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Abstract

This paper presents an unusual perspective on sensing uncertainty and �ltering with the
intention of understanding what information is minimally needed to achieve a speci�ed task.
Information itself is modeled using information space concepts, which originated from dynamic
game theory (rather than information theory , which was developed mainly for communication).
The guiding principle in this paper is avoid sensing, representing, and encoding more than is
necessary. The concepts and tools are motivated by many tasks of current interest, such as
tracking, monitoring, navigation, pursuit-evasion, exploration, and mapping. First, an overview
of sensors that appear in numerous systems is presented. Following this, the notion of a vir-
tual sensor is explained, which provides a mathematical wayto model numerous sensors while
abstracting away their particular physical implementatio n. Dozens of useful models are given,
each as a mapping from the physical world to the set of possible sensor outputs. Preimages with
respect to this mapping represent a fundamental source of uncertainty: These are equivalence
classes of physical states that would produce the same sensor output. Pursuing this idea further,
the powerful notion of a sensor lattice is introduced, in which all possible virtual sensors can be
rigorously compared. The next part introduces �lters that a ggregate information from multiple
sensor readings. The integration of information over spaceand time is considered. In the spatial
setting, classical triangulation methods are expressed interms of preimages. In the temporal
setting, an information-space framework is introduced that encompasses familiar Kalman and
Bayesian �lters, but also introduces a novel family calledcombinatorial �lters . Finally, the plan-
ning problem is presented in terms of �lters and information spaces. The paper concludes with
some discussion about connections to many related research�elds and numerous open problems
and future research directions.
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1 Introduction

Think about the devices we build that intermingle sensors, actuators, and computers. Whether they
be robot systems, autonomous vehicles, sensor networks, orembedded systems, they are completely
blind to the world until we equip them with sensors. All of the ir accomplishments rest on their
ability to sift through sensor data and make appropriate decisions. This article therefore takes a
completely sensor-centric view for designing these systems.

It is tempting (and common) to introduce the most complete and accurate sensors possible to
eliminate uncertainties and learn a detailed, complex model of the surrounding world. In contrast,
this article heads in the opposite direction by starting with sensing �rst and then understanding
what information is minimally needed to solve speci�c tasks. If we can accomplish our mission
without knowing certain details about the world, then the overall system may be more simple and
robust.

This can be partly understood by considering computationalconstraints. One way or another,
we want computers to process and interpret the data obtainedfrom sensors. The computers might
range from limited embedded systems to the most powerful computer systems. The source of their
data is quite di�erent from classical uses of computers, in which data are constructed by humans,
possibly with the help of software. When data are obtained from sensors, there is a directsensor
mapping from the physical world onto a set of sensor readings. Even though sensors have been
connected to computers for decades, there has been a tendency to immediately digitize the sensor
data and treat it like any other data. With the proliferation of cheap sensors these days, it is
tempting to easily gather hordes of sensor data and google them for the right answer. This may
be di�cult to accomplish, however, without carefully under standing the sensor mapping. A large
part of this article is therefore devoted to providing numerous de�nitions and examples of practical
sensor mappings.

When studying sensors, one of the �rst things to notice is that most sensors leave a huge amount
of ambiguity with regard to the state of the physical world. Example: How much can we infer
about the world when someone triggers an infrared sensor to turn on a bathroom sink? In many
�elds, there is a common temptation to place enough powerfulsensors so that as much as possible
about the physical world can be reconstructed. The idea is togive a crisp, complete model that
tends to make computers happy. In this article, however, we argue that it is important to start
with the particular task and then determine its information requirements: What critical pieces of
information about the world do we need to maintain, while leaving everything else ambiguous?
The idea is to \handle" uncertainty by avoiding big models whenever possible. This is hard to
accomplish if we design a general purpose robot with no clearintention in mind; however, most
devices appearing in practice have speci�c, well-de�ned tasks to perform.

Depending on your background, there might be surprises in this article:

1. Discrete vs. continuous: Not very important: Even though computation is discrete
and the physical world is usually modeled with continuous spaces, the distinction is not too
important here. The �eld of hybrid systems is devoted to the interplay between continuous
models, usually expressed with di�erential equations, anddiscrete computation models. The
point in this article, however, is to study sensor mappings.These may be from continuous to
continuous spaces, continuous to discrete, or even discrete to discrete (if the physical world
is modeled discretely).

2. Information spaces, not information theory: As an elegant and useful mathematical
framework for characterizing information transmitted thr ough a noisy channel, Shannon's
information theory is extremely powerful. The concepts arefundamental to many �elds;
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Figure 1: (a) For classical computation, the full state is given by the �nite machine state, the head
position, and the binary string written on the tape. (b) In th is paper, there is both an internal
computational state and an external physical state.

however, information spaces were formulated since the 1940s in the context of game theory
and control theory for systems that are unable to determine their state. Thus, this article talks
more about how to accomplish tasks in spite of huge amounts ofambiguity in state, rather
than measuring information content, using entropy-based constructs. There may indeed be
interesting connections between the two subjects, but theyare not well understood and are
therefore not covered here.

3. Perfectly accurate and reliable sensors yield huge amounts of un certainty: Uncer-
tainty in sensing systems is usually handled by formulatingstatistical models of disturbance.
For example, a global positioning system (GPS) may output location coordinates, but a Guas-
sian noise model might be used to account for the true position. It is important, however, to
study the often neglected source of uncertainty due simply to the sensor mapping. Consider
the sensor pad at the entrance to a parking garage or drive-through restaurant. It provides
one bit of information, usually quite reliably and accurately. It performs its task well, in spite
of enormous uncertainty about the world: What kind of car drove over it? Where precisely
did the car drive? How fast was it going? We are comfortable allowing this uncertainty to
remain uncertain. We want to study these situations broadly. This is complementary to the
topic of noisy sensors, and both issues can and should be addressed simultaneously. This
article, however, focuses mainly on the underrepresented topic of uncertainty that arises from
the sensor mapping.

Based on the discussion above, it is clear that sensing and computation are closely intertwined.
For robotic devices,actuation additionally comes into play. This means that commands are issued
by the computer, causing the device to move in the physical world. Therefore, many problems
of interest mix all three: sensing, actuation, and computation. Alternative names for sensing are
perception or even learning, but each carries distinct connotations. A broader name foractuation
is control, which may or not refer to forcing changes in the physical world. Based on this three-way
mixture and its increasing relevance, we are forced more than ever to develop new mathematical
abstractions and models that reduce complexity and meet performance goals.

Figure 1 shows a conceptual distinction between classical computation and the three-way mixture
considered in this paper. In Figure 1(a), the Turing machine model is shown, in which a state
machine interacts with a boundless binary tape. This and other computation models represent
useful, powerful abstractions for ignoring the physical world. Figure 1(b) emphasizes the interaction
between the physical world and a computer. Imagine discarding the Turing tape and interacting
directly with a wild, unknown, chaotic world through sensing and actuation.

A natural question arises: What is the \state" of this system? In the case of the Turing machine
the full state is given by: the �nite machine state, head position, and the binary string written
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on the tape. For Figure 1(b), this becomes replaced by two kinds of states: internal and external.
The internal state corresponds to the state inside of the computation box. Some or all of the
internal state will be called an information state (or I-state), to be de�ned later. The external state
corresponds to the state of the physical world. The internalstate is closer to the use of state in
computer science, whereas the external state is closer to its use in control theory. The internal vs.
external distinction is more important than discrete vs. continuous; either kind of state may be
continuous or discrete.

These internal states will be de�ned to live in an information space (or I-space), which is where
�ltering and planning problems naturally live when sensing is involved. In this article, we will de�ne
and interpret these spaces in many settings. A continuing mission is to make these spaces as small
as possible while being able to e�ciently compute over them and to understand their connection
to the external states.

Here are some key themes to take from this article:

� Start from the task and try to understandwhat information is actually required to be extracted
from the physical world.

� Since sensors leave substantial uncertainty about the physical world, they are best understood
as inducing partitions of the external state space into indistinguishable classes of physical
states.

� We can designcombinatorial �lters that are structurally similar to Bayesian or Kalman �lters,
but involve no probabilistic models. These are often dramatically simpler in complexity.
They are also perfectly compatible with probabilistic reasoning: Stochastic models can be
introduced over them.

� There is no problem de�ning enormous physical state spaces,provided that we do not directly
compute over them. However, state estimation or recovery ofa particular state in a giant
state space should be avoided if possible.

� Virtual sensor models provide a powerful intermediate abstraction that can be implemented
by many alternative physical sensing systems.

The remainder of this paper is divided into four main parts:

1. Physical sensors: Before going into mathematical models, a broad overview of real sensors
will be given along with discussions about what we would liketo sense.

2. Virtual sensors: This part introduces mathematical models of sensors that are abstracted
away from the particular physical implementation. Using a de�nition of the physical state
space, a sensor is de�ned as a mapping from physical states todata that can be measured.

3. Filtering: Information accumulates from multiple sensor readings over time or space and
needs to be e�ciently combined. Spatial �lters generalize ancient triangulation methods and
combine information over space. Fortemporal �lters , we �nd and attempt to \live" in the
smallest I-space possible, given the task. The concepts provide a generalization of Kalman
and Bayesian �lters. The new family includes reduced-complexity �lters, called combinatorial
�lters , that avoid physical state estimation.

4. Discussion: In the �nal part, the transition to planning is brie
y considered. A plan speci�es
actuation primitives (or actions) that are conditioned on t he I-states maintained in a �lter
and manipulate the world to achieve tasks. Related researchand future research challenges
are then presented to end the paper.
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(a) Light-dependent resistor (b) GPS unit (c) Wireless card (d) Toilet 
oat mechanism

Figure 2: Some examples of sensors.

Filtering and planning can be distinguished by beingpassiveand active, respectively. A �ltering
problem might require making inferences, such as counting the number of people in a building or
determining the intent of a set of autonomous vehicles. A planning problem usually disturbs the
environment, for example by causing a robot to move a box across the 
oor.

2 Physical Sensors

2.1 What Is a Sensor?

What is a sensor? Even though we are quick to �nd examples, it is a di�cult question to answer
precisely. Consider some devices shown in Figure 2. To consider each a sensor, it seems that the
device must be used by a larger system for some form of inference or decision making. The light-
dependent resistor (LDR) in Figure 2(a) alters the current or voltage when placed in a circuit. It
can be considered as atransducer, which is a device that converts one form of energy into another;
the LDR converts light into an electrical signal. When connected to a larger system, such as a
robot, we will happily consider it as a sensor. Figure 2(b) shows a complete global position system
(GPS) device, which measures position, orientation, and velocity information. As a black box, it
produces information similar to the LDR placed into a tiny ci rcuit; however, its operation is much
complex because it measures phase shifts between signals emitted by orbiting satellites. When
connected to a larger system, its precision and error characteristics are much harder to analyze
(for example, are trees blocking satellites?). The processoccurring inside the sensor is much more
complex than for a simple transducer. A sensor could quite easily be more complex than a robot
that uses it.

We might take a device that was designed for another purpose and abuse it into being a sensor.
For example, the wireless card in Figure 2(c) was designed mainly for communications; however,
it can also be con�gured in a larger system to simply serve as asignal meter. It was illustrated in
[33] that when used as a sensor, it provides powerful localization information. This should cause
us to look around and abuse any device we can �nd into performing as a sensor.

Finally, it seems that the 
oat mechanism in a toilet water ta nk, shown in Figure 2(d), serves as
a sensor to determine when to shut o� the 
ow valve. This is perfectly �ne as a sensor in a purely
mechanical system, but in this paper, we consider only sensors that provide input to computer
systems.

Based on these examples, it seems best to avoid having a precise de�nition of a sensor. We will
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(a) Shopping mall (b) Control room (c) Assisted living (d) Co ral reef

(e) Roomba (f) CMU Boss (g) UAV (h) Protein

Figure 3: Several motivational settings in which we would like to use sensors to monitor or control
the environment.

talk about numerous sensors, with the understanding they are just devices that respond to external
stimuli and provide signals to a larger system. The next stepis to consider the kinds of scenarios
in which we will be placing sensors.

2.2 Where Might We Want to Use Sensors?

It is di�cult to exhaustively list settings where sensors mi ght be placed. To nevertheless provide
some perspective on the kinds places where the concepts fromthis paper may apply, consider the
motivating examples shown in Figure 3. Figure 3(a) shows a shopping mall with numerous people
moving around. Common tasks could be monitoring activitiesfor security or studying consumer
habits (see VideoMining solutions). Related to this, Figure 3(b) shows a security control room
in which video is monitored from numerous sources within thesame building. How much can be
reconstructed about the movements of people, as they becomevisible to various cameras? We
might want to count people, estimate their 
ow, or classify t hem. Now consider a home setting,
in which security is a common problem; see Figure 3(c). An increasingly important engineering
problem is to monitor activities of people who require assisted living. By keeping track of their
movements, changes in their behavior can be detected. Furthermore, if they become trapped, an
alarm can be sounded for emergency action. In this setting, people prefer not to be monitored by
cameras for privacy reasons. What kind of minimally invasive sensors can be used to accomplish
basic monitoring tasks? Figure 3(d) shows a similar task, but instead involves monitoring wildlife.
Imagine gathering data on air, land, or sea animals for scienti�c and conservation purposes.

