot’s mo-
tion primitives are defined with respect to these landmarks
(“Move toward the red sign” or “Move away from the radio
tower broadcasting at 102.3 MHz”), perhaps similar to the
model studied in [22]. If the robot were operating in a region
where two of the landmarks were indistinguishable, then
the navigation primitives could become ambiguous (“Move
toward the red sign” is confusing if the robot can see two
red signs). Therefore, the question arises: How many classes
of partially distinguishable landmarks are needed to covera
given bounded region? We assume that every point in the
region must be visible from one of the landmarks, that two
landmarks must be assigned separate classes if their visible
regions overlap, and that the environment boundary blocks
visibility.

Partially distinguishable landmarks have been heavily
studied in robotics. They are obstacles in localization and
mapping tasks, where many papers have been written about
how to best disambiguate or work around them [3], [5].
A common issue in simultaneous localization and map-
ping (SLAM) is the data association problem, determining
whether two sensor readings from a sensor suite with limited
distinguishing ability correspond to the same physical object
[10], [16], [17]. Partially distinguishable landmarks were

also studied for the purpose of using the non-presence of
landmarks for localization in [9].

There are many reasons why one would wish to minimize
the number of landmark classes. There could be a fee
for the use of each individual radio frequency, or laws
limiting the number of frequencies on which a single entity
has permission to broadcast. Discriminating amongst more
landmark classes may also make the robotic sensors more
complicated (it is easier to build a camera that can reliably
distinguish among ten colors than it is to build a camera that
can reliably distinguish among a thousand). It was noted in
[12] that cameras that could recognize only a relatively low
amount of colors were best for human iris scanning (using
too many colors tended to falsely increase the difference
between different pictures of the same person’s iris). This
is also related to [18], where a robot was assigned to track a
target, but the robot’s sensors were deliberately weakenedin
order to keep sensitive data about the target from becoming
public if the robot’s sensor data was accessed by a third
party.

Let apolygonP be a closed, simply connected, polygonal
subset ofR2 with boundary∂P . A point p ∈ P is visible
from pointq ∈ P if the closed segmentpq is a subset ofP .
Thevisibility polygonV is(p) of a pointp ∈ P is defined as
V is(p) = {q ∈ P | q is visible fromp}. Let aguard setS be
a finite set of points inP such that

⋃
s∈S V is(s) = P . The

members of a guard set are referred to asguards. A pair of
guardss, t ∈ S is calledconflicting if V is(s) ∩ V is(t) 6= ∅.
Conflicting guards cannot have the same color (see Figure
1).

In [7], the goal was to findχG(P ), the minimum number
of colors thatany guard set ofP required. In this paper,
we will instead focus on two related problems. First, given
a polygonP and guard setS, can one efficiently find the
minimum number of colors needed to colorS? Section II
provides an algorithm that finds the minimum number of
colors required to colorS in polynomial time. Second, given
a polygonP and a finite set of candidate guard locations
N ⊂ P , can one efficiently choose the guard setS ⊆ N

that minimizes the number of colors required? In Section
III, this problem is shown to be NP-hard. Section IV will
discuss directions of future research.

This paper is also closely related to research on art
gallery coverage [2], [13], [15], [19], other minimal polygon
cover questions [4], [20], and work on visibility graphs
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Fig. 1. [top] The visibility polygon ofs1 (the yellow region) does not
overlap the visibility polygon ofs2. Therefore,s1 and s2 do not conflict,
so they can be given the same color. [middle] The visibility polygon of
s1 (the yellow region) intersects the visibility polygon ofs3 (the blue
region). The area of intersection is the green region. Sincethe two visibility
polygons overlap,s1 and s3 conflict, and may not be assigned the same
color. [bottom] A guard set for the polygon with a proper coloring.

[8]. The chromatic art gallery problems highlight an impor-
tant issue in visibility work. Standard art gallery problems
essentially ask for the minimum number of star-shaped
polygons required to cover a given region. Minimum cover
problems tend to be very difficult to solve, so many art
gallery proofs convert the problem to a partition question
(through triangulation, convex quadrilateralization, orsome
other decomposition), which tend to be much easier. The
chromatic art gallery variations discussed in [7] and this
paper are not easily converted into partition questions. In
standard art gallery problems it is not important to controlthe
exact number of guards that can see any particular point, one
must simply ensure that each point is covered by at least one
guard. Therefore, the cover problem can be approximated
as a partition problem. In the chromatic variants, overlap
between visibility regions of the guards cannot be ignored,so
approximation as a partition problem is generally infeasible.

