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Abstract— This paper considers a robot that moves in a plane
and is only able to sense the distance order of landmarks with
respect to its current position. The robot has no access to either
metric information about the location of landmarks and its
own position, or to odometry or speed controls. We propose
several algorithms for the robot that allow it to navigate to
certain points in the plane and to learn global information
about the landmark locations. We, furthermore, demonstrate
example tasks, such as convex hull computation, that can be
performed using this information.

I. INTRODUCTION

In this paper we study the navigation problem for a robot

with very limited sensing: for any two landmarks out of the

pre-defined set, the robot can only detect which one it is

closer to. The question that we ask is what information can

the robot learn and what tasks can it perform using this

information. Is it enough to perform navigation? How can

we even define meaningful tasks in the absence of reliable

position information?

Landmarks are usually defined as distinctive stationary

features or objects that the robot can detect using its sensors.

Significant amount of research has been done that uses land-

marks for navigation [1], [2], [3]. Landmarks have been used

to infer the robot position, for example, by triangulation [4],

[5]. Alternatively, a geometric map of the environment can

be built by using the simultaneous localization and mapping

(SLAM) approach [6], [7].

This paper follows a minimalist approach to sensing,

which means that we are trying to keep the model of robot

sensors and motion primitives as simple as possible [8], [9],

[10]. By doing so, we avoid the difficult task of constructing

a complete model of environment and performing the full

estimate of the robot state. Instead, we concentrate on

creating a topological map [1], [11], [12], [13] that encodes

information the robot can learn using its weak sensors. Our

research aims to answer the basic question of what data can

be gathered by a sensor and what is the relationship between

the sensors, motion primitives and the representation of the

environment that the robot can create [14], [15], [16].

Our work has been heavily influenced by [17], which

explores similar idea in a different setting. In this paper, the

robot’s sensor produces the distance order of the landmarks.

In [17], the most advanced of the robot’s few sensors, instead,

gives the cyclic order of landmarks around the robot. Such a

sensor allows the robot to detect when it crosses the line that

goes through any pair of landmarks. The authors describe
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Fig. 1. The sensor gives the list of landmarks in order of increasing
distance from the robot, but not the actual distances. In this example, the
sensor output would be [2,1,3,4]

a variety of tasks that the robot can perform: learning the

relationship between the locations of multiple landmarks,

patrolling a set of landmarks, and, finally, navigation.

We show that despite the weak sensing capabilities, the

robot is able to reliably reach certain key locations in the

environment and learn the Delaunay triangulation of the set

of landmarks. The Delaunay triangulation encodes informa-

tion about landmarks’ relative positions [18, ch. 9] and has

been used in various path planning approaches [19], [20],

[21]. In particular, the minimum spanning tree is a subtree

of the Delaunay triangulation [22] and the shortest path

distance in the Delaunay triangulation graph is a constant

factor approximation of the Euclidean distance [23].

The paper is structured as follows. Section II describes

the basic model for robot sensing and actuation. Section III

presents algorithms for learning the Delaunay triangulation.

Section IV provides examples of how the triangulation can

be used to perform certain tasks. Finally, Section V describes

open questions related to the present research.

II. MODEL

A. Basic Model

The robot is considered to be a moving point in R
2. For

the purposes of this paper we will assume that there are

no obstacles and the entire plane is free space. Let L =
{l1, . . . , ln} ⊂ R

2 be a set of n special points (or landmarks);

their locations are unknown to the robot. The landmarks are

distinguishable and have unique labels. We assume that the

landmarks are in general position: no three landmarks are



Fig. 2. Perpendicular bisectors split the environment into polygonal
preimages. Each preimage can be uniquely identified by the sensor output
when the robot is inside the region. Some preimage labels are omitted for
clarity

collinear, no four landmarks are cocircular, and no landmark

is equidistant from two other landmarks.

Let r ∈ R
2 be the current robot position. The state space

for the robot is defined as

X = R
2 × E ,

in which E ⊂ R
2n is a set of all possible landmark

configurations.

The robot is equipped with a distance ordering sensor

that returns the sequence of landmark labels ordered by the

distance relative to the current robot position in ascending

order (see Fig. 1) and additional information about landmarks

that are equidistant from the robot. Such a sensor can be

implemented, for example, by comparing the strength of

radio signals transmitted by the landmarks.