The examples so far have involved passive monitoring, without directly interfering with the
environment. Figures 3(e)-(g) show three examples of robotic vehicles that interact with their
environment. Sensing is combined with actuation to move vehicles. In the 3(e), a low-cost robot
vacuums 
oors inside of homes.
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Figure 3(f) shows the vehicle that won the DARPA Urban Challenge, which involved driving
autonomously through a town while taking into account tra�c rules and other vehicles. Automated
driving is gaining increasing interest for both transportation and military use. We can imagine
robots or autonomous vehicles in the sea, on land, in the air,and in space; Figure 3(g) shows an
autonomous aerial vehicle (UAV). Other robotic examples include arms that weld in a factory (as in
PUMA or ABB robots), mobile robots that arrange inventory in a warehouse (as in Kiva Systems),
and humanoids.

Finally, some of the concepts from this paper may apply well beyond the scope of the examples
here. For example, the problem of measuring protein structure, shown in Figure 3(h), can be
viewed as trying to reconstruct as much information possible from limited measurements (which
are obtained by sensors, such as mass spectroscopy and NMR).

2.3 What Physical Quantities Are Sensable?

Based on the numerous examples from Section 2.2, it is helpful to group together similar phenomena
that can be measured from the surrounding physical world. Consider the following categories of
physical quantities:

Spatial: displacement, velocity, acceleration, distance to something, proximity, posi-
tion, attitude, area, volume, level/tilt, motion detectio n

Temporal: clock, chronometer (elapsed time), frequency.

Electromagnetic: voltage, current, power, charge, capacitance, inductance, magnetic
�eld, light intensity, color. These may operate within a cir cuit or within open space.

Mechanical: solid (mass, weight, density, force, strain, torque), 
uid (acoustic, pres-
sure, 
ow, viscosity), thermal (temperature), calories.

Other: chemical (composition, pH, humidity, pollution, ozone), radiation (nuclear),
biomedical (blood 
ow, pressure).

Clearly a wide variety of phenomena can be sensed. In Section2.4, it will be helpful to keep
these categories to understand the source of the information they provide.

2.4 What Sensors Are Available?

Dozens of abstract sensor models will soon appear in this article. To emphasize that these are
grounded in reality, some widely available sensors are shown in Figure 4. Consider this, in addition
to Figure 2, as a market where we can easily obtain real, physical sensors that ful�ll the expectations
of the mathematical models in Section 3. For each sensor, consider its category from Section 2.3,
which indicates the type of phenomenon causing the sensor reading. It is also helpful to imagine
sensors as beingsimple, which directly produces an output through transduction (an example is
the LDR of Figure 2(a)), or compoundwhich may be composed of several simpler sensors and even
computational components (an example is the GPS device of Figure 2(b)).

The sensors in the top row of Figure 4 cost under $20 US. Thecontact sensor in Figure 4(a)
is simply a mechanical switch that forms a circuit when a strong enough force is applied. In
combination with a faceplate, this could let a robot know whether it is hitting a wall. The sonar
shown in Figure 4(b) emits a high-pitched sound and uses the time that it takes for the sound
to rebound from the wall to estimate directional distance. A cheap compass(Dinsmore 1490) is
shown in Figure 4(c), which indicates 8 possible general directions. A microphone, such as the one
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(a) Contact sensor (b) Sonar (c) Compass (d) Microphone

(e) Wheel encoder (f) Stopwatch/timer (g) Occupancy detector (h) Safety beam

(i) Camera (j) Wii remote (k) Pressure mat (l) SICK laser scanner

Figure 4: Some examples of widely available sensors, roughly sorted from low-cost to high-cost.

in Figure 4(d), can be used as a sensor in a wide variety of ways, from simple sound detection to
sophisticated voice recognition.

Figure 4(e) depicts the inside of awheel encoder, which is used in many applications to count
wheel revolutions. By counting the number of light pulses ofthe LED visible through the disc holes,
the total angle can be estimated. Figure 4(f) shows astopwatch, which is just one kind of clock or
chronometer that can be used to estimate time information (either the current time or total elapsed
time). The sensors in Figures 4(g) and 4(h) are both based oninfrared light detection. Figure 4(g)
shows an example of a cheapoccupancy detector(or motion detector), and Figure 4(h) shows a
beam sensor, which is designed to keep a garage door from closing on someone or something.

Figure 4(i) shows a camera, which in combination with image processing or computer vision
techniques, can perform a wide variety of functions, such asidentifying people, tracking motion,
analyzing lighting conditions, and so on. Figure 4(j) showsthe Wii remote and its sensor bar,
which are used in combination by the Nintendo Wii game console to infer hand motions and
positions. A cheap camera tracks LEDs on the sensor bar to estimate position and orientation,
and accelerometers in the remote estimate velocities. Figure 4(k) shows a pressure mat that sends
a signal to open the door when someone steps on it. For all of the sensors shown so far, there are
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versions available for under $50 US (some as low as $5). In many settings, though, expensive sensors
may be used to provide more complete information. The GPS device of Figure 2(b) is more complex
and more expensive than the sensors shown so far in Figure 4. As a �nal example, however, consider
the SICK laser range�nder, which costs around $5000 US and provides distance measurements at
every half-degree over 180 degrees, with accuracy around one centimeter. Furthermore, a complete
scan can be performed in about 1/30 of a second. This sensor has been extremely popular over the
last decade in mobile robotics for building indoor maps and localizing the robot.

Many other sensors are possible, such as mechanical scales to measure weight, gyroscopes to
measure orientation, thermometers to measure temperature, radiation detectors, carbon monoxide
detectors, and smoke alarms.

2.5 Common Sensor Characteristics

Most sensors are characterized in terms of atransfer function, which relates the possible inputs
(phenomena) to the outputs (sensor readings). In Section 3,the important notion of a sensor
mapping is introduced, which can be considered as a generalization and idealization of the transfer
function. The transfer function is central in engineering manuals that characterize sensor perfor-
mance [17, 52]

Several important terms and concepts will be introduced with respect to the transfer function.
For simplicity here, suppose that the transfer function is a mapping g : R ! R, and the sensor
reading isg(x) for some phenomenonx. Thus, the sensor transforms some real-valued phenomenon
into a real-valued reading. The domain ofg may describe anabsolutevalue or comparerelative
values. For example, a clock measures the absolute time and achronometer measures the change
in time.

The transfer function g may be linear in simple cases, as in using a resistor to convert current
into voltage; however, more generally it may benonlinear. Since the so-called real numbers are
merely a mathematical construction, the domain and range ofg are actually discrete in practice.
The resolution of the sensor is indicated by the set of all possible values for g(x). For example, a
digital thermometer may report any value in the set f� 20; � 19; : : : ; 39; 40g degrees Celsius. For
a more complex example, a camera may provide an image of 1024� 768 pixels, each with 24-bit
intensity values.

Whereas resolution is based on the range ofg, sensitivity is based on the domain. What set of
stimuli produce the same sensor reading? For example, for what set of actual temperatures will the
digital thermometer read 18 degrees? To fully understand sensitivity in a general way, study the
preimages of sensor mappings in Section 3.2.2. This leads tothe fundamental source of uncertainty
covered in this paper.

More uncertainty may arise, however, due to lack ofrepeatability. If the sensor used under
the exact conditions multiple times, does it always producethe same reading? Calibration can
eliminate systematic (or repeatable) errors to improve sensor accuracy. For example, suppose we
have purchased a cheap digital thermometer that has good repeatability but is usually inaccurate
by several degrees. We can use a high-quality thermometer (assumed to be perfect) to compare the
readings and make a lookup table. For example, when our cheapthermometer reads 17 and the
high-quality thermometer reads 14, we will assume for ever more that the actual temperature is 14
whenever the cheap thermometer reads 17. The lookup table can be considered as a mapping that
is composed withg to compensate for the errors. As another example, a wristwatch is actually a
chronometer that is trying to behave as an absolute time sensor. Via frequent calibration (setting
the watch), we are able to preserve this illusion.
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Figure 5: A mobile robot is placed in an indoor environment with polygonal walls. It measures the
distance to the wall in the direction it is facing.

3 Virtual Sensors

Now that physical sensors have been described, we turn to making mathematical models of the
information that is obtained from them. This leads to virtual sensors that could have many
alternative physical implementations. The key idea in this section is to understand how two spaces
are related:

1. The physical state space, in which each physical state is a cartoon-like descriptionof the
possible world external to the sensor.

2. The observation space, which is the set of possible sensor output values or observations.

We will de�ne a sensor mapping, which indicates what the sensor is supposed to observe, given
the cartoon-like description of the external world. For most sensors, a tremendous amount of
uncertainty arises because the sensor does not observeeverythingabout the external world. Under-
standing how to model and manipulate this uncertainty is the main goal of this section. Additional
uncertainty may arise due to sensor noise or calibration errors, but it is important to consider
these separately. Eventually, all sources of uncertainty combine, making it di�cult or impossible
to reason about them without understanding them independently.

3.1 Physical State Spaces

Consider the scenario shown in Figure 5, in which an indoor mobile robot measures the distance
to the wall in the direction that it happens to be facing. This could, for example, be achieved
by mounting a sonar or laser on the front of the robot. If the sensor is functioning perfectly and
reads 3 meters, then what do we learn about the external world? This depends on what is already
known before the sensor observation. Do we already know the robot's con�guration (position and
orientation)? Do we have a precise geometric map of all of thewalls? If we know both of these
already, then we would learn absolutely nothing from the sensor observation. If we know the
robot's con�guration but do not have a map, then the sensor reading provides information about
how the walls are arranged. Alternatively, if we have a map but not the con�guration, then we
learn something about the robot's position and orientation. If we have neither, then something is
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learned about both the con�guration and the map of walls. In robotics, this learning is referred to
assimultaneous localization and mapping (SLAM). The purpose of de�ning the physical state space
is to characterize the set ofpossibleexternal worlds that are consistent with a sensor observation
and whatever background information is given.

Since the physical state contains both con�guration and mapinformation, a common structure
frequently appears for the physical state space. LetZ be any set of sets. EachZ 2 Z can be
imagined as a \map" of the world and eachz 2 Z would be the con�guration or \place" in the
map. If the con�guration and map are unknown, then the state space would be the set of all (z; Z)
such that z 2 Z and Z 2 Z .

3.1.1 A mobile robot among obstacles

No walls Return to Figure 5. If there were no walls, then the robot could move to any position
(qx ; qy) 2 R2 and orientation q� 2 [0; 2� ). The physical state, denoted byx, is completely expressed
by x = ( qx ; qy ; q� ). The physical state space, denoted byX , in this case is the set of all robot
positions and orientations. We can imagineX � R3 by noting that qy ; qy 2 R and q� 2 [0; 2� ) � R.
This will be perfectly �ne for de�ning a sensor; however, we sometimes need to capture additional
structure. Here, the fact that 0 and 2� are the same orientation has not been taken into account.
Formally, we can place the robot at the origin, facing thex axis, and apply homogeneous transfor-
mation matrices to translate and rotate it [34, 37]. The set of all such transformations is called a
matrix group. In particular, we obtain X = SE(2), which is the set of all 3 by 3 matrices that can
translate and rotate the robot. As is common in robotics, we could alternatively write X = R2 � S1,
in which S1 denotes a circle in the topological sense and represents theset of possible orientations.
Let S1 = [0 ; 2� ] with a declaration that 0 and 2� are the same. These issues are quite familiar in
robotics, control theory, and classical mechanics; see [1,6, 45, 46]. The discussion in this paper will
be kept simple to avoid technicalities that are mostly orthogonal to our subject of interest.

Known map Now suppose that the robot has a perfect polygonal map of its environment. This
constrains the robot position (qx ; qy) to lie in some setE � R2 that has a polygonal boundary. The
state space becomesX = E � S1, in which S1 once again accounts all possible orientations.

One of several maps The robot is now told that one of k possible maps is the true one. For
example, we may have a setE of �ve possible mapsf E1; E2; E3; E4; E5g. This can be imagined as
having k = 5 copies of the previous state space. The state spaceX is the set of all pairs (q; Ei ) in
which q = ( qx ; qy ; q� ), (qx ; qy) 2 E i , and E i 2 E.

