How many landmark colors are needed to avoid confusion in a dggon?
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Abstract— Suppose that two members of a finite point guard also studied for the purpose of using the non-presence of
set.S within a polygon P must be given different colors if their  Jandmarks for localization in [9].
visible regions overlap, and that every point inP is visible from There are many reasons why one would wish to minimize

some point in .S. The chromatic art gallery problem, introduced
in [7], asks for the minimum number of colors required to colar the number of landmark classes. There could be a fee

any guard set (not necessarily a minimal guard set) of. for the use of each individual radio frequency, or laws
We study two related problems. First, given a polygonP  limiting the number of frequencies on which a single entity
and a guard setS of P, can the members ofS be efficiently  has permission to broadcast. Discriminating amongst more
and |°ptir.na”y .C‘.)t')(.)l.red so that ?\0 tWOhmembers Off t’r;atshave g landmark classes may also make the robotic sensors more
gxgnazp;)ncﬂygfr'] ]lgltgmrjeglc;r; ofa\égnfjigafeagfarfjoI?J::'ati Oﬁ;%r” cprr_lplicgted (it is easier to build a camera _that can reliably
is it possible to efficiently and optimally choose the guardes  distinguish among ten colors than it is to build a camera that
S C N that requires the minimum number of colors? We can reliably distinguish among a thousand). It was noted in
provide an algorithm that solves the first question in polynenial  [12] that cameras that could recognize only a relatively low
time, and demonstrate the NP-hardness of the second questio  gmount of colors were best for human iris scanning (using
Both questions are motivated by common robot tasks such as too many colors tended to falsely increase the difference
mapping and surveillance. ) . .. .
between different pictures of the same person’s iris). This
is also related to [18], where a robot was assigned to track a
target, but the robot’s sensors were deliberately weakaned
Suppose a robot is navigating in a planar region containingrder to keep sensitive data about the target from becoming
a number of partially distinguishable landmarks. Thesedan public if the robot's sensor data was accessed by a third
marks could be radio towers (some of which may broadcaptrty.
at the same frequency), colored signs (some of which may Let apolygonP be a closed, simply connected, polygonal
share the same color), or something else. The robot’s meubset ofR? with boundarydP. A point p € P is visible
tion primitives are defined with respect to these landmarkgom pointq € P if the closed segments is a subset of°.
(“Move toward the red sign” or “Move away from the radio The visibility polygonVis(p) of a pointp € P is defined as
tower broadcasting at 102.3 MHz"), perhaps similar to théis(p) = {q € P | q is visible fromp}. Let aguard setS be
model studied in [22]. If the robot were operating in a regiora finite set of points inP such that J, . Vis(s) = P. The
where two of the landmarks were indistinguishable, themembers of a guard set are referred tagaards A pair of
the navigation primitives could become ambiguous (“Moveuardss, ¢ € S is calledconflictingif Vis(s) N Vis(t) # 0.
toward the red sign” is confusing if the robot can see twa@onflicting guards cannot have the same color (see Figure
red signs). Therefore, the question arises: How many dassg).
of partially distinguishable landmarks are needed to caver In [7], the goal was to find(c(P), the minimum number
given bounded region? We assume that every point in thef colors thatany guard set ofP required. In this paper,
region must be visible from one of the landmarks, that twave will instead focus on two related problems. First, given
landmarks must be assigned separate classes if theirevisibl polygon P and guard sefS, can one efficiently find the
regions overlap, and that the environment boundary blocksinimum number of colors needed to col§? Section Il
visibility. provides an algorithm that finds the minimum number of
Partially distinguishable landmarks have been heavilgolors required to colof in polynomial time. Second, given
studied in robotics. They are obstacles in localization and polygonP and a finite set of candidate guard locations
mapping tasks, where many papers have been written abavitC P, can one efficiently choose the guard $eiC N
how to best disambiguate or work around them [3], [5]that minimizes the number of colors required? In Section
A common issue in simultaneous localization and mapil, this problem is shown to be NP-hard. Section IV will
ping (SLAM) is the data association problem, determiningliscuss directions of future research.
whether two sensor readings from a sensor suite with limited This paper is also closely related to research on art
distinguishing ability correspond to the same physicakobj gallery coverage [2], [13], [15], [19], other minimal polyg
[10], [16], [17]. Partially distinguishable landmarks wer cover questions [4], [20], and work on visibility graphs