II. COLORING A GUARD SET

A given guard set in a polygon can be efficiently colored.
To demonstrate this, we will show that the conflict relation-
ships between guards can be represented by a certain family
of graphs that are themselves easy to color.

Let S be a guard set ofP . Two guardss, t ∈ S must
be assigned different colors ifV is(s) ∩ V is(t) 6= ∅. The
function χF (S, P ), is defined as the minimum number of
colors required to colorS.

Given a polygonP and a guard setS, let G(S, P ) be
the 2-link visibility graph ofS in P . The size of the vertex
set V of G(S, P ) is equal to |S|. Let f : V → S be a
bijection between the members ofV andS. Let si = f(vi).
The verticesvi, vj ∈ V are adjacent if and only ifsi and
sj conflict. The chromatic number ofG(S, P ) is equal to
χF (S, P ).

Theorem 1:Given a polygonP and guard setS, the graph
G(S, P ) can be constructed inO(n|S|2), wheren is the
number of vertices ofP .

Proof: Each visibility polygonV is(si) can be com-
puted inO(n) time [11], so generating all|S| of them will
takeO(n|S|) time. Each visibility polygon can haveO(n)
vertices, and [1] showed that computering the intersection
between two polygons withO(n) vertices each takes at
most O(n) time (though the algorithm is complicated and
difficult to implement). Therefore, pairwise testing of allthe
visibility polygons (to determine the edges ofG(S, P )) will
takeO(n|S|2) time. Therefore, constructingG(S, P ) takes
O(n|S|) +O(n|S|2) = O(n|S|2) time.

These 2-link visibility graphs are closely related to the
CN -complexes in [14]. TheCN -complex is a simplicial
complex that represents a camera network. Each vertex in
the complex is associated with a camera, and ann-simplex
is drawn betweenn + 1 vertices if there is a region where
all n + 1 of the visible ranges overlap. This is somewhat
different from the 2-link visibility graph in that the 2-link
visibility graph is only concerned with pairwise overlap of
visibility regions. Additionally, there are situations inthe
CN -complex where a single camera is represented by multi-
ple vertices. TheCN -complexes were used for topologically
based coordinate-free tracking and navigation.

A graph is achordal graphif every cycle of length4 or
greater contains a chord. It was shown in [21] that a chordal
graph can be optimally colored inO(v+ e) time, wherev is
the number of vertices ande is the number of edges (recall
that in this casev = |S|). Since the number of edges can be
at mostO(v2), a chordal graph can be colored inO(|S|2)
time.

Theorem 2:For any polygonP and any guard setS,
G(S, P ) is a chordal graph.1

Proof: Let [v1, v2, . . . , vf ] be a chordless cycle of
length 4 or greater inG(S, P ). In that case, there must be
a Eucliden shortest distance closed walkW ⊆ P such that

1This theorem is erroneous. A counterexample was provided bySubhash
Suri, Luca Foschini, and Andreas Baertschi. In fact, 2-linkvisibility graphs
are not necessarily perfect graphs.
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Fig. 2. The visibility regions of five guards are arranged in such a way that
their 2-link visibility graph contains a chordless cycle oflength 5. Since
s1s3 must pass through an obstacle, the region cannot be simply connected.

s1, s2, . . . , sf ∈ W . Becausev1 does not conflict withv3
(becauseG(S, P ) is chordless),s1s3 must contain a point
p that is not contained inP (see Figure 2). Sincep 6∈ P ,
the path alongW from s1 to s3 that passes throughs2 must
not be homotopic to the path alongW from s1 to s3 that
passes throughsf . However, this violates the assumption that
P is simply connected. Therefore,G(S, P ) cannot contain
a chordless cycle of length4 or greater, which means that
G(S, P ) is chordal.

Note that this contrasts with the result for standard “1-
link” visibility graphs (where two vertices would have an
edge between them if their corresponding landmarks were
mutually visible). It was shown in [8] that, if the landmarks
are simply the polygon vertices, there exist simple polygons
that cause a non-chordal visibility graph to arise. This is
because it is possible to have five landmarkss1, s2, s3, s4, s5
in a polygon such thatsi is mutually visible only withsi+2

andsi+3 (indicies are modulus5, see Figure 3), which would
create a chordless length5 cycle. These situations do not
cause chordless 2-link visibilty graphs because the creation
of these chordless cycles requires the line segment between
a pair of mutually visible landmarkssisj to intersect a line
segment between two other mutually visible landmarkssksl
without creating a graph edge betweenvi or vj and vk or
vl. In the 2-link visibility graph,vi,vj ,vk, andvl would form
a clique. This means that 2-link visibility graphs are likely
much more easy to analyze than standard visibility graphs,
which have so far resisted most efforts to place them into a
well-known graph family.