Unknown map If the map is completely unknown, then the robot may be told only the map
family, which is an in�nite collection. For example, E may be the set of all polygonal subsets1 of
R2. Every map can be speci�ed by a polygon and describes a subsetof R2. The state spaceX is
the set of all pairs (q; E) in which ( qx ; qy) 2 E and E 2 E. Note that we can write X � SE(2) � E .

Numerous other map families can be made. Here are several thought-provoking possibilities, in
which each de�nesE as a set of subsets ofR2. Thus, E could be:

� The set of all connected, bounded polygonal subsets that have no interior holes (formally,
they are simply connected).

1To be more precise, each subset must be closed, bounded, and simply connected.
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Figure 6: The environment may contain various kinds ofbodies, such as robots, landmarks, objects,
pebbles, targets, obstacles, evaders, treasures, and towers.

� The previous set expanded to include all cases in which the polygonal region has a �nite
number of polygonal holes.

� All subsets of R2 that have a �nite number of points removed.

� All subsets ofR2 that can be obtained by removing a �nite collection of nonoverlapping discs.

� All subsets of R2 obtained by removing a �nite collection of nonoverlapping convex sets.

� A collection of piecewise-analytic subsets ofR2.

Each map does not even have to contain homogeneous components. For example, each could be
described as a polygonal region that has a �nite number of interior points removed. Furthermore,
three-dimensional versions exist for the families above. For example,E could be a set of polyhedral
regions in R3.

In some of the examples above, obstacles such as points or discs are removed. We could imagine
having an augmentedmap in which a label is associated with each obstacle. For example, if n disks
are removed, then they may be numbered from 1 ton. This becomes a special case of the models
considered next.

3.1.2 A bunch of bodies

Now consider placing other kinds of entities into an environment E , which may or may not contain
robots. Each such entity will be called a body, which could have one of a number of possible
interpretations in practice. A body B occupiesa subset ofE and can be transformed using its
own con�guration parameters. For example, a body could be a point that is transformed by
(qx ; qy) parameters or a rectangle that is transformed by (qx ; qy ; q� ) parameters. We can write
B (qx ; qy ; q� ) � E to indicate the set of points occupied byB when at con�guration ( qx ; qy ; q� ). In
general, bodies could be as complex as any robots consideredin robot motion planning; however,
this is too much of a digression for this paper; see [34, 37] for understanding how the con�guration
space of bodies is constrained when they are not points. Here, it will be assumed that all bodies
are points, except for obstacles.
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In this article, bodies may have many di�erent interpretati ons and uses. Here are terms and
examples that appear all over the literature:

� Robot: A body that carries sensors, performs computations, and executes motion commands.

� Landmark: Usually a small body that has a known location and is easily detectable and
distinguishable from others.

� Object: A body that can be detected and manipulated by a robot. It can be carried by a
robot or droppedat a location.

� Pebble: A small object that is used as a marker to detect when a place has been revisited.

� Target: A person, a robot, or any other moving body that we would like to monitor using a
sensor.

� Obstacle: A �xed or moving body that obstructs the motions of others.

� Evader: An unpredictable moving body that attempts to elude detection.

� Treasure: Usually a stationary body that has an unknown location but is easy to recognize
by a sensor directly over it.

� Tower: A body that transmits a signal, such as a cell-phone tower or alighthouse.

Rather than worry about particular names of bodies, which are clearly arbitrary, it is more
important to think about their mathematical characteristi cs. Think about these three important
properties of a body:

1. What are its motion capabilities?

2. Can it be distinguishedfrom other bodies?

3. How does it interact with other bodies?

First consider motion capabilities. At one extreme, a body could be static, which means that
it never moves. Its con�guration could nevertheless be unknown. If the body moves, then it may
have predictableor unpredictable motion. Furthermore, the body may be able to move by itself, as
in a person, or it may move only when manipulated by other bodies, such as a robot pushing a
box.

Next we handle distinguishability. Consider a collection of bodies B1, : : :, Bn that are distin-
guishable simply by the fact that each is uniquely de�ned. We can now de�ne any equivalence
relation � and say B i � B j if and only if they cannot be distinguished from each other. Another
way to achieve this is by de�ning a set oflabelsand assigning a not-necessarily-unique label to each
body. For example, the bodies may be people, and we may label them as male and female. More
complicated models are possible, but are not considered here. (For example, indistinguishability
does not even have to be an equivalence relation: PerhapsB i and B j are pairwise indistinguishable,
B j and Bk are pairwise indistinguishable, but B i and Bk could be distinguishable.)

Finally, think about how bodies might interact or interfere with each other. Three interaction
types are generally possible between a pairB1, B2, of bodies:

� Sensor obstruction: Suppose a sensor would like to observe information about body B1.
Does bodyB2 interfere with the observation? For example, a truck could block the view of
a camera, but a sheet of glass might not.
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Figure 7: A trajectory can be viewed as a time-parametrized path through X or a one-dimensional
set that traverses Z from left to right.

� Motion obstruction: Does bodyB2 obstruct the possible motions of bodyB1? If so, then
B2 becomes an obstacle that must be avoided.

� Manipulation: In this case, body B1 could cause bodyB2 to move. For example, if B2 is
an obstacle, thenB1 might push it out of the way.

In the remainder of the paper, many di�erent kinds of bodies will appear and it is crucial to pay
attention to their properties rather than their particular names. In all cases, it will be assumed
that bodies are contained inE .

3.1.3 Introducing Time

Of course the world is not static. If the physical state spaceX is meant to be a cartoon-like
description of the world, it represents only a single snapshot. Time will now be introduced to
animate the world. Let T refer to an interval of time, in which the most convenient case is
T = [0 ; 1 ). Starting from any physical state spaceX as de�ned above, we can obtain astate-time
spaceZ = X � T, in which each z 2 Z is a pair z = ( x; t ) and x is the state at time t.

Since time always marches forward, we can consider the \animation" as a path through Z that is
parametrized by time. This leads to a state trajectory, ~x : T ! X . The value ~x(t) 2 X represents
the state at time t. The value ~x(0) is called the initial state . See Figure 7.

The con�gurations of bodies may change over time, but are continuous functions. In fact, they are
usually di�erentiable, leading to time derivatives. For example _q = dq=dtis velocity and •q = d2q=dt2

is acceleration. Such quantities can be incorporated directly into the stateto expand X into a phase
spaceas considered in mechanics. For example,x = ( q; _q) is the phase of a mechanical system in
Lagrangian mechanics. However, the rest of this paper will avoid working directly with velocities.

Before time was introduced,E was introduced to represent possible maps. Now it is possible that
the maps vary over time, along with con�gurations. This vari ation may or may not be predictable.

3.2 Virtual Sensor Models

Now that the state spaceX is de�ned, we can introduce numerous sensor models that are inspired
by the physical sensors in Section 2.4, but are expressed abstractly in terms of X .
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�( h)

Figure 8: (a) A sensor should be viewed as a gadget that partitions the physical state spaceX . (b)
A sensor de�nition is much like running X through a bread slicer. Each \slice" is a preimage.

3.2.1 The Sensor Mapping

We de�ne models of instantaneous sensors, which use the physical state to immediately produce
an observation. Let X be any physical state space. LetY denote the observation space, which is
the set of all possible sensor observations. A virtual sensor is de�ned by a function

h : X ! Y; (1)

called the sensor mapping, which is very much like the transfer function described in Section 2.5.
The interpretation is that when x 2 X , the sensor instantaneously observesy = h(x) 2 Y . Equation
1 is the most important de�nition in this paper.

3.2.2 Preimages: The amount of state uncertainty due to a sensor

What does an observationy tell us about the external, physical state? To understand this, we
should think about all states x 2 X that could have produced the observation. For a given sensor
mapping h this is de�ned as

h� 1(y) = f x 2 X j y = h(x)g; (2)

and is called thepreimageof y. If h were invertible, then h� 1 would represent the inverse; however,
because our sensor models are usually many-to-one mappings, h� 1(y) is a subset ofX , which yields
all x that map to y.

Consider the collection of subsets ofX obtained by forming h� 1(y) for every y 2 Y . These sets
are disjoint because a statex cannot produce multiple observations. Sinceh is a function on all of
X , the collection of subsets forms a partition ofX . For a given sensor mappingh, the corresponding
partition is denoted as �( h).

The connection betweenh and �( h) is fundamental to sensing; see Figure 8. As soon asX ,
Y , and a sensor mapping are de�ned, you should immediately think about how X is partitioned.
The sets in �( h) can be viewed as equivalence classes. For anyx; x 0 2 X , equivalence implies that
h(x) = h(x0). These states are indistinguishable when using the sensor. In an intuitive way, �( h)
gives the sensor's sensitivity to states, or the \resolution" at which the state can be observed. The
equivalence classes are the most basic source of uncertainty associated with a sensor.

Numerous virtual sensor models will now be de�ned in terms of(1). Consider partitions of X
induced by each one. The sensor models can be physically implemented in several alternative ways
using various sensors. If (1) seems too idealistic, considering that sensors may be unpredictable,
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do not worry. Sensor disturbances and other complications are handled in Section 3.4. In addition,
sensors based on measuring vector �elds through the environment are covered in the appendix.

3.2.3 Basic Examples

Models 1, 2 and 3 will be useful for comparisons to other, morepractical models.

Model 1 (Dummy Sensor)
At one extreme, a worthless sensor can be made by lettingY = f 0g with h(x) = 0 for all x 2 X .
This sensor never changes its output, thus providing no information about the external world. The
preimageh� 1(y) = X for any y 2 Y . The induced partition �( h) is the coarsest possible. �

Model 2 (Identity Sensor)
At the other extreme, we can de�ne an \all knowing" sensor by setting Y = X and letting
y = h(x) = x. From a single observation, no uncertainty about the external world exists. In
this case,h� 1(y) = f xg and �( h) is the �nest partition possible of X . All elements are singletons.
�

Model 3 (Bijective Sensor)
Let h be any bijective function from X to Y . By one interpretation, this sensor is as powerful
as Model 2 (identity) becausex can be reconstructed fromy using the inverse ofh. In practice,
however, it may be costly or impossible to compute the inverse of h. Again, all preimages are
singletons and the �nest partition possible of X is obtained. �

The next two models are generic but useful in many settings.

Model 4 (Linear Sensor)
For a model that is in between the power of Models 1 (dummy) and2 (identity), suppose X = Y =
R3. Let y = h(x) = Cx for some 3 by 3 real-valued matrixC. In this case, x can be reconstructed
from y if C has full rank. This is a special case of Model 3 (bijective). More generally, if C has
rank k 2 f 1; 2; 3g, then there is a (3� k)-dimensional linear subspace ofX that produces the same
observation y. Linear sensors can be similarly de�ned for anyX = Rn and Y = Rm . In fact,
this is the standard output model for linear systems in control theory [7]. The preimages ofh are
hyperplanes inRn . �

Model 5 (Projection Sensor)
This convenient sensor directly observes some components of X . For example, if x = ( x1; x2; x3) 2
R3, then a projection sensor could yield the �rst two coordinates. In this case, we haveY = R2

and y = h(x) = ( x1; x2). The preimages in this case are subspaces ofX in which the unobserved
coordinates are free. �

3.2.4 Depth Sensors

We now introduce an important family of sensor models that arise in mobile robotics. Using the
state space models from Section 3.1.1,depth sensorsbase the observation on distance from the
sensor to the boundary ofE . The state space isX � SE(2) � E , in which each state x 2 X
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(a) Directional depth (b) Boundary distance

(c) K-directional depth (d) Omnidirectional depth

Figure 9: Several variations exist for depth sensors.

is represented asx = ( qx ; qy ; q� ; E ) with ( qx ; qy) 2 E and E 2 E. For convenience, the notation
p = ( qx ; qy) and � = q� will be used.

Model 6 (Directional Depth Sensor)
How far away is the wall in the direction the robot is facing? Figure 9(a) shows a mobile robot
facing a direction to the upper right. Let b(x) denote the point on the boundary of E that is struck
by a ray emanating from p and extended in the direction of � . The sensor mapping

hd(p; �; E ) = kp � b(x)k (3)

precisely yields the distance to the wall. This could be implemented using a sonar, shown in Figure
4(b), or a single laser/camera combination. �

Model 7 (Boundary Distance Sensor)
How far away is the nearest wall, regardless of direction? Asshown in Figure 9(b), this can be
considered as the radius of the largest disk that can be placed in E , centered on the robot. The
sensor mapping can be expressed in terms ofhd:

hbd(p; �; E ) = min
� 02 [0;2� )

hd(p; � 0; E ) (4)

Note that hbd ignores � , as expected. This sensor could be implemented expensivelyby using two
SICK laser scanners (shown in Figure 4(l)) and reporting theminimum distance value. A cruder
version could be made from an array of sonars. �
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Model 8 (Proximity Sensor)
Imagine that a light goes on when the robot is within a certain distance, � > 0, to the wall. This
is easily modeled as

hp� (p; �; E ) =
�

1 if hbd(p; �; E ) � �
0 otherwise.