The robot is able to execute two motion primitives:

TOWARD(l) and AWAY(l). TOWARD(l) results in the robot

moving in a straight line in the direction of the landmark

labeled l, whereas AWAY(l) moves the robot in the opposite

direction (AWAY(l) is undefined when the robot is at l).

Additionally, TOWARD(l) terminates when the robot arrives

at l. Note that these motion primitives do not provide the

robot with any information about the relationship between

directions to multiple landmarks.

B. Additional Considerations

The distance ordering sensor can be defined by a sensor

mapping

h : X → Sn × Pn−1,

in which Sn is a set of all possible permutations of n distinct

elements and Pn−1 is the powerset of {1, . . . , n − 1}. The

first part of the output lists the landmarks in the order of

ascending distance to the robot. The second part encodes

groups of landmarks with equal distances to the current robot

location: if it contains index i, then distances to the i-th

and i + 1-th closest landmarks are equal. For example, if

h(r, E) = ((l4, l2, l1, l3), {1, 2}), then, in the configuration

E, the distances from r to l4, l2, and l1 are equal and smaller

than the distance to l3.

(a) Projections of both direction fields on
the bisector have the same direction. The
robot will move in that direction until it
reaches point A

(b) Projections of both direction fields on the
bisector have opposite directions. The robot
behavior is not clearly defined.

(c) We resolve the ambiguity by introducing a sensor reaction delay
(dotted curves show where the sensor output changes after the robot
has crossed the bisector). The robot will move in the direction
corresponding to the larger projection of the direction field on the
bisector (in the direction of point C, in this example).

Fig. 3. Various robot behavior at the boundary between preimages

Alternatively, the sensor output can be encoded as a linear

order relation “closer than or equidistant to” on the set of

landmarks L that can be represented as an n×n matrix with

elements ±1 that satisfies certain properties (for example,

one of them is to be antisymmetric).

This mapping decomposes the plane into preimages: re-

gions in which the sensor output is constant. For the distance

ordering sensor, the preimages are polygons created by the

perpendicular bisectors (simply bisectors in the future) of

pairs of the landmarks (see Fig. 2), the bisectors themselves,

and the intersection points of multiple bisectors.

The robot can only change its behavior when its sensor

readings change, specifically, when it crosses one of the

bisectors (we assume that the robot neither controls nor

knows its speed; therefore, the notion of time is meaningless

in our setting). We use the term direction field to describe

a vector field that assigns to each point of the plane the

direction of the robot movement at that point. Due to the

specifics of the motion primitives available to the robot, the

direction field varies smoothly inside every preimage (with

the possible exception of landmark locations). However, it

might be problematic to define the robot direction on the

boundary between multiple preimages (see Fig. 3).

In the situation depicted in Fig. 3(a), it is reasonable



to conclude that the robot will continue moving along the

bisector line in the general direction of the landmarks until

it reaches point A, then stop; Fig. 3(b) is more ambiguous. To

resolve this issue, we will refer to a somewhat different robot

model in which the distance ordering sensor has bounded

polling rate. Effectively, this means that there is a (bounded)

delay between the robot crossing the bisector line and the

sensor reading being updated. As a result, the actual robot

trajectory will look similar to Fig. 3(c): in general, the robot

direction is determined by the direction field that has a larger

projection on the bisector. In the example of Fig. 3(c), the

robot moves along the bisector towards point C. This allows

us to make the following statement:

Proposition 1 (Extending the direction field to the preimage

boundaries). Let q be a point on the bisector line that

separates preimages P1 and P2. Let d1 and d2 be continuous

extensions to q of the robot direction field defined on P1 and

P2, correspondingly.

1) If both d1 and d2 are outward-pointing for P1 and P2,

then the robot direction at q is defined by the projection

of d1 + d2 on the bisector line.

2) If d1 is outward-pointing and d2 is inward-pointing,

then the robot direction at q is defined by d1.

3) If both d1 and d2 are inward-pointing, then the robot

direction at q is undefined.

It is worth remembering that the speed of the robot is not

taken into account, so the norm of the direction vector is

irrelevant.

III. LEARNING THE DELAUNAY TRIANGULATION

The following notation will be used in this section:

• d : R2 × R
2 → [0,∞) is the distance function on the

plane;

• LAST(r) is the most distant landmark (last in the sensor

output), when the robot is at r, defined by

LAST(r) = argmax
l∈L

d(r, l).