I. INTRODUCTION AND PROBLEM DEFINITION



II. COLORING A GUARD SET

A given guard set in a polygon can be efficiently colored.
To demonstrate this, we will show that the conflict relation-
ships between guards can be represented by a certain family
of graphs that are themselves easy to color.

Let S be a guard set of”. Two guardss,t € S must
be assigned different colors ifis(s) N Vis(t) # 0. The
function xr (S, P), is defined as the minimum number of
colors required to colof.

Given a polygonP and a guard sef, let G(S, P) be
the 2-link visibility graph of S in P. The size of the vertex
setV of G(S,P) is equal to|S|. Let f : V — S be a
bijection between the members Bfand S. Let s; = f(v;).
The verticesv;, v; € V are adjacent if and only if; and
s; conflict. The chromatic number af(S, P) is equal to
XF(S, P)

Theorem 1:Given a polygonP and guard sef, the graph
G(S, P) can be constructed i®(n|S|?), wheren is the
number of vertices of.

Proof: Each visibility polygonVis(s;) can be com-
puted inO(n) time [11], so generating allS| of them will
take O(n|S|) time. Each visibility polygon can have(n)
vertices, and [1] showed that computering the intersection
between two polygons witfO(n) vertices each takes at
most O(n) time (though the algorithm is complicated and
difficult to implement). Therefore, pairwise testing of tie
visibility polygons (to determine the edges @f.S, P)) will
take O(n|S|?) time. Therefore, constructing/(S, P) takes
O(n|S]) + O(n|S?) = O(n|S|?) time. [

These 2-link visibility graphs are closely related to the
CN-complexes in [14]. TheC' N-complex is a simplicial

Fig. 1. [top] The visibility polygon ofs; (the yellow region) does not complex that represents a camera network. Each vertex in
overlap the visibili_ty polygon ofso. Therefor_e,sl and so qq _n_ot conflict,  the complex is associated with a camera, anmmp|ex
so they can be given the same color. [middle] The visibiliglygon of . . . . .
s1 (the yellow region) intersects the visibility polygon ef (the blue is drawn betweem + 1 vertices if there is a_ re_g|on where
region). The area of intersection is the green region. Sineéwo visibility ~ all n + 1 of the visible ranges overlap. This is somewhat
polygons overlap;s; and s3 conflict, and may not be assigned the samegjfferent from the 2-link visibility graph in that the 2-lkn
color. [bottom] A guard set for the polygon with a proper coig. s . . L
visibility graph is only concerned with pairwise overlap of
visibility regions. Additionally, there are situations ihe
C N-complex where a single camera is represented by multi-
[8]. The chromatic art gallery problems highlight an impor-ple vertices. The?N—compIe>_<es were usgd fpr topologically
tant issue in visibility work. Standard art gallery probkem based coorplmate-free track|rjg and navigation.
essentially ask for the minimum number of star-shaped A 9raph is achordal graphif every cycle of lengthi or

polygons required to cover a given region. Minimum covepreater contains a chord. It was shown in [21] that a chordal

problems tend to be very difficult to solve, so many arf"@Ph can be optimally colored (v +¢) time, wherev is

gallery proofs convert the problem to a partition questiofi’® number of vertices andis the number of edges (recall
(through triangulation, convex quadrilateralization,smme ~that in this case = |51). Since the number of edges can be
other decomposition), which tend to be much easier. TI"%t mostO(v”), a chordal graph can be colored @([S|*)
chromatic art gallery variations discussed in [7] and thidme-