(5)

An array of simple infrared sensors could accomplish this. Adirectional version could alternatively
be made by usinghd from (3) instead of hbd above. �

Model 9 (Boundary Sensor)
By reducing � to 0, we obtain a sensor that indicates whether the robot is touching the boundary.
This is called a boundary or contact sensor:

hbd(p; �; E ) =
�

1 if hbd(p; �; E ) = 0
0 otherwise.

(6)

Note that hbd(p; �; E ) = hp0(p; �; E ). Again, a directional version can be made by substitutinghd

for hbd. This sensor could be implemented using contact sensors, asshown in Figure 4(a). �

Model 10 (Shifted Directional Depth Sensor)
This model is convenient for de�ning the next two. It is simpl y a directional sensor that allows
an o�set angle � between the direction that the robot faces and the direction that the sensor is
pointing:

hsd� (p; �; E ) = kp � b(p; � + �; E )k: (7)

In comparison to hd in (3), only � has been inserted. �

Model 11 (K-Directional Depth Sensor)
Suppose there is a set of o�set angles� 1, : : :, � k , which in most cases are regularly spaced. Figure
9(c) shows an example for whichk = 4 and the directions are spaced at right angles. In this case,
the observation is a vectory = ( y1; : : : ; yk ) in which

yi = hi (p; �; E ) = hsd� i (p; �; E ): (8)

This sensor could be implemented by an array of evenly spacedsonars, �xed around the boundary
of a round robot. A laser scanner provides yet another implementation. �

Model 12 (Omnidirectional Depth Sensor)
In the limiting case, imagine letting k become in�nite so that measurements are taken in all di-
rections, as shown in Figure 9(d). In this case, the observation is an entire function (imagine an
in�nite-dimensional vector). We obtain hod(x) = y, in which y : S1 ! [0; 1 ) and

y(� ) = hod� (p; �; E ): (9)

This means that evaluating the function y at � 2 [0; 2� ) yields the shifted directional distance
hod� (p; �; E ); see Figure 10. In practice, most sensors have a limited range of directions. In this
case the domain ofy can be restricted from S1 to [� min ; � max ] to obtain observations of the form
y : [� min ; � max ] ! [0; 1 ). In practice, this corresponds closely to the dense measurements obtained
from the SICK laser scanner, shown in Figure 4(l). That one scans over 180 degrees; however,
360-degree variants exist. �
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�

Figure 10: For the omnidirectional depth sensor, Model 12 a function y : S1 ! [0; 1 ) is obtain in
which eachy(� ) is the depth in the direction � + � . The �gure shows how the depth data appears
for the environment in Figure 9(a) and � = 0.

� max

� min

dmin

dmax

Figure 11: A depth sensor that has limited range and angle.

For all of the sensor models from Model 6 to 12, an importantdepth-limited variant can be made.
When placed into large enough environments, a sensor might not be able to detect a wall that is
too far away. Instead of a distance range [0; 1 ), we could have a range of distances fromdmin to
dmax . The following model illustrates the idea.

Model 13 (Depth-Limited Directional Depth Sensor)
Model 6 (directional depth) can be modi�ed to obtain a depth-limited version in which the sen-
sor cannot give measurements when the distance is outside ofthe interval [ dmin ; dmax ] for some
dmin ; dmax � 0 with dmin < d max . Let d(x) = p � b(x). The sensor mapping is

hdd(p; �; E ) =
�

d(x) if dmin � d(x) � dmax

# otherwise,
(10)

in which the symbol # indicates that the sensor cannot determine the distance. If the wall is too
far away, most sensors will not report a value. For example, asonar echo will not be heard. Thus,
this model is realistic in many settings. �

Figure 11 shows how a sensor that is both depth limited and angle limited might appear. Section
3.2.5 covers many depth-limited sensors, but with a di�erent purpose. Rather than measuring
depth, they are designed to detect bodies within their �eld of view. Depth-limited sensors also
become important in Section 3.2.7, for de�ning gap sensors.
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Figure 12: The preimage for a single-directional depth sensor is a two-dimensional subset ofSE(2),
assuming the environment is given. Shown here are several robot con�gurations within the same
preimage.

Now think about the preimages associated with the various depth senors and the resulting
partition �( X ). First consider the case of a given polygonal environment,leading to X = E �
S1. For Model 6 (directional depth), each h� 1(y) is generally a two-dimensional subset ofX
that corresponds to all possible con�gurations from which the same directional distance could be
obtained. Thus, �( h) is a collection of disjoint, two-dimensional subsets ofE � S1. For example,
equivalent states along a single wall are depicted in Figure12. Using the boundary sensor, Model
9, �( h), contains only two classes: All states in which the robot is in the interior of E , and
all states in which it is on the boundary of E . The omnidirectional depth sensor, Model 12, is
quite powerful. This leads to very small preimages. In most cases, these correspond to the �nite
set of symmetry classes of the environment. Such symmetriesare usually encountered in robot
localization. For example, in the environment at the extreme left of Figure 13, h� 1(y) is a three-
element set, corresponding to the three possible orientations at which the same observation could
be obtained.

Now suppose that the environment is unknown, leading toX � SE(2) � E . Each h� 1(y)
contains a set of possible environment and robot con�guration pairs that could have produced
the observation. In the case of a boundary sensor,h� 1(1) would mean \all environments and
con�gurations in which the robot is touching a wall". For the omnidirectional sensor, h� 1(y)
indicates all ways that the environment could exist beyond the �eld of view of the sensor.

3.2.5 Detection Sensors

As the name suggests, this family models sensors that detectwhether one of more bodies are within
their sensing range. Physical examples include a camera, the occupancy detector of Figure 4(e),
and the pressure mat of Figure 4(k).

Three fundamental aspects become important in detection sensor models:

1. Can the sensor move? For example, it could be mounted on a robot or it could be �xed to a
wall.

2. Are the bodies so large relative to the range of the sensor that the body models cannot be
simpli�ed to points?

3. Can the sensor provide additional information that helpsto classify a body within its detection
region?

If the answer is \no" to all three questions, then the simplest case is obtained: A stationary
detection sensor that indicates whether at least one point body is within its range. For this case,
let V � E be called thedetection region. Suppose thatE contains one ore more point bodies that
can move around. Note that V can be any shape, as shown in Figure 13.

We now present several models, starting with the simplest case and eventually taking into account
all three complications above.
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Detection
region

Figure 13: A detection region is a subset of the environment in which moving bodies (shown as
triangles and discs) are detected. The detection regions may appear in various shapes and may or
may not be attached to a movable body.

Model 14 (Static Binary Detector)
A simple detection model can now be de�ned in terms ofV . Suppose that a single body moves in
E and its position is denoted byp. The sensor mapping is

h(p; E) =
�

1 if p 2 V
0 otherwise.

(11)

It simply indicates whether the body is in the detection region. Physically, this could correspond
to a cheap occupancy sensor that is mounted on the wall. �

There are three separate axes along which to generalize (11). Each will be handled separately,
but all three generalizations can clearly be combined.

Model 15 (Moving Binary Detector)
Suppose the sensor can move, as in a camera that is mounted on amobile robot. Let q denote the
con�guration of the body that is carrying the sensor. We now obtain V (q) � E as the con�guration-
dependent detection region. The sensor mapping is

h(p; E) =
�

1 if p 2 V (q)
0 otherwise.

(12)

�

Model 16 (Detecting Larger Bodies)
What if the body has some shape and is transformed byq0 to obtain B (q0) � E? Then we could,
for example, make a static binary detector for general bodies:

h(q0; E ) =
�

1 if B (q0) \ V 6= ;
0 otherwise.

(13)

The sensor detects the body if any part of it entersV . This is similar to the de�nition of
con�guration-space obstacle region,Cobs, in motion planning [8, 34, 37]. See Figure 14. An al-
ternative de�nition would require the body to be contained i n the detection region: B (q0) � V .
If the sensor can additionally move, thenV in (13) is replaced with V (q) and the state becomes
x = ( q; q0; E ). �
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V(q)

B(q0)

Figure 14: For larger bodies, we must declare eithersomeor all of the body must be in view to be
detected.

V V V VV

Figure 15: A �xed detection sensor among 4 moving points inR2 yields these 5 equivalences classes
for the partition �( h) of X . In this model, the observation y is the number of points in V .

Now suppose there are multiple bodies. LetP = f p1; : : : ; png denote a set ofn point bodies that
move in E . The state becomesx = ( q; p1; : : : ; pn ; E ) in which q is the sensor con�guration.

Model 17 (At-Least-One-Body Detector)
This model detects whether there is at least one body in the detection region V(q). The sensor
mapping is

h(q; p1; : : : ; pn ; E ) =
�

1 if for any i , pi 2 V(q)
0 otherwise.

(14)

�

Model 18 (Body Counter)
Moving away from a binary sensor, the sensor could count the number of bodies in the detection
region V(q). The sensor mapping is

h(q; p1; : : : ; pn ; E ) = jP \ V (q)j; (15)

in which j � j denotes the number of elements in a set. �

A special case of Model 18 is presented next.

Model 19 (Planar Body Counter)
Suppose thatn point bodies move inR2 and a static detection sensor is installed that counts how
many points are within a �xed detection region V . The state space isX = R2n and observation
space isY = f 0; 1; : : : ; ng. Now consider the preimages. The partition �( h) is formed by n + 1

22



equivalence classes. Figure 15 shows how these subsets ofX could be depicted for the case ofn = 4.
If the sensor were additionally able to distinguish betweenthe points and determine which are in
V , then there would be 2n equivalence classes. Such a sensor would be strictly more powerful and
the equivalence classes would be correspondingly smaller. �

More generally, we can consider bodies that are partially distinguishable to the sensor. LetL be
a set of class labels, attribute values, or feature values that can be assigned to bodies, as discussed
in Section 3.1.2. Let ` be an assignment mapping̀ : f 1; : : : ; ng ! L .

Model 20 (Labeled-Body Detector)
Suppose that we want to detect when a body is in the detection region and it has a particular label
� 2 L . In this case, the sensor mapping is:

h� (p; E) =
�

1 if for somei , pi 2 V and `(i ) = �
0 otherwise.

(16)

In a physical implementation, a camera could be used with computer vision techniques to classify
and label bodies in the image. �

Numerous other extensions and variations are possible. Here are some ideas: 1) a detection
sensor could count bodies that share the same label, 2) each body could be modeled as having
its own con�guration parameters, to allow translation and r otation, 3) the number of bodies may
not be speci�ed in advance, 4) if the boundary ofV has multiple components, the sensor might
indicate which component was crossed, and 5) multiple detection sensors could be in use, each of
which classifying bodies di�erently.

3.2.6 Relational Sensors

We now take detection sensors as a starting point and allow them to provide a critical piece of
information: How is one body situated relative to another? This leads to the family of relational
sensors, a term introduced by Guibas [22]. A detection sensor only tells us which bodies are in
view, whereas a relational sensor additionally indicates how they are arranged.

Let R be any relation on the set of all bodies. For a pair of bodies,B1 and B2, examples of
R(B1; B2) are:

� B1 is in front of B2

� B1 is to the left of B2

� B1 is on top of B2

� B1 is closer thanB2

� B1 is bigger than B2.

This information actually depends on the full state: The con�gurations of the sensor and the
bodies. We therefore write the relation asRx and de�ne it over the set f 1; : : : ; ng, which includes
the indices of the bodies. Using this notation for the \in front of" example, Rx (i; j ) means that
body B i is in front of B j when viewed from the statex = ( qs; q1; : : : ; qn ), in which qs is the sensor
con�guration and each remaining qi is the i th body con�guration.
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Figure 16: Three kinds of compound relational sensors: (a) The linear sensor observes that the
landmarks are ordered from left to right as (4; 2; 1; 3; 5). (b) This sensor sorts the landmarks closest
to farthest, resulting in the observation (2; 3; 5; 4; 1). (c) The cyclic sensor sweeps counterclockwise
and yields the cyclic ordering (1; 2; 4; 3; 5)

Model 21 (Primitive Relational Sensor)
This sensor indicates whether the relationRx is satis�ed for two bodies B i and B j that are in the
detection region:

h(x) =
�

1 if Rx (i; j )
0 otherwise.

(17)

�

Numerous instantiations of Model 21 can be used in combination to obtain compound relational
sensors. The idea is to make a sensor that produces a vector ofbinary observations, one from each
primitive. The resulting observation can be considered as agraph Gx for which the vertices are the
set of bodies and a directed edge exists if and only ifRx (i; j ). As the state changes, the edges in
Gx may change.

An important compound relational sensor will now be de�ned.