It takesO(n|S|2) time to generate the graph, andO(|S|2)
time to optimally color it. Therefore, computingχF (S, P )
takesO(n|S|2) time, wheren is the number of vertices in
P .
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Fig. 3. A polygon adapted from [8]. Five landmarkss1,s2,s3,s4,s5 form a
chordless cycle in a standard, 1-link visibility graph. In the 2-link visibility
graph, the five landmarks’ corresponding vertices would form a clique.

III. C HOOSING A GUARD SET FROM A SET OF

CANDIDATES

Let N be a finite set of points in a polygonP , such
that there exists at least one guard setS ⊆ N . Let
G(N) = {S ⊆ N | S is a guard set}. Let χC(N,P ) =
minS∈G(N) χF (S, P ). In other words,χC(N,P ) is the min-
imum number of colors that any guard setS ⊆ N requires
(see Figure 4). LetCHROME be the decision form of
this problem (specifically, “IsχF (N,P ) for a given polygon
P and a given set of candidate guard locations less than
k ∈ N?”).

Let a vertex guard setof a polygonP be a finite set of
points S ⊂ P such that for eachs ∈ S, s is a vertex of
the polygonP . Let V G(P ) be the set of all vertex guard
sets ofP . Call Guard(P ) = minS∈V G(P ) |S| the minimum
art gallery guard numberof a polygonP . Theminimum art
gallery problem(MINART ) asks, for a given polygonP ,
whetherGuard(P ) ≤ k for some integerk. This problem
was shown to be NP-hard in [13].

We will construct a polygonP and candidate guard list
N that encodes a3SAT problem and show that the3SAT
expression is satisfiable if and only ifχF (S, P ) is low
enough. The polygonP will be the same polygon used in
[13] to demonstrate the NP-hardness of the minimum art
gallery guard problem (illustrations are adapted from [19]).
This polygon consists of a number of different junctions that
encode different parts of the3SAT problem. The first type
of junction is a clause junction, shown in Figure 5. This
type of junction consists of a triangle with three thin notches
on its right side. Each notch can be guarded by one of two
candidate guards, one of which represents a literal evaluating
to the “true” value, and one of which represents a literal
evaluating to the “false” value. At least one of the “true”
locations must be chosen as a guard location so that the
bottom right corner of the triangle is covered.

The second type of junction is a variable junction (see
Figure 6). A variable junction consists of two wells, each
with a number of spikes in it (the blue regions in Figure 6).



Fig. 4. [top] A polygonP with several candidate guard locations. [bottom]
A subset of the candidate guard locations that forms a guard set and requires
only two colors. This is the minimum number of colors that anysubset of
the candidate guard locations requires.
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Fig. 5. A clause junction. Each notch represents a literal ora negated
literal in the original3SAT problem. Each of these junctions has threet
locations, and threef locations. At least one guard must be placed at one
of the “true” (t) locations, or the yellow vertex on the bottom right will not
be guarded.

Fi
Ti

Fig. 6. A variable junction. A guard placed atFi can guard the leftmost
blue spikes, and a guard placed atTi can guard the blue spikes on the right.
A guard must be placed at eitherFi or Ti to guard the yellow region.

At least one guard must be placed at theTi point or theFi

point to guard a notch on the left side of the junction.
These junctions are shown arranged into a complete poly-

gon for the3SAT expression(x1∨x2∨x3)∧(x1∨x2∨x3) in
Figure 7. The whole polygon consists of a large rectangular
region with clause junctions attached to the upper right
portions of the polygon and variable junctions attached
to the lower left portions of the polygon. The rightmost
opening of a variable junction must be to the left of the
leftmost opening into a clause junction. A single clause
junction can be completely guarded with three guards, one
of which must be at at vertex. A guard at pointq can
guard the entire rectangular region and the portions of the
variable junction that are not spikes or left-side notches.The
remaining portions of a variable junctionxi can be guarded
with a single guard at pointTi if eachxi literal in a clause
has a guard at itst point, and eachxi literal in a clause has
a guard at itsf point. The remaining portions of a variable
junction xi can be guarded with a single guard at pointFi

if eachxi literal in a clause has a guard at itsf point, and
eachxi literal in a clause has a guard at itst point.

It was shown in [13] that these types of polygons require at
least three guards for each ofm clauses, at least one for each
of n variables, and a guard at theq point, and that guarding
the polygon with this minimum number of3m+n+1 guards
was only possible when the underlying3SAT equation was
satisfiable.