paper are not easily converted into partition questions. In | N€orem 2:For any polygon? and any guard sef,
standard art gallery problems it is not important to cortnel  ©'(:5: P’) is @ chordal graph’

exact number of guards that can see any particular point, one Proof: Let [v1,vs,...,v7] be a chordless cycle of
must simply ensure that each point is covered by at least olfd19th 4 or greater inG(S, P). In that case, there must be
guard. Therefore, the cover problem can be approximat@dEucliden shortest distance closed wéllk C P such that

as a partition problem. In the chromatic variants, overlap ,_ _ _

bet isibilit . f the quards cannot be ignosed This theorem is erroneous. A counterexample was provideSuiphash
etween visibility regions o guaras 9 9, Suri, Luca Foschini, and Andreas Baertschi. In fact, 2-ligibility graphs

approximation as a partition problem is generally infelesib are not necessarily perfect graphs.



S5

Fig. 3. A polygon adapted from [8]. Five landmarks,sz2,s3,s4,s5 form a

Fig. 2. The visibility regions of five guards are arrangedunfsa way that ~ chordless cycle in a standard, 1-link visibility graph. he ©2-link visibility
their 2-link visibility graph contains a chordless cycle lehgth 5. Since  graph, the five landmarks’ corresponding vertices wouldnfar clique.
5183 must pass through an obstacle, the region cannot be simphected.

IIl. CHOOSING A GUARD SET FROM A SET OF
CANDIDATES

$1,82,...,5; € W. Becausev; does not conflict withus Let V be a finite set of points in a polygo®, such
(becauseG(S, P) is chordless)siss must contain a point that there exists at least one guard setC N. Let
p that is not contained irP (see Figure 2). Sincg ¢ P, G(N) = {S € N [ S is a guard sdt Let xc(N,P) =
the path along¥V from s; to s that passes through must Minsec(v) xr (S, P). In other wordsy ¢ (N, P) is the min-
not be homotopic to the path alori§ from s, to s3 that imum number of colors that any guard sgtC N requires
passes throughy. However, this violates the assumption thafSee Figure 4). LeCHROME be the decision form of
P is simply connected. Therefor&;(S, P) cannot contain this problem (specifically, “Is¢» (V, P) for a given polygon
a chordless cycle of length or greater, which means that P and a given set of candidate guard locations less than
G(S, P) is chordal. k e N?7).
Let avertex guard sebf a polygonP be a finite set of
B points S C P such that for eacls € S, s is a vertex of
.‘1§he polygonP. Let VG(P) be the set of all vertex guard
link” visibility graphs (where two vertices would have anS€ts OfF. Call Guard(P) = minsey g(p) |5| the minimum
edge between them if their corresponding landmarks wefdt gallery guard numbeof a polygonP. Themlnlmum art
mutually visible). It was shown in [8] that, if the Iandmarksgallery problem(MIN ART) asks,.for a g|ven.polygom7,
are simply the polygon vertices, there exist simple poI;sgonWhetherG“ard(P) < k for some integev:. This problem
that cause a non-chordal visibility graph to arise. This i as shqwn to be NP-hard in [13]. . .
because it is possible to have five landmarksss, s3, 54, 55 We will construct a polygonP and candidate guard list
in a polygon such that; is mutually visible only withs; o N that e_nco.des BSAT prqblem and Sh.OW that tr@SAT
d expression is satisfiable if and only (S, P) is low

ands; s (indicies are modulus, see Figure 3), which woul h Th vaod® will be th | di
create a chordless length cycle. These situations do not Enough. The polygo will be the same po ygon used in
[13] to demonstrate the NP-hardness of the minimum art

cause chordless 2-link visibilty graphs because the aeati

of these chordless cycles requires the line segment betwe_%ﬁll_lery Iguard prob_lem (fillustratié)ns ?rde_ﬁadapte_zd frqm Ilr91]
a pair of mutually visible landmarks;s; to intersect a line IS polygon consists of a number of different junctions tha