Model 22 (Linear Permutation Sensor)
Suppose there is a �nite set of static point bodies in the plane that are considered as completely
distinguishable landmarks. Consider a relation� l , for which a� l bmeans thata appears to be to the
left of b when viewed from the sensor position (qx ; qy). If these are in the �eld of view of a camera,
we should be able to determine the value of the relation for any pair of points. See Figure 16(a).
The binary observations that determine � l can be combined to yield a single observation that is
a linear ordering of the landmarks. In the example, the observation would be y = (4 ; 2; 1; 3; 5). If
the landmarks were capable of moving, then any permutation might be possible, andY would be
the set of all 5! permutations. �

It is tempting to make primitive relations that have more tha n two outputs, especially if the
bodies appear in some degenerate positions. For example, the sensor might not be able to determine
whether a is to the left or right of b because they are perfectly aligned in the sensor view. Such
cases can be handled by de�ning multiple relations. For example, one primitive could be � l , and
a new one� a could indicate whether they are aligned.

Model 23 (Distance Permutation Sensor)
Figure 16(b) shows how to obtain an alternative permutation based on sorting the bodies from
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nearest to farthest. In practice, imagine that each landmark has a radio transmitter. A sensor
that measures the signal strengths could in principle sort them according to strength, and hence
distance. This would work only under idealized conditions. In practice, it might be preferable to
allow the sensor to report that two landmarks are of approximately equal distance away, when it
is unable to reliably decide which is further. �

For some problems, two-argument relations are insu�cient. For example, we might want a
primitive observation that tells whether point pk is to the left or right of a ray that starts at point
pi and pierces pointpj . This relation involves triples of points, and can be expressed asRx (i; j; k ).
This relation can be used to de�ne the next model.

Model 24 (Cyclic Permutation Sensor)
We extend Model 22 (linear permutation) to a sensor that performs a 360� sweep. In this case, the
notion of \left of" is not well de�ned because of the cyclic ordering. However, for a set of three
points, a, b, and c, we can determine whether the cyclic permutation is (a; b; c) or (a; c; b) (note that
others are equivalent, such as (b; c; a) = ( a; b; c)). When the primitive observations are combined,
the compound sensor in this case yields a cyclic permutationof the landmarks, as shown in Figure
16(c). �

If the bodies are only partially distinguishable, then many interesting relational sensor variants
arise.

3.2.7 Gap Sensors

This next family of sensor models is closely related to the previous three families. The idea is to
report information obtained along the boundary of V (q), which is denoted as@V(q). For most 2D
cases,@V(q) is a closed curve. To motivate this model, recall Model 12 (omnidirectional depth),
Figure 9(d), and Figure 10. The data from the omnidirectional depth sensor are depicted again in
Figure 17(a), but this time discontinuities or gapsin the depth measurements are shown. When
sweeping counter-clockwise, imagine a sensor that reports: A wall, then a gap g1, then a wall,
then a gap g2, then a wall, and so on. The alternation between an obstacle or body and a gap
in the distance measurements is the information provided bya gap sensor. In general, a gap
sensor observation is a sequence, for example (B2; g1; B3; g2; B1), which alternates between bodies
and gaps. Examples will be given in which this sequence is linear or cyclic. For the mobile robot
models in Section 3.2.4, the complement ofE can be treated as a static body, so that the observation
alternates between gaps and the environment boundary.

Model 25 (Simple Gap Sensor)
This sensor has already been described using Figure 17(a). Suppose that a robot carries a sensor
with an omnidirectional �eld of view and is placed into a nondegenerate environmentE that
bounded by a simple polygon and contains no interior obstacles. Treating the complement ofE as
a special body, sayB0, the gap sensor for Figure 17(a) observes

y = ( B0; g1; B0; g2; B0; g3; B0; g4; B0; g5); (18)

which is interpreted as a cyclic sequence. Since it is impossible to have two consecutive gaps, the
B0 components contain no information, and (18) can be simpli�ed to y = ( g1; g2; g3; g4; g5). Once
again, this observation is cyclic; for example,y = ( g3; g4; g5; g1; g2) is equivalent. �
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Figure 17: Gap sensor models: (a) Five discontinuities in depth are observed. (b) A limited range
is considered. (c) Two kinds of gaps are obtained for limitedrange.

Model 26 (Depth-Limited Gap Sensor2)
In reality, most sensors have limited range. Suppose that for an omnidirectional sensor, nothing can
be sensed beyond some �xed distance, as shown in Figure 17(b). The resulting data from a depth
sensor would appear as in Figure 17(c). There are two kinds ofgaps: one from a discontinuity in
depth and the other from a range of angles where the depth cannot be measured because the bound-
ary is too far away. Let the discontinuity gaps be labeledgi , as before, and the new gaps be labeled
Gi . The observation for the example in Figure 17(c) isy = ( B0; G1; B0; g1; G2; g2; B0; g3; G3; g4),
which again is a cyclic sequence. In contrast to Model 25 (simple gap), the appearances ofB0

cannot be deleted without losing information. �

Model 27 (Multibody Gap Sensor)
In the models so far, only one body,B0, was considered. Now suppose there are multiple bodies,
as shown in Figure 18(a). The sensor sweeps from right to left, and is not omnidirectional. In this
case, the observation is a linear sequence,

y = ( G1; g1; B4; g2; B5; g3; B4; g4; G2; g5; B3; g6; B2; g7; B1): (19)

�

For Model 27, it was assumed that the bodies are completely distinguishable. As in Model 20, it
is once again possible assign labels to be bodies. In this case, Model 27 could be extended so that
the observation yields a sequence of gaps and labels, as opposed to gaps and bodies.

Following along these lines, the next model simply counts the number of bodies between gaps.
It is based on a model called thecombinatorial visibility vector in [19].

Model 28 (Landmark Counter)
Let E be a bounded environment with no interior holes. Let the bodies be a �nite set of points that
are static and distributed at distinct locations along the boundary of E . All bodies are assigned

2This model is based on the one introduced in [42].
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Figure 18: (a) A gap sensor among multiple bodies. (b) A sensor that counts landmarks between
gaps.

a common label, such as \feature", meaning that they are completely indistinguishable. When
in the interior of E , the sensor observation is a cyclic sequence of integers, corresponding to the
number of bodies between each pair of gaps. The observation for the example in Figure 18(b) is
y = (3 ; 3; 4; 0; 1).

The model can be adapted in several ways: 1) a linear sequencecould be obtained by placing
the sensor on the boundary, or by observing the starting point of the omnidirectional sweep, 2) any
level of partial or full distinguishability of bodies could be allowed, 3) the bodies could be placed
in the interior, and 4) the bodies could be capable of motion. �

3.3 The Sensor Lattice

After seeing so many sensor models, you might already have asked, what would it mean for one
sensor to be more powerful than another? It turns out that there is a simple, clear way to determine
this in terms of preimages.

For all of the discussion in this section, assume that the state spaceX is predetermined and
�xed. Let h1 : X ! Y1 and h2 : X ! Y2 be any two sensor models (recall the great variety from
Section 3.2). A partition � 1 is called a re�nement of � 2 if every set in � 1 is a subset of some set
in � 2. We say that h1 dominates h2 if and only if �( h1) is a re�nement of �( h2). This is denoted
as h1 � h2.

For some state x 2 X , imagine receiving y1 = h1(x) and y2 = h2(x). If h1 � h2, then
h� 1

1 (y1) � h� 1
2 (y2) � X . This clearly means that h1 provides at least as much information about

x as h2 does. Furthermore, usingy1, we could infer what observationy2 would be produced byh2.
Why? Since �( h1) is a re�nement of �( h2), then every x 2 h� 1

1 (y1) must produce the same obser-
vation y2 = h2(x). This implies that there exists a function g : Y1 ! Y2 such that h2(x) = g(h1(x)),
written as h2 = g � h1. Here is a diagram of the functions:
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Figure 19: Several models from Section 3.2 are related usingthe idea of dominance, based on
re�nements of the partitions they induce over X . Models higher in the tree induce �ner partitions.
A lower sensor model can be \simulated" by any model along thepath from the root of the tree to
itself.

X Y2

Y1
h1 g

h2

.
The existence ofg implies that h1's observations can be used to \simulate"h2, without needing
additional information about the state. One important poin t, however, is that it might be compu-
tationally impractical or infeasible to compute g in practice. The decidability and complexity of
computing g lead to interesting open research questions for various sensing models.

Using the dominance relation� , we can naturally compare many of the sensors in Section 3.2.
Note that � is a partial ordering; most sensor pairs are incomparable. Figure 19 shows how
some sensors are related. The most powerful sensor of Section 3.2.4 is the omnidirectional depth
sensor because it induced the �nest partition ofX . We can use it to simulate all other sensors in
that section. For the directional sensors, it is assumed that the directions are properly aligned.
Since gaps are just discontinuities in the depth function, the depth sensors can even be used to
simulate gap sensors, such as Models 25 (simple gap) and 26 (depth-limited gap). Note that these
relationships hold regardless of the particular collection E of possible environments. It does not
matter whether the environment is given or is open to some in�nite collection of possibilities.

Other sensors could be added to Figure 19. For example, the Model 1 (dummy), is dominated
by all of these sensors. Furthermore, Model 2 (identity) dominates all of these. The same is true
of Model 3 (bijective), since both induce the same partitionof X .

What happens as we include more and more sensors, and continue to extend the diagram in
Figure 19? It is truly remarkable that all possible sensors of the formh : X ! Y over a �xed state
spaceX can be related in a clear way, and the tree extends into a lattice.

Note that Y is not �xed, meaning we could take any setY and de�ne any mapping h : X ! Y .
Consider de�ning an equivalence relation� on this enormous collection of sensors: We say that
h1 � h2 if and only if �( h1) = �( h2). For example, Models 2 (identity) and 3 (bijective) are
equivalent because the both induce the same partitions ofX (all preimages are singletons). More
precisely, Model 3 is a family of sensors, which includes Model 2; however, the entire family is
equivalent.

If we no longer pay attention to the particular h and Y , but only consider the induced partition
of X , then we imagine that a sensoris a partition of X . Continuing in this way, the set of all
possible sensors is the set of all partitions ofX .

The relationship between sensors in terms of dominance thenleads to the well-known idea of a
partition lattice , depicted in Figure 20 for the setX = f 1; 2; 3; 4g. Recall that a lattice is a set
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ff 1g; f 2g; f 3; 4ggff 1; 2g; f 3g; f 4ggff 1; 3g; f 2g; f 4ggff 1g; f 2; 4g; f 3ggff 1; 4g; f 2g; f 3ggff 1g; f 2; 3g; f 4gg

ff 1; 2; 3; 4gg

ff 1g; f 2g; f 3g; f 4gg

Figure 20: The partition lattice for a four-element set. The best and worst sensors are at the top
and bottom, respectively.

together with a partial order relation � for which every pair of elements has aleast upper bound
(lub) and a greatest lower bound (glb). Starting with any set, the set of all partitions forms a latt ice.
The relation � is de�ned using re�nements of partitions: � 1 � � 2 if and only if � 1 is a re�nement
of � 2.

Now observe that for any state spaceX , all possible sensors �t nicely into the partition lattice
of X . Furthermore, � indicates precisely when one sensor dominates another. Thetree depicted
in Figure 19 is embedded in this lattice. The partition corresponding to Model 3 (bijective), is at
the top of the lattice because it is the �nest partition possible. Model 1 (dummy) is at the bottom
of the lattice because it is the coarsest partition possible.

An important property of a lattice is that every pair of eleme nts has a unique glb and a unique lub.
These have interesting interpretations in the sensor lattice. Suppose that for two partitions, �( h1)
and �( h2), neither is a re�nement of the other. Let �( h3) and �( h4) be the glb and lub, respectively,
of h1 and h2. The glb �( h3) is the partition obtained by \overlaying" the partitions � (h1) and
�( h2). Take any state x 2 X . Let y1; : : : ; y4, be the observations obtained by applyingh1; : : : ; h4,
respectively. An element of �( h3) is obtained by intersecting preimages,h� 1

1 (y1) \ h� 1
2 (y2). There

is a straightforward way to construct some representativeh3 from h1 and h2. Let Y3 = Y1 � Y2

and h3 : X ! Y3 be de�ned as y3 = ( y1; y2) = ( h1(x); h2(x)). This means that both h1 and h2 are
combined to produce a single sensor. The partition �(h3) is just the common re�nement.

The lub, �( h4), is the opposite of �( h3) in some sense. The partition �( h4) is as coarse as it
needs to be so that every element contains the complete preimages ofh1 and h2. Again starting
from any x 2 X , �( h4) is the �nest partition for which h� 1(y1) [ h� 1(y2) � h� 1(y3).