A. Distinguishing Acute, Obtuse and Right Angles

The first task the robot is able to perform is to gather some

information about the angle formed by three landmarks. The

algorithm1 is very simple:

Algorithm 1. (Identifying the type of an angle ∠ABC)

Description. The robot executes TOWARD(A), then

TOWARD(C). The robot stops when A and C switch places

in the distance ordering. If B is the most distant of the

three landmarks, then ∠ABC < π

2
; if B is the closest, then

∠ABC > π

2
; finally, if all three landmarks are equidistant,

then ∠ABC = π

2
.

Lemma 1. Algorithm 1 is correct.

Proof. It can be seen that the robot stops exactly at the

midpoint of the segment AC. The result follows from simple

geometric reasoning.

1It should be noted that most of the “algorithms” of this section are not
algorithms in the classical sense of the word, but rather motion strategies that
instruct the robot how to get to a desired location, without the knowledge
of the starting state.

Fig. 4. Locating the circumcenter of an acute triangle.

B. Locating the Circumcenter of Three Landmarks

The crucial part of the Delaunay triangulation algorithm

is to navigate the robot to the circumcenter of three given

landmarks. The way to accomplish this task depends on the

type of the triangle formed by those landmarks. Assume for

simplicity that A, B and C are the only three landmarks.

Algorithm 2. (Reaching the circumcenter of a right triangle

∆ABC)

Description. The robot executes TOWARD(A), then

TOWARD(C). It stops when A and C switch places in the

distance ordering.

Lemma 2. If ∠ABC = π

2
, then Algorithm 2 terminates with

the robot at the circumcenter of ∆ABC.

Proof. The circumcenter of a right triangle is the midpoint

of its hypotenuse, in this case AC.

Algorithm 3. (Reaching the circumcenter of an acute trian-

gle ∆ABC)

Description. The robot is continuously executing

TOWARD(LAST(r)), in which r is its current position.

It stops when the distances to all three landmarks A, B,

and C are equal. Notice that due to the iterative nature of

the algorithm, the robot does not reach the stopping point

perfectly, but only in the limit. We might decide that the

robot stops when it arrives to the desired location with

good enough precision or when the robot fails to move any

significant distance over an extended period of time.

Lemma 3. If ∠ABC < π

2
, then Algorithm 3 terminates with

the robot at the circumcenter of ∆ABC.

Proof. Essentially, the robot moves in the direction opposite

to the gradient of a bounded function f(r) = d(LAST(r), r).
This means that it will stop at the local minimum of f . If

the triangle ∆ABC is acute, then the only such minimum

is the circumcenter (see Fig. 4).



Fig. 5. Locating the circumcenter of an obtuse triangle. In some parts of
bisector corresponding to BA and BC, direction fields’ projections have
opposite direction. According to Proposition 1, the final robot direction is
aimed at the circumcenter.

Unfortunately, the previous algorithm does not work in

case of an obtuse triangle, since now the local minima of f is

not the circumcenter but the midpoint of AC. The following

(less elegant) modification provides the solution.

Algorithm 4. (Reaching the circumcenter of an obtuse

triangle ∆ABC).

Description. First, the robot travels to the midpoint of AC.

After having reached it, the robot continuously executes

TOWARD(LAST(r)) unless B is the closest landmark; if it is,

then the robot executes AWAY(B). Similarly to the previous

algorithm, the robot stops when all three landmarks become

(almost) equidistant. Fig. 5 provides the illustration.

There are two potential issues with this algorithm. First,

for some starting robot positions, AWAY(B) will direct the

robot away from the landmarks and the circumcenter, and

will never terminate. Beginning with the midpoint of AC

deals with this, since it lies in the region in which the

algorithm always terminates. Second, the use of the first part

of Proposition 1 (opposite directions) is needed to determine

the robot direction at some parts of the bisector lines,

specifically the regions in which B switches to or from the

first position in the distance ordering (see Fig. 5). However,

it can be shown from geometric considerations that the robot

movement is always directed toward the circumcenter.

Lemma 4. Suppose ∠ABC > π

2
. Algorithm 4 terminates

with the robot at the circumcenter of ∆ABC.

Proof. See Appendix.

Now we can derive the final algorithm for this section:

Algorithm 5. (Reaching the circumcenter of any triangle

∆ABC).