Theorem 3:The problemCHROME is NP-hard.
Proof: Let P be a polygon of the kind used in [13] that

encodes a3SAT problem. It was shown that a minimal art-
gallery guard placement for these kinds of polygons need
only place guards at theT , F , t, f , and q points shown
in Figure 7. Let those points be our set of candidate guard
locations forCHROME. Let yc be the lowesty-value such
that for every pointp ∈ P wherep has ay-value of yc, p
is visible from all candidate guard locations in the variable
clauses (the green line in Figure 7). Note that, since the
value ofyc is determined by the size of the left-side notches
in the variable clauses (the yellow region in Figure 6),yc
can be arbitrarily close to the bottom of the rectangular
region of the polygon (as the notches can be arbitrarily
small). Since the line atyc is visible from each candidate
guard location in a variable junction, each guard placed in
a variable junction will conflict with each other guard in a



variable junction. Note that each candidate guard locationin
a clause junction must be visible from a spike in a variable
junction (see the diagonal blue lines in Figure 7). Since the
spikes lie belowyc, each candidate guard location in a clause
junction conflicts with each candidate guard location in a
variable junction (note that the diagonal blue lines in Figure
7 intersect the green line). Also, because the opening to the
rightmost variable junction lies to the left of the opening of
the leftmost clause junction, each candidate guard location
in a clause junction must conflict with all clause candidate
locations to its left, so each candidate guard location in a
clause junction conflicts with every other candidate guard
location in a clause (note that for every candidate guard
location p in a clause junction in Figure 7, the diagonal
blue line coming fromp intersects with all the blue lines
to the left ofp). Finally, the pointq can see the bottom right
edge of the rectangular region of the polygon, meaning that
it conflicts with every other candidate guard location (note
that the red line in Figure 7 intersects with all the blue and
green lines).

Therefore, for this polygon and candidate guard set,
χC(N,P ) = Guard(P ). Since the underlying3SAT ex-
pression is satisfiable if and only ifGuard(P ) ≤ 3m+n+1,
the underlying3SAT expression is also satisfiable if and
only if χC(N,P ) ≤ 3m + n + 1. Since 3SAT is NP-
complete, determining whetherχC(N,P ) ≤ k for some
integerk is NP-hard.

IV. CONCLUSION

We have presented a method for efficiently coloring a
guard set of a polygon such that no two guards with
overlapping visibility polygons have the same color, and
we have shown that the graphs representing the conflict
relationships between guards are always chordal. For robotics
purposes, this means one could place landmarks randomly
around an environment, and then quickly and optimally color
them so that the robot can never see two of the same kind.
For example, if the robot is using radio signal intensity
from a set of pre-placed towers to navigate (in a somewhat
idealized setting), one could quickly and optimally assign
non-conflicting frequencies to each tower.

We have also shown that the similar problem of choosing
a set of guards that requires a minimal amount of colors
from a finite candidate list is NP-hard. Even though choosing
the optimal subset of candidate guards to minimize the
number of required colors is NP-hard, it may be possible
to develop a useful approximation algorithm, though related
results about the approximability of the minimum art gallery
guard problem [6] may indicate limits on the usefulness of
approximation algorithms for this problem.

Since a set of guards, once placed, can be efficiently
colored, a probabilistic algorithm for placing guards may be
feasible for attacking the problem put forth in [7], perhaps
by decomposing the polygon into convex subregions and
randomly choosing which subregion to place a guard into
based on the incidence relationships between the regions.

Also, since the2-link visibility graphs are chordal, two other
questions naturally arise. First, are all connected chordal
graphs 2-link visibility graphs for some guard set of a
polygonP? If not, is there a smaller family of graphs that
the 2-link visibility graphs belong to?
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Fig. 7. [top] The whole polygon for the3SAT expression(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). If a literal exists in a clause in non-negated form (see
x2 in the first clause), then a spike is made that is collinear with the f vertex of that literal in the clause region and theT vertex in the corresponding
variable region. A second spike is made that is collinear with thet vertex of the literal in the clause region and theF vertex in the corresponding variable
region. If a literal exists in a clause in negated form (seex3 in the second clause), then a spike is made that is collinear with the f vertex of the literal
in the clause region, and theF vertex in the corresponding variable region. A second spikeis made that is collinear with thet vertex of the literal in the
clause region, and theT vertex in the corresponding variable region. A guard placedat pointq can see all the pink regions. [bottom] The polygon for the
3SAT expression(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) with candidate guard locations. Each guard placed on one of the candidate locations will conflict
with every other guard placed on a candidate location.