One way to \visualize" these relationships is to imagine thecase in whichX = Y = R3 and
restrict the set of all sensor mappings to be only linear ones, y = Cx, as given in Model 4 (linear). If
C has rank 2, then the preimagesh� 1(y) are lines in R3. Consider two linear sensors, with matrices
C1 and C2 having rank 2. The glb produces preimages that are the intersection of two lines. The
lines must always intersect because both preimages are observations of same statex 2 R3. If the
combined 3 by 6 matrix, [C1 C2], has rank three, then all preimages will be points, and the glb is
a bijective sensor. The preimages for the lub in this case is the set of all planes inR3. Each plane
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is obtained by taking the union of the preimages, which formsa pair of intersecting lines.

3.4 Additional Complications

Up until now, all sensor models have been idealized because the observation is immediately and
completely determined by applying y = h(x). Although preimages h� 1(y) reveal important in-
formation about sensing problems, additional concerns have so far been neglected. This section
handles three independent issues: 1) the sensor observation might not be predictable, even if the
state is known, 2) the observation might depend on state and time, and 3) the observation might
depend on one or more previous states, rather than being instantaneous.

3.4.1 Nondeterministic Disturbance

Suppose that a sensor provides an observation instantaneously, but there is uncertainty about which
observation will occur at state x. We consider two general models to address this: Nondeterministic
and probabilistic. First, the nondeterministic model will be de�ned, which might alternatively be
called possibilistic. In this case, the sensor mapping speci�es aset of possible observationsthat
could be obtained from some statex 2 X .

Let an observation spaceY be de�ned as before and letX be any state space. Anondeterministic
sensor mappingis de�ned as

h : X ! pow(Y) (20)

in which pow(Y ) is the power set of Y , to yield any possible subset. For a statex 2 X , the
mapping h yields a seth(x) � Y . An alternative to (20) is to de�ne a nature action that generates
a disturbances and construct a function that maps states andnature actions into observations; see
Section 11.1 of [37].

Before giving examples of (20), consider the e�ect on preimages. A reasonable de�nition of a
preimage for a nondeterministic sensor mappingh is

h� 1(y) = f x 2 X j y 2 h(x)g: (21)

(Note that this is not a preimage in the usual sense for functions becausey is not an element of
pow(Y ).) If h(x) is a singleton subset for allx 2 X , then (21) reduces to the original preimage
(2). As h(x) grows in size, the preimages become larger. Rather than a partition of X , a cover
of X is obtained. This means that the union of all h(x) is equal to X , but the preimages are not
necessarily disjoint.

Model 29 (One-Dimensional Position Sensor)
Let X = Y = R. Imagine a sensor that measures the position alongX . Let � > 0 be a bound in
the maximum amount of measurement error. The nondeterministic sensor mapping is

h(x) = f y 2 Y j jx � yj � � g: (22)

For example, h(2) = [2 � �; 2 + � ]. The actual observation produced by the sensor may be any value
y 2 [2 � �; 2 + � ].

The preimage of an observationy is

h� 1(y) = f x 2 X j jx � yj � � g: (23)

For example, h� 1(5) = [5 � �; 5 + � ]. Clearly, the preimages ofh yield a cover ofX = R. �
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Nondeterministic versions of the sensors in Section 3.2 canbe easily constructed. A couple of
examples are given here.

Model 30 (K-Dimensional Position Sensor)
Model 29 can be easily extended tok dimensions, usually with k = 2 or k = 3. Reusing � > 0, the
sensor mapping could be

h(x) = f y 2 Y j kx � yk � � g; (24)

in which k � k is the Euclidean norm. In this case,h(x) is a disc of radius � , as are the preimages
of h. �

Model 31 (Faulty Detectors)
Consider modifying a static binary sensor given by (11). Thesensor might produce afalse positive
by yielding h(p; E) = 1 even though p 62V . In this case, the preimage would beh� 1(1) = X . If the
sensor could also produce afalse negativeby yielding h(p; E) = 0 when p 2 V , then h� 1(0) = X .
These two preimages together coverX twice, and we clearly see that the sensor is absolutely worth-
less under this model: We can infer nothing about the state from the observation if false negatives
and false positives are permitted. In practice, a sensor that commits such errors might nevertheless
be useful, but probabilistic modeling is then needed (how likely is it to make a mistake?); this is
the subject of Section 3.4.2. �

The notion of dominance from Section 3.3 can be extended to the nondeterministic sense. Once
again, we must determine whether one sensor can \simulate" the other. We say that h1 dominates
h2 if there exists a mappingg : Y1 ! pow(Y2) such that for all y1 2 h1(x), g(y1) � h2(x). Several
alternative domination de�nitions are possible in this context.

Model 32 (Inaccurate Directional Depth)
Recall Model 6 (directional depth). For any � � 0, we can de�ne a mapping

h� (p; �; E ) = f y 2 [0; 1 ) j jkp � b(x) � ykj � � g: (25)

Note the similarity to (22). For this model, h� dominates h� 0 if and only if � � � 0. �

3.4.2 Probabilistic Disturbance

Perhaps we have been observing a sensor over many trials and are able to better characterize
the disturbances. Rather than simply talking about the set of possible observations, we could
statistically learn a probability density over them. Start with (20), in which h(x) yields a set of
possible observations inY . The models in this section place a probability density overh(x). A
convenient way to express this is

p(yjx); (26)

which is a probability density function over Y , but conditioned on the particular state, x 2 X .
Unfortunately, this representation hides the underlying sensor mapping. Usingh that we can
declare p(yjx) = 0 for all y 62h(x), which is powerful information that is not re
ected in (26) .
Furthermore, all of the important preimage and cover information is obscured. It is therefore
critical when using probabilistic models to recall and utilize the underlying structure of the sensor
mapping h.

Some probabilistic sensor models will now be de�ned.
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Model 33 (Probabilistic 1D Position Sensor)
We �rst make a probabilistic variant of Model 29 (one-dimensional position). Assume the error
density is Gaussian with zero mean and variance� 2. The probability density function is

p(yjx) =
1

�
p

2�
e� ( x � y ) 2

2� 2 : (27)

This function is maximized when x = y, which corresponds to the case of no disturbance. �

Model 34 (Probabilistic General Position Sensor)
Now consider a probabilistic variant of Model 30 (k-dimensional position). Assume the error density
is Gaussian with zero mean and � as ak � k covariance matrix. The density function is

p(yjx) =
1

j� j1=2(2� )k=2
e(y� x)T � � 1 (y� x) : (28)

�

Model 35 (Probabilistic Detectors)
Revisiting Model 31 (faculty detectors), simply attach probabilities to false positives and false neg-
atives. For a false positive, we de�nep(y = 1 j p 62V). The condition p 62V could be replaced with
a more precise location forp, to allow conditional probabilities that vary because of the state. Note
that the \correct" positive is obtained by subtracting the a bove probability from one. Likewise, a
false negative is de�ned byp(y = 0 j p 2 V ). �

Model 36 (Probabilistic Directional Depth)
A generalization of Model 32 (inaccurate directional depth), again assuming a zero-mean Gaussian
density for disturbances, is

p(yjp; �; E ) =
1

�
p

2�
e� ( y �k p� b( x ) k ) 2

2� 2 : (29)

�

3.4.3 Sensors Over State-Time Space

Recall from Section 3.1.3, that once time is introduced, thestate-time spaceZ = X � T is used
to fully describe any situation. In this case, the sensor should logically be de�ned over Z , rather
than X . This means that a combination of statex 2 X and time t 2 T produces an observationy.
Thus, the basic sensor mapping (1) is replaced by

h : Z ! Y; (30)

for which we write y = h(z), or equivalently, y = h(x; t ).
Here is a simple example.

Model 37 (Perfect Clock)
This sensor simply reports the current time:

y = h(z) = h(x; t ) = t: (31)

�
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The basic sensing examples from Section 3.2.3 can be easily extended by replacing X with Z .
They could, for example, report time in addition to their exi sting observation. Here is an example
that extends Model 14 (static binary detector).

Model 38 (Detector with Time Stamp)
Use the same model forV , E , and p as in Model 14. Let Y = f 0; 1g � T. The sensor mapping
h : Z � Y is

h(p; E; t) =
�

(1; t) if p 2 V at time t
(0; t) otherwise.

(32)

�

All of the concepts from Section 3.2.2 extend naturally fromX to Z . A preimage under the
sensing model in (30) is

h� 1(y) = f (x; t ) 2 Z j y = h(x; t )g; (33)

Now consider partitions �( h) over Z . A weak sensor may partitionZ into large chunks of state-time
space. Following Section 3.3, a sensorh1 dominates anotherh2 if and only if its partition �( h1) of
Z is a re�nement of �( h2). In the same way as forX , a partition lattice over Z is obtained.

The concepts from Sections 3.4.1 and 3.4.1 can be adapted here to yield nondeterministic and
probabilistic sensor models. This results inh : Z ! pow(Y ) for the nondeterministic case and
p(yjz) for the probabilistic case.

3.4.4 History-Based Sensors

As a natural transition to the temporal �lters of Section 4, w e consider one �nal extension to
the sensor models. It might be the case that the sensor outputdepends on ahistory of previous
states. The most common examples in practice are odometers,such as the wheel encoder in Figure
4(e). They accumulate changes over time and report the aggregate amount, such as total distance
traveled. The relationship to Section 4 is that the sensors here could be realized by employing
a �lter that uses information from instantaneous sensors (such as h : X ! Y ). In other words,
a history-based sensor usually contains a built-in �lter. This should become clearer after reading
Section 4.

Let a state trajectory up to time t be denoted as ~x : [0; t] ! X . The set of all possible trajectories
for any possiblet 2 T is called thetrajectory spaceand is denoted by ~X . For a history-based sensor,
the sensor mapping is

h : ~X ! Y: (34)

In this case, a given state trajectory ~x produces an observationy = h(~x).
Once again, the notions of preimages, partitions, and the sensor lattice naturally extend. In this

case,X is simply replaced by ~X . For example,

h� 1(y) = f ~x 2 ~X j y = h(~x)g; (35)

yields the set of possible trajectories in ~X that produce the same y. The preimages induce a
partition of ~X , and all history-based sensors can be arranged into a sensorlattice over ~X .

Some examples of history-based sensors follow.
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Model 39 (Linear Odometer)
Suppose we would like to measure how far a robot has traveled.Let (v1; v2) represent the instanta-
neous velocity of a planar robot. A history-based sensor could integrate the magnitude of velocity
obtain the distance:

y = � 0 +
Z t

0

q
v2

1 + v2
2ds: (36)

This model implies that v1 and v2 are components of state (as is common in classical mechanics
and modern control theory). For a robot moving in a given planar environment, the state could be
represented asx = ( p1; p2; �; v 1; v2). �

Model 40 (Angular Odometer)
Recall the wheel encoder of Figure 4(e). An idealized model of this sensor can be made by con-
sidering the limit after making smaller and smaller holes along the disc. This results in a perfect
angular odometer, which is modeled as

y = � 0 +
Z t

0

_� (s)ds; (37)

in which y measures the net orientation change from some starting orientation. What would the
sensor report if j _� (s)j is integrated instead? �

In practice, sensors cannot actually produce instantaneous observations. Using a history-based
sensor, the delay can be explicitly modeled:

Model 41 (Delayed Measurement)
Suppose a sensor measures the state perfectly, but it takes one unit of time to output the result.
This can be modeled as

y =
�

~x(t � 1) if t � 1
# otherwise,

(38)

in which # means that the state cannot yet be determined. A delayed version of any sensor of the
form h : X ! Y or h : Z ! Y can be made in this way. �

Model 42 (Discrete-Time Odometer)
Without referring directly to velocities, a history-based sensor can be constructed that estimates
the distance traveled by comparing positions reported at various times. Consider some �t > 0,
corresponding to a �xed time increment. Let ~p(t) denote the robot position in R2 at time t; this
can be determined from ~x(t).

The sensor mapping is

h(~x) =
dt=� teX

i =1

k~p(i � t) � ~p(( i � 1)� t)k: (39)

For a state trajectory ~x : [0; t] ! X , the total distance traveled is estimated. The quality of the
estimate depends on how small �t is selected. This sensor is essentially constructed as a temporal
�lter, which will be covered in Section 4.2. �
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Figure 21: Triangulation is generally viewed as an intersection of preimages.

4 Filtering

A �lter combines information from multiple observations to e�cien tly keep track of state properties
that are needed for inference tasks. The observations may come from di�erent sensors, which either
appear in the same location or are distributed around the same environment. In these cases, aspatial
�lter sews the information together to make a coherent view. Alternatively, the observations may
arrive sequentially over time from the same sensor. This leads to a temporal or causal �lter , which
incrementally updates its internal information for each new observation. A �lter may even combine
both spatial and causal elements. In the most general settings, we must resolve observations taken
at di�erent times from various sensors distributed around the environment.

4.1 Spatial Filters

Here we suppose that some sensors have been distributed around the environment and each has
produced an observation. How is this information interpreted? The answer is mostly provided by
analyzing preimages, which were introduced in Section 3.2.2.