Description. Run Algorithm 1 for each of the vertices of

∆ABC to determine the type of the triangle. If all three

angles are acute, then run Algorithm 3. If one of the angles

is obtuse, relabel the landmarks so that the obtuse angle

corresponds to vertex B and run Algorithm 4. If one of the

Input: A,B,C ∈ L
Output: TRUE if ∆ABC is Delaunay, FALSE otherwise
type← acute
for all Y in {A,B,C} do

X,Z ← 2 remaining vertices

TOWARD(X)
repeat

TOWARD(Z)
until equal distance to X and Z
if X is not closer than Y then

(A,B,C)← (X,Y, Z)
if Y is closer than X then

type← obtuse
else

type← right
break

if type = acute then

repeat

// LASTABC(r) is the last of A, B, C in the output

TOWARD(LASTABC(r))
until equal distance to A, B, and C

else if type = obtuse then

repeat

if B is closer than A and C then

AWAY(B)
else

TOWARD(LASTABC(r))
until equal distance to A, B, and C

if FIRST(r) ∈ {A,B,C} then

return TRUE

else

return FALSE

Fig. 6. Testing the Delaunay property

angles is right, relabel the landmarks in the same way and

run Algorithm 2.

The correctness of the algorithm follows from Lemmas 1-

4:

Theorem 1. Algorithm 5 terminates with the robot at the

circumcenter of ∆ABC.

C. Computing the Delaunay Triangulation

The Delaunay triangulation for a set of points in the

plane is a triangulation such that no point is in the interior

the circumcircle of any triangle [18]. We call a triangle

ABC (A,B,C ∈ L) Delaunay triangle if it has the empty

circumcircle property, i.e., its circumcircle contains no points

of L.

Algorithm 6. (Testing the Delaunay property of a triangle)

Description. The robot executes Algorithm 5, while ignoring

all the landmarks except A, B, and C. The triangle is

Delaunay if and only if the three landmarks occur at the

beginning of the distance ordering sensor output when the

robot is at the circumcenter of ∆ABC. See Fig. 6 for the

pseudocode representation of the algorithm.



Lemma 5. Algorithm 6 is correct.

Proof. The robot can safely ignore other landmarks in the

sensor output for the first step of the algorithm, since the

sensor reading for a subset of landmarks is exactly the

corresponding subsequence of the full output.

Furthermore, by the general position assumption, no four

landmarks lie on the same circle. Therefore a sensor output

at the circumcenter of ∆ABC that starts with A, B, C (in

any order) implies that all other landmarks are outside of the

circumcircle and the triangle is Delaunay.

The faces of a Delaunay triangulation for a set of points are

exactly all Delaunay triangles formed by those points [18].

Therefore, we can use the following algorithm to construct

the Delaunay triangulation of L:

Algorithm 7. (Computing the Delaunay triangulation)

Description. Run Algorithm 6 for all triples of landmarks

from L. If landmarks A, B, and C form a Delaunay triangle,

then edges AB, AC, and BC belong to the Delaunay graph.

IV. USING THE DELAUNAY TRIANGULATION

In this section we discuss certain tasks that can be

performed using the information gathered in the previous

section.

A. Computing the Convex Hull

The Delaunay triangulation of a set L encodes enough

information to determine the convex hull of L. Indeed, the

convex hull boundary is formed by the edges of a triangu-

lation that belong to exactly one triangle. The only thing

left is a trivial task of connecting edges in the correct order

to form a closed path2. By using appropriate data structures

(e.g., red-black trees), this algorithm can be adapted to run

with O(n log n) time complexity, provided that the list of

Delaunay triangles is precomputed in advance.

Algorithm 8. (Computing the convex hull)

Description. See Fig. 7 for the pseudocode implementation.

Suppose M ⊂ L is a set of landmarks. The robot can

construct the Delaunay triangulation of M by using the

algorithms described in Section III and find the convex hull.

However, it does not need to execute Algorithm 7 several

times for different M . We can modify the algorithm to allow

the robot to remember complete sensor outputs at every

circumcenter of L. In this case, the robot would only need to

run Algorithm 7 once for L in order to be able to compute

the triangulation of any M ⊂ L without moving anywhere.

To do that, it can simply use the existing data and ignore all

landmarks from L \M .