segment between two other mutually visible landmawks en(.:ode.diffejrent parts O.f th@.SAT problgm. The first type
without creating a graph edge betweenor v; and v, or of junction s acIau;e Junction shown.m Figure .5' This
ui. In the 2-link visibility graph:,v; v, andu; would form ~ YP€ of junction consists of a triangle with three thin natsh
a clique. This means that 2-link visibility graphs are likel °" Its right side. Each notch can be guarded by one of two

much more easy to analyze than standard visibility graphg‘:‘md'date guards, one of which represents a literal evafyat

which have so far resisted most efforts to place them into & the true Valu?’ a”‘?', one of which represents a“llter'e,ll
well-known graph family. evaluating to the “false” value. At least one of the “true

locations must be chosen as a guard location so that the
It takesO(n|S|?) time to generate the graph, aod|S|?)  bottom right corner of the triangle is covered.

time to optimally color it. Therefore, computingg (S, P) The second type of junction is a variable junction (see

takesO(n|S|?) time, wheren is the number of vertices in Figure 6). A variable junction consists of two wells, each

P. with a number of spikes in it (the blue regions in Figure 6).

Note that this contrasts with the result for standard



Fig. 6. A variable junction. A guard placed & can guard the leftmost
blue spikes, and a guard placedlatcan guard the blue spikes on the right.
A guard must be placed at eithét;, or T; to guard the yellow region.

At least one guard must be placed at fhepoint or theF;
point to guard a notch on the left side of the junction.

These junctions are shown arranged into a complete poly-
gon for the3S AT expressionz1 Ve VT3)A(z1 VT2 VT3) in
Figure 7. The whole polygon consists of a large rectangular
region with clause junctions attached to the upper right
portions of the polygon and variable junctions attached
to the lower left portions of the polygon. The rightmost
opening of a variable junction must be to the left of the
leftmost opening into a clause junction. A single clause
junction can be completely guarded with three guards, one
of which must be at & vertex. A guard at poiny can
guard the entire rectangular region and the portions of the
variable junction that are not spikes or left-side notcfids
Fig. 4. [top] A polygonP with several candidate guard locations. [bottom] remaining portions of a variable junctian can be guarded
e e Tt e e o B o o Wit & Single guard at pOI; if each, leral in a clause
the candidate guard locations requires. has a guard at its point, and eacty; literal in a clause has
a guard at itsf point. The remaining portions of a variable
junction z; can be guarded with a single guard at pafft
if eachz; literal in a clause has a guard at ifspoint, and
eachz; literal in a clause has a guard at itgoint.

It was shown in [13] that these types of polygons require at
least three guards for eachafclauses, at least one for each
of n variables, and a guard at tlepoint, and that guarding
the polygon with this minimum number 8in+n+1 guards
was only possible when the underlyiB§ AT equation was
satisfiable.

Theorem 3:The problemCHROM E is NP-hard.

Proof: Let P be a polygon of the kind used in [13] that
encodes &S AT problem. It was shown that a minimal art-
gallery guard placement for these kinds of polygons need
only place guards at th&', F, t, f, and ¢ points shown
in Figure 7. Let those points be our set of candidate guard
locations forCH ROM E. Let y. be the lowesy-value such
that for every pointp € P wherep has ay-value of y., p
is visible from all candidate guard locations in the var@abl
clauses (the green line in Figure 7). Note that, since the
value ofy,. is determined by the size of the left-side notches

) o _ in the variable clauses (the yellow region in Figure 4),
Fig. 5. A clause junction. Each notch represents a literad oregated — o) ) arbitrarily close to the bottom of the rectangular
literal in the original3S AT problem. Each of these junctions has three ] _ )
locations, and threg locations. At least one guard must be placed at ondegion of the polygon (as the notches can be arbitrarily
of the “true” () locations, or the yellow vertex on the bottom right will not smaII). Since the line at. is visible from each candidate
be guarded. guard location in a variable junction, each guard placed in
a variable junction will conflict with each other guard in a




variable junction. Note that each candidate guard locdtion Also, since the-link visibility graphs are chordal, two other

a clause junction must be visible from a spike in a variablquestions naturally arise. First, are all connected cHorda
junction (see the diagonal blue lines in Figure 7). Since thgraphs 2-link visibility graphs for some guard set of a
spikes lie belowy., each candidate guard location in a claus@olygon P? If not, is there a smaller family of graphs that
junction conflicts with each candidate guard location in #&he 2-link visibility graphs belong to?