4.1.1 A general triangulation principle

Suppose that several instantaneous sensors produce their observations at the same time. Tech-
niques have been widely used for hundreds of years for combining information from these to obtain
important quantities such as distance, longitude, and latitude. Most of this section is a general-
ization of the ancient idea of triangulation, in which observing the angles between pairs of distant
features has been used to infer location. We now develop thisidea in a general way using concepts
of Section 3.

Consider any n sensor mappingshi : X ! Yi for i from 1 to n. If each produces an observation
yi 2 Yi at some common instant, then what are the possible states? The triangulation 3 of the
observations is denoted by �( y1; : : : ; yn ). It is determined by intersecting the preimages (2) of each
sensor to obtain (see Figure 21)

�( y1; : : : ; yn ) = h� 1
1 (y1) \ h� 1

2 (y2) \ � � � \ h� 1
n (yn ); (40)

which is a subset ofX . It is the set of all states that could possibly have producedthe n observations
simultaneously.

3This is completely di�erent from triangulations in computa tional geometry, topology, or meshing.
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Figure 22: a) Using the pinhole camera model, the preimage ofa point object is an in�nite ray that
that connects from the pinhole to the object. b) From matching the same object in two camera
images, its location can be determined by intersecting the two preimage rays.
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Figure 23: The ancient triangulation technique uses observations of the angle between pairs of
landmarks. (a) Holding the angle between two landmarks �xed, the preimage is a portion of two
circles. (b) If it is known which landmark is to the left, then half of the original preimage is
eliminated to obtain a circular arc. (c) With three landmark s, with known left-to-right order, the
circular arcs are intersected to determine the sensor location.

Here are some important, classical examples of triangulation.

Filter 1 (Stereopsis)
Figure 22(a) shows a small object appearing in an image underthe pinhole camera model. This
can be imagined as an object inX = R3 with a 2D image, or an object in X = R2 with a one-
dimensional image. The sensor mappingh : X ! Y is the standard perspective projection model,
in which y 2 Y represents the location of the object in the image. The preimage h� 1(y) is a ray
that extends outward from the pinhole and through the object in R3. Figure 22(b) illustrates the
principle of stereopsis, commonly used to locate objects inhuman vision and computer vision sys-
tems. In this case, the preimages are intersected to reveal the precise object location. This assumes
that the positions and orientations of the cameras are known. �

Filter 2 (Ancient Triangulation)
Figure 23 shows classical triangulation, which is a technique used for thousands of years by an-
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Figure 24: The principle of trilateration enables the sensor location to be determined from obser-
vations of distances to known towers. a) From a single tower,the sensor could be anywhere along
a circle. b) Using three towers, the position is uniquely determined.

cient Greeks, Egyptians, and Chinese. The sensor mapping provides the angle between a pair of
landmarks, as observed from the sensor location. To understand the preimage, depicted in Figure
23(a), imagine moving around in the plane while holding the angle between two landmarks �xed.
What curve do you trace? It turns out to be a circular arc; however, there are two arcs depending
on whether you are \in front of" or \behind" the landmarks. Th e example shown is for angle
observations y < �= 2. If y = �= 2, then the two arcs fuse into a single circle. Ify > �= 2, then
the preimages appears as the dashed lines in Figure 23(a). Ifthere is not front/behind ambiguity,
then one arc can be eliminated, as depicted in Figure 23(b). If there are three landmarks, then
two angles are obtained and the preimage arcs are intersected to obtain the precise sensor location,
shown in Figure 23(c). �

Filter 3 (Trilateration)
Figure 24 shows the principle oftrilateration . Rather than observing the angle between landmarks,
imagine that a sensor observes the distance to a landmark. Ifboth the landmark and sensor have
synchronized clocks, then a virtual sensor can be constructed that estimates the distance based on
the time of arrival (TOA) of the signal. This assumes a known propagation speed for sound waves
or radio signals. Suppose thatX = R2 and the landmark location is known. The sensor mapping
h : X ! Y yields a distancey = h(x) 2 (0; 1 ). The preimagesh� 1(y) are circles of radiusy,
centered at the landmark.

Now consider determining the precise sensor location. If there are two landmarks, the intersection
of preimages yields a pair of points because two circles intersect at two points in general. If there
are three landmarks, then three circles are intersected to obtain the precise sensor location. This
is the principle of trilateration.

If X = R3, then the preimages become spheres. In this case, four landmarks are needed: A pair
of intersected spheres yields a circle, three spheres intersected yields two points, and four �nally
yield a unique point. �

Filter 4 (Hyperbolic Positioning)
One shortcoming of trilateration is the precise clock synchronization needed to determine the sig-
nal time of arrival. Suppose that the towers are synchronized but the sensor is not. If the towers
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Figure 25: Disturbances lead to thicker preimages, which cause ambiguity in the triangulation.

send their signals at the same time, then the sensor can instead use a chronometer to measure the
di�erences in their arrival times. This is called time di�erence of arrival (TDOA) . If the signal
propagation speed is known, then the virtual sensor yields the relative distances for each pair of
towers. For example, it might tell us that Tower 1 is 432 meters closer to the sensor than Tower 2.
What is the preimage in this case? The set of all points in the plane in which one tower is a �xed
distance closer than another fall along a hyperbolic curve.The preimage in the three-dimensional
case is one sheet of a hyperboloid. The method ofhyperbolic positioning involves intersecting the
hyperbolic preimages from multiple observations, one for each pair of towers, to obtain the precise
location. This technique was used in the Decca Navigator System in World War II to locate ships,
and in modern times it can be applied to localize a cell phone user using multiple cell towers. �

How much can be learned aboutx 2 X from the observations? For any two sensorsh1 : X ! Y1

and h2 : X ! Y2, consider their associated partitions �( h1) and �( h2). Let their observations be
combined to produce one stronger sensorh3 : X ! Y1 � Y2, de�ned as h3(x) = ( h1(x); h2(x)). In
terms of partitions, �( h3) is just the common re�nement of �( h1) and �( h2). Furthermore, h3 is
just the greatest lower bound (glb) in the sensor lattice over X ; recall Section 3.3.

Based on the �lter models just presented, it is natural to wonder how information improves when
sensors are combined. This depends on the properties of the preimages. Suppose, for example, that
the sensor mappings are linearyi = Ci x, with Y = Rm i and X = Rn . Each h� 1

i (yi ) is a hyperplane
through the origin of X , with its dimension depending onmi and the rank of Ci . Let every Ci have
full rank. If mi = n, then h� 1

i (yi ) indicates a unique x 2 X with a single observation. If mi = 1,
then �( y1; : : : ; yk ) produces a uniquex 2 X only if k = n and the Ci column vectors are linearly
independent. Moving away from this linear example, we generally consider nonlinear preimages.
However, the properties ofpreimage dimensionand sensor mapping independenceremain critical
to characterizing �( y1; : : : ; yn ).
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4.1.2 Handling disturbances

In most applications of the triangulation principle, sensor observations are not perfectly predictable,
even when the state is given. Therefore, it is crucial to consider disturbances. For the case of
nondeterministic sensor mappings (20), the enlarged preimage (21) is obtained. See Figure 25.
In that case, (40) is simply applied to the new preimages. Oneproblem, however, is that the
intersection of preimages might not be small enough to determine the state, regardless of how
many observations are obtained. For example, suppose Filter 3 considers disturbances on the
distance measured to the tower. If upper and lower bounds arespeci�ed on the distance, then each
preimage is an annulus. If the distance error is at most� > 0, then the annulus has thickness 2� .
The intersection of several annuli will usually not result in a point, as shown in Figure 25.

This issue could motivate the consideration of disturbances probabilistically. The generalized
triangulation principle can be adapted to the probabilisti c case, in which the original set intersection
is replaced by Bayes' rule. The probabilistic analog to (40)is

p(xjy1; : : : ; yn ) =
p(y1jx)p(y2jx) � � � p(yn jx)p(x)

p(y1; : : : ; yn )
: (41)

If we forget about making normalized probability density functions and de�ne p(yi jx) = 1 if and
only if yi 2 h(x), then (41) is equivalent to (40). It can therefore be considered as an extension,
assuming that such probabilities are realistically available.

In the probabilistic setting, it becomes reasonable to use many more observations than were
minimally needed in Filters 1 to Filter 4. This allows as much information as possible to be applied
to reduce ambiguity. In many problems the goal is to estimatethe state x that is producing the
observations. Suppose ^x is a guess of the state. Letdi (x̂; y i ) denote the Euclidean distance inX
from x̂ to the nearest point on the preimageh� 1(yi ). State estimation can now be formulated as
an optimization problem: Try to �nd ^x that minimizes the distancesdi . How are all di optimized
simultaneously? One popular idea is to convert them to a scalar criterion, which often results in
the least squaresoptimization problem:

min
x̂2 X

nX

i =1

d2
i (x̂; y i ): (42)

This optimization is equivalent to maximum likelihood estimation in the probabilistic setting if the
measurement errors are assumed to be distributed as zero-mean Gaussian densities. Otherwise, it
can be simply viewed as a way to select ^x by reducing total error.

4.1.3 Spatial �lters over state-time space

Recall from Section 3.4.3 that a sensor can also be de�ned over state-time space Z to obtain
h : Z ! Y . In this case, the concepts discussed so far extend naturally over time. We use the
preimage de�nition (33) for triangulation in (40). See Figure 26. In this case, a spatiotemporal
�lter can be made that gains information simultaneously about state and time. An important
example of this is GPS units. There is a di�cult time synchron ization problem, which makes it
hard to use the simple trilateration model (Filter 3). GPS units therefore intersect preimages in
Z to infer both position and time, simultaneously. Minimally , one additional satellite is needed
to su�ciently reduce the dimension of the set of possiblez = ( x; t ) values. This scheme generally
requires �ve satellites; however, four is often cited the minimum number because the constraint
that people stand on the earth is used to eliminate one. More satellites may be used, however,
resulting in an optimization similar to (42) to overcome disturbances.
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Figure 26: In state-time space, triangulation occurs by intersecting preimages inZ .

4.2 Temporal Filters

This section introduces �lters that combine measurements over time.

4.2.1 The Inference Problem

Recall from Section 3.4.4 the notion of a state trajectory ~x : [0; t] ! X and the space ~X of all state
trajectories. Now suppose that over the interval of time [0; t], we have gathered and recorded sensor
observations. If this could be done continuously, we obtainwhat would look like a \observation
trajectory". Since observations may jump around erratically, rather than appearing as motions in
the physical world, we instead call them the observation history, which is de�ned as a function
~y : [0; t] ! Y .

When presented with ~y, there are two fundamental questions:

1. What is the set of state trajectories ~x : [0; t] ! X that might have occurred?

2. What is the set of possible current states, ~x(t)?

Using a single observationy = h(~x(t)), we could answer the second question by the preimageh� 1(y)
from (2). However, based on an entire history ~y, we may able to further narrow down the set of
possibilities. This will be the purpose of a temporal �lter.

Before preceding to the �lter details, we �rst introduce some concepts that help to illuminate
the two fundamental questions above. Suppose that a sensorh : X ! Y is given and is applied
over an interval of time [0; t]. For every t0 2 [0; t] some observation ~y(t0) = h(~x(t0)) is obtained.
This means that we can useh, applied over [0; t], to de�ne a mapping

H : ~X ! ~Y ; (43)

in which ~Y is the set of all possible observation histories. For any sensor mapping h : X ! Y , the
mapping H is automatically induced.

To understand the two fundamental questions, we now only need to look at preimages of H .
Compare this to (2):

H � 1(~y) = f ~x 2 ~X j ~y = H (~x)g: (44)

This is the \answer" to the �rst fundamental question: It yie lds the set of all state trajectories that
could have produced ~y. Computing or even explicitly representing this answer could be extremely
challenging.
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Figure 27: (a) Imagine trying to infer the location of a point on a planar graph while observing
only a single coordinate. This simple example involves a point moving along a graph that has four
edges. When the point is on the rightmost edge, there is no uncertainty; however, uncertainty
exists when the point travels along the other edges. (b) The various possible I-states are shown,
based on sensor preimages.

The second fundamental question can also be addressed usingH . Here is one way to express the
answer:

f x 2 X j 9~x 2 H � 1(~y) such that ~x(t) = xg (45)

A simple example will now be presented.

Example 1
Consider the upper part of Figure 27(a), in which there are four edges in an embedded planar graph
that represents the state spaceX � R2. For convenience, the edges are labeled froma to d. A
point body travels around inside of the graph, and we would like to determine where it has gone
using a simple sensor that measures only the horizontal coordinate. In other words, for any p 2 X ,
with coordinates p = ( p1; p2), the sensor yieldsy = h(x) = p1.