2Videos demonstrating the execution of Algorithm 8 (implemented in
simulation) are available at http://msl.cs.uiuc.edu/˜katsev1/
publications/iros11/

Input: Set of landmarks L
Output: Convex hull of L

edges← ∅, hull← ∅

for all A,B,C in L do

if ISDELAUNAY(∆ABC) then

for all e in {AB,BC,AC} do

if not CONTAINS(edges, e) then

INSERT(edges, e)
else

DELETE(edges, e)
e← edges[0]
v ← any endpoint of e
DELETE(edges, e)
APPEND(hull, v)
repeat

e← element of edges with endpoint v
v ← other endpoint of e
DELETE(edges, e)
APPEND(hull, v)

until ISEMPTY(edges)
return hull

Fig. 7. Computing the convex hull

B. Patrolling

Similarly to [17], we define the task of patrolling a set

of landmarks M ⊂ L, such that M ∩ ∂hull(L) = ∅, as the

problem of locating a minimal set W ⊂ L such that M ⊂W

and M ∩ ∂hull(W ) = ∅. The idea is that we want to find a

route for the robot that would go around M , but not too far

from it. In this case, the robot can patrol landmarks M by

navigating the convex hull boundary of W . The following

algorithm solves this problem.

Algorithm 9.

Description. Start with W = L. At every iteration try to

find l ∈ ∂hull(W ) such that M ∩ ∂hull(W \ {l}) = ∅ and

replace W by W \ {l}. If no such l can be found, then W
is minimal.

It is unclear whether there exists an efficient algorithm to

find the smallest set W that satisfies the requirements.

V. CONCLUSIONS AND FUTURE WORK

We have analyzed the capabilities of the robot that is

equipped with only one weak sensor that produces the

distance ordering of the distinguishable landmarks. We have

demonstrated that the robot can successfully reach the cir-

cumcenter of a triangle formed by any triple of landmarks.

This enabled us to provide an algorithm for the robot to learn

the Delaunay triangulation of the set of landmarks L. Using

the information obtained, the robot is able to, for example,

compute the convex hull of L or patrol a subset of L.

Many interesting questions remain for future research. The

sensor output is based on the Euclidean distance ordering.

Can it be replaced by a more general model? For example,

can the underlying distance function be non-additive or lack

radial symmetry? What other tasks can be performed by

the robot using the information contained in the Delaunay



triangulation? Although the Delaunay triangulation can be

used for path planning, the robot can only compare length of

intervals that have a common endpoint. Does this limitation

make the optimal planning problem impossible? Algorithms

of Section III operate only on three landmarks at time.

Is there a better algorithm that will use all the landmarks

simultaneously? How can obstacles incorporated in this

problem (we might want to distinguish between two types

of obstacles: physical obstacles that block robot movement

and virtual obstacles that block sensing)?

APPENDIX

Proof of Lemma 4. Let FIRST(r) be the closest landmark,

when the robot is at r, defined by

FIRST(r) = argmin
l∈L

d(r, l).

Consider the function

f(r) = d(r, LAST(r))− d(r, FIRST(r)),

which returns the difference between the distances to the

closest and furthest landmarks. It is continuous by construc-

tion and its only minimum is the circumcenter of ∆ABC,

at which f(r) = 0.

Suppose that the robot is executing TOWARD(LAST(r))
or AWAY(FIRST(r)) inside of a region in which the corre-

sponding goal landmark does not change. In this case, f
is non-increasing and even strictly decreasing, except for

some locations on the extensions of triangle sides beyond

the vertices. Indeed, when the robot moves directly toward

LAST(r), the distance to LAST(r) decreases faster than the

distance to any other landmark, including FIRST(r), therefore

f is decreasing. The only exception is when the direction to

LAST(r) coincides with the direction to FIRST(r), in this

case f stays constant. This requires the robot to be co-linear

with LAST(r) and FIRST(r) and not between them. It can be

seen that it is not possible for this condition to continue

indefinitely, therefore f will eventually decrease. Similar

reasoning applies to the motion primitive AWAY(FIRST(r)).
We conclude that there are three possible scenarios for the

robot: 1) it can move infinitely far away from the landmarks

using the AWAY primitive; 2) it can get stuck, because the

algorithm would instruct it to move in the opposite directions

on two sides of the bisector line; 3) it can safely reach the

minimum of f , the circumcenter of ∆ABC.

Cases 1 and 2 only happen in certain locations. For

example, 2 is impossible unless the robot is co-linear with B
and A, or B and C. The algorithm’s initial step is intended

to drive the robot to the “safe” starting point, from which it

is guaranteed to reach the circumcenter.
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