variable junction (note that the diagonal blue lines in Féegu

7 intersect the green line). Also, because the opening to the
rightmost variable junction lies to the left of the openifg 0  The authors acknowledge the support of National Science
the leftmost clause junction, each candidate guard lagatid-oundation grants #0904501 (IS Robotics) and #1035345
in a clause junction must conflict with all clause candidat¢Cyberphysical Systems), DARPA SToMP grant HR0011-
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clause junction conflicts with every other candidate guard
location in a clause (note that for every candidate guard
location p in a clause junction in Figure 7, the diagonal [1]
blue line coming fromp intersects with all the blue lines
to the left of p). Finally, the pointy can see the bottom right
edge of the rectangular region of the polygon, meaning thags)
it conflicts with every other candidate guard location (note
that the red line in Figure 7 intersects with all the blue and
green lines).

Therefore, for this polygon and candidate guard set,
Xc (N, P) = Guard(P). Since the underlyingSAT ex-
pression is satisfiable if and only@uard(P) < 3m+n+1,
the underlying3SAT expression is also satisfiable if and [6]
only if xc(N,P) < 3m + n + 1. Since 3SAT is NP-
complete, determining whethegc(N,P) < k for some
integerk is NP-hard.

(2]

(4]

(7]

B

IV. CONCLUSION

We have presented a method for efficiently coloring al
guard set of a polygon such that no two guards with
overlapping visibility polygons have the same color, andio]
we have shown that the graphs representing the conflict
relationships between guards are always chordal. Foriasbot
purposes, this means one could place landmarks randonfiy]
around an environment, and then quickly and optimally color
them so that the robot can never see two of the same kinglp
For example, if the robot is using radio signal intensity
from a set of pre-placed towers to navigate (in a somewhat
idealized setting), one could quickly and optimally assigmp 3
non-conflicting frequencies to each tower.

We have also shown that the similar problem of choosin
a set of guards that requires a minimal amount of colo
from a finite candidate list is NP-hard. Even though choosing
the optimal subset of candidate guards to minimize th§5]
number of required colors is NP-hard, it may be possibl
to develop a useful approximation algorithm, though relate
results about the approximability of the minimum art gafler [16]
guard problem [6] may indicate limits on the usefulness of
approximation algorithms for this problem.

Since a set of guards, once placed, can be efficiently’]
colored, a probabilistic algorithm for placing guards may b
feasible for attacking the problem put forth in [7], perhap$is]
by decomposing the polygon into convex subregions and
randomly choosing which subregion to place a guard intﬁg]
based on the incidence relationships between the regions.

4]
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Fig. 7. [top] The whole polygon for th8S AT expression(Z1 V z2 V Z3) A (z1 V Tz V T3). If a literal exists in a clause in non-negated form (see
xg in the first clause), then a spike is made that is collineah wie f vertex of that literal in the clause region and thevertex in the corresponding
variable region. A second spike is made that is collineahwie¢ vertex of the literal in the clause region and tRevertex in the corresponding variable
region. If a literal exists in a clause in negated form (3gein the second clause), then a spike is made that is collindhrthe f vertex of the literal

in the clause region, and thé vertex in the corresponding variable region. A second s@kaade that is collinear with thevertex of the literal in the
clause region, and th& vertex in the corresponding variable region. A guard plaaegointq can see all the pink regions. [bottom] The polygon for the
3SAT expression(z1 V xz2 V Z3) A (z1 V Tz V T3) with candidate guard locations. Each guard placed on onbeotandidate locations will conflict

with every other guard placed on a candidate location.