Consider the preimages ofh for various observations. If the body moves in edged, then the state
can be immediately inferred from the sensor observation. The preimageh� 1(y) consists of a single
point in d. If the body moves in the other edges, thenh� 1(y) contains three points, one inside of
each of edgea, b, and c.

Now think about the two fundamental questions above. Imagine that the body has been moving
around in X for some time, and we want to reason about where it has been. Given ~y : [0; t] ! Y ,
what trajectories are possible, assuming the body must moveon a continuous path? Any trajectory
portion that places the body in edged can be completely determined from the observations. There
is ambiguity only when the body is in other edges. If the body moves from edged to the left, then
it can only enter edgeb or c. The observation preimage indicates that the body could be in a, b,
or c; however, the history that the body came from d eliminates the possibility of being in edgea.
This nicely answers the second basic question, which is formulated mathematically in (45).

For the �rst question, we consider entire possible trajectories. For this simple problem, the set
is always �nite. For a simple example, imagine a trajectory that starts the body in the midpoint
of d at time t = 0. The body then moves left to the midpoint of edge b or c, arriving at time
t = 1=2. The body then returns to the right, reaching the midpoint of edged at time t = 1. Based
on ~y : [0; 1] ! Y , the preimage H � 1(~y), de�ned in (44), contains only two possible trajectories.
One trajectory moves the body up to edgeb and then returns. The other moves the body down to
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Figure 28: Each complete trajectory that is consistent with the observations must pass through
the preimage of each observation,y1, y2, and y3.

edgec and returns. Note that the particular timing information is not ambiguous because using
~y, we know exactly which the times at which the body must be in various positions. The only
ambiguity is which edge, b or c, contains the body during part of the trajectory. If the sensor did
not report all of the timing information, then H � 1(~y) could be in�nite. Imagine, for example, the
possible trajectories if the sensor reports the horizontalposition only once every 0:1 seconds. Any
continuous trajectory segment is possible in between the observations. �

In the spirit of Section 3.3, we can talk about the partition of ~X , denoted by ~�, that is induced
by H . Note that ~�( h1) is a re�nement of ~�( h2) if and only if h1 � h2. This means that a more
powerful sensor produces a better �lter, which we would expect. Section 4.2.2 provides a more
detailed construction of this.

4.2.2 Triangulations over trajectory space

The triangulation ideas from Section 4.1.1 can be extended over time. Recall the state-time space
Z = X � T (Section 3.4.3) and the trajectory space ~X (Section 3.4.4). It will be helpful to
distinguish between complete and partial trajectories. SupposeT = [0 ; t f ], in which t f is the �nal
time. A complete trajectory is of the form ~x : T ! X and a partial trajectory is of the form
~x : [0; t] ! X for any t 2 [0; t f ). (We could alternatively allow unbounded trajectories: De�ne
T = [0 ; 1 ) and allow any t 2 T to de�ne a partial trajectory.) Let ~X c denote the set of complete
trajectories.

Suppose that each sensor is of the formhi : Z ! Y and yi = hi (x i ; t i ) = ( y0
i ; t i ), in which

y0
i = h0

i (x) is a standard sensor mapping from Section 3.2.1. Herex i is the state at time t i 2 T,
which can be written as x i = ~x(t i ) for the trajectory ~x : T ! X in ~X . Essentially, hi is a sensor
that indicates the precise time of each observation.

Suppose that n observations, y1, : : :, yn are obtained, each of which is generated byyi =
hi (~x(t i ); t i ). What is the set of possible complete trajectories? Figure28 illustrates the calculations.
Each yi introduces a thin vertical window h� 1(yi ) � Z at time t i through which a trajectory must
travel to account for the observation. The set of possible complete trajectories are those that travel
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through all n windows.
For a single observationyi = hi (x i ; t i ), the set of possible complete trajectories is

~h� 1
i (yi ) = f ~x 2 ~X c j ~x(t i ) = hi (x i ; t i )g; (46)

which is similar to (2). For the set of n observations, we calculate the subset of~X c of possible
complete trajectories by

~4 (y1; : : : ; yn ) = ~h� 1
1 (y1) \ ~h� 1

2 (y2) \ � � � \ ~h� 1
n (yn ); (47)

which can be considered as a form of triangulation, similar to (40). This can be interpreted as a
�lter that answers the second fundamental question of Section 4.2.1.

Since (46) and (47) appear to be preimages and triangulation, they can be once again viewed in a
sensor lattice. However, the lattice is over ~X c, the set of all complete trajectories. Each observation
partitions ~X c into class of trajectories that could account for it. The tri angulation (47) applied
to a pair of observations calculates a re�nement of partitions, which is a lub in the lattice. Thus,
this form of temporal �ltering can be considered as traveling in a sensor lattice. In most settings,
a unique trajectory will not be discovered due to time gaps inwhich no observations are made.
Hence, the top of the lattice is not reached.

The second fundamental question of Section 4.2.1 is to determine the possible states at some
time t 2 T, assumingt > t i for all i from 1 to n. This is expressed as

f x 2 X j 9~x 2 ~4 (y1; : : : ; yn ) with ~x(t) = xg: (48)

What was neglected above is the more complicated case in which perfect time stamps t i are not
available with eachyi . In this case, the vertical bars at precise times in Figure 28become \blobs" or
more general regions inZ because the times are unknown. For an observationy 2 Y , any preimage
in Z and corresponding partition of Z is possible. The temporal �lter then uses the observations
to construct a re�nement of partitions over Z . This might not, however, induce a re�nement of
partitions over ~X c because one trajectory could be explained by multiple observation sets y1, : : :,
yn (this was not the case when perfect time stamps were given). The next section considers an
alternative model, in which sensor observations are received sequentially, but without time stamps.
Furthermore, motion models are introduced to partially account for how the state may change over
time when there are no observations.

4.2.3 Temporal �lters over discrete stages

Discretely indexed observation histories Suppose that for some sensor modelh : X ! Y ,
observations arrive at discretely over time, to yield a sequence ~y = ( y1; : : : ; yk ) observations. Each
yi will be said to correspond to astagei . Depending on the particular model, it may or may not be
known when eachyi occurred; however, it will always be assumed thatyi +1 is obtained at a later
time than yi for every i from 1 to k � 1.

In the previous model of observation histories ~y : [0; t] ! Y , the state wasalwaysbeing observed
by the sensor. Under this new model, ~y provides observations at some discrete points along time.
In between these observations, the sensor does not make any other observations. Based on this
situation, two distinguishing features of temporal �lters arise:

1. Since observations arrive incrementally, we de�ne �lter information that can be updated
incrementally.
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2. A model is needed of how the state might change over time, particularly when no observations
are available.

It now becomes important to precisely de�ne the information that will be stored internally during
the �lter operation. Let I be any set, and call it an information space4 (or I-space) and let any
� 2 I be called aninformation state (or I-state).

A temporal �lter has two components:

1. A given initial I-state , denoted by �0 2 I .

2. A transition function � of the form � : I � Y ! I . In particular, the structure is

�k = � (�k� 1; yk ); (49)

in which the new I-state �k is determined from the previous I-state �k� 1 and new observation
yk . When convenient, (49) will be shifted one stage forward to equivalently obtain �k+1 =
� (�k ; yk+1 )

Information states could have also been useful in Section 4.1 for spatial �lters, but we were not
concerned since all observations appeared simultaneously. Once observations are distributed over
time, we must de�ne what is stored internally.

Some generic, straightforward examples of temporal �ltersare now given.

Filter 5 (Sensor Feedback)
As a trivial special case, imagine a �lter that maintains only the most recent observation. In this
caseI = Y and �k = � (�k� 1; yk ) = yk . Note that this �lter does not even use the previous I-state
�k� 1. This implies that it does not even require the initial I-sta te �0, which has been left unspeci�ed.
�

Filter 6 (Stage Counter)
Another simple example is to report the current stage. In this case,I = N [ f 0g, the set of
nonnegative integers. We have�0 = 0 and the �lter is

�k = �k� 1 + 1 : (50)

�

Filter 7 (Simple State Estimator)
Suppose thatI = X and the goal is to reconstruct the state from observations. To make the �lter
simple, suppose thatX = R2 and a history-based sensor mapping is de�ned as

yk = h(xk ; xk� 1) = xk � xk� 1: (51)

The initial I-state �0 is the initial state, �0 2 X . The following �lter perfectly recovers the state:

�k = �k� 1 + yk : (52)

By adding the observations, a telescoping sum is produced that results in �k = xk . Note that this
�lter refers back to the state space. Such reference is critical to most useful �lters, and will be
considered more carefully in Section 4.2.4. �

4A more mathematically accurate name here would be information set because no topology is implied.
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Note that any �lter can be extended to form a mapping over all observation histories. Suppose
that ~yk = ( y1; : : : ; yk ) is provided. Starting with �0, we can apply � iteratively to obtain �k .
This implies that any �lter (49), once given an initial I-sta te �0, can be converted into a mapping
� : I � ~Y ! I . This appears as

�k = � (�0; ~yk ): (53)

We could more generally consider proposing any I-spaceI and any mapping � : I � ~Y ! I ;
however, in this section we are only interested in ones that can be constructed incrementally by
iterating (49).

4.2.4 Including motion models

We would like to use a model about the evolution of states to help construct more informed �lters.
Filter 7 referred to the state, but did not need any assumptions about how states change.

We can introduce a state transition function , f : X ! X , which correctly predicts xk+1 from
xk with the equation xk+1 = f (xk ). Let X k denote a given subset ofX that means the set of
possible states at stagek. We will sometimes write X k (:::) to denote the set of possible states at
stage k based on all information inside of the parentheses. If the current state is not known, but
is restricted to some subsetX k � X , then we can apply f to every x 2 X k to determine a forward
projection:

X k+1 (X k ) = f xk+1 2 X j xk 2 X k and xk+1 = f (xk )g: (54)

For many problems, perfect predictability is too restricti ve. Perhaps we only know a set of
possible future states. In this case, anondeterministic state transition function is obtained, which
is of the form F : X ! pow(X ). The forward projection for this model becomes:

X k+1 (X k ) = f xk+1 2 X j xk 2 X k and xk+1 2 F (xk )g: (55)

Probabilistic models could also be introduced, to obtain aprobabilistic transition function p(xk+1 jxk ).
The forward projection in this case becomes a marginalization: xk is not actually given, but is re-
placed by some densityp(xk ). This yields:

p(xk+1 ) =
X

xk 2 X

p(xk+1 jxk )p(xk ): (56)

It could be the case that our characterization of future states depends on some actions chosen
by ourselves or other bodies in the environment. Suppose that these actions are known and are
recorded in the same way as a sensor observation. In this case, let U be an action spaceand let
uk 2 U be an action applied at stagek. The particular uk simply becomes a new parameter in the
state transition function. In the predictable case, we obtain f : X � U ! X and xk+1 = f (xk ; uk ).
In the nondeterministic case, we obtain F : X � U ! pow(X ). In the probabilistic case, we
obtain p(xk+1 jxk ; uk ). These are standard models used in control theory. The forward projections
presented above naturally extend to allowuk to appear in the conditions.

It is assumed that one action is chosen at each stage. Let ~uk = ( u1; : : : ; uk ) be called anaction
history. The �lter itself does not \chose" the actions. Whatever act ions were applied by the system
are merely reported as inputs to the �lter. Choosing the actions is covered brie
y in Section 5.1.
The total information available at stage k for constructing a �lter in some I-space I is �0, ~yk , and
~uk� 1.

Taking the additional action information into account, the �lter structure from (49) is extended
to

�k = � (�k� 1; uk� 1; yk ): (57)
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Filter 8 (History I-Space Filter)
One special kind of I-space will now be de�ned. Let� k = (~yk ; ~uk� 1) be called the history I-state at
stage k. It corresponds to all information available at stage k. Let I hist be the set of all possible
� k for all possible k � 1. For k = 1, we obtain � 1 = ~y1 because there is nou0. A trivial �lter can
be de�ned over I hist as

� k = � (� k� 1; uk� 1; yk ): (58)

In each iteration, the history I-state � k� 1 = (~uk� 1; ~yk� 1) is simply extended to include the new
information uk� 1 and yk , which directly forms � k . To initialize (58) properly, let � 0 = ; and de�ne
the history I-space to include ; 2 I hist . �

4.2.5 Nondeterministic �lters

Once a state transition function has been determined, a generic �lter can be de�ned that keeps
track of the set of possible states at every stage, given all available information. For this �lter, we
de�ne I ndet = pow( X ), in which I ndet is called the nondeterministic I-space. Using all available
information � k = (~uk� 1; ~yk� 1) at stage k, we denote an I-state asX k (� k ), which is a subset ofX .
Thus, X k (� k ) 2 I ndet .

Filter 9 (Generic Nondeterministic Filter)
See Section 11.2.2 of [37] for a detailed derivation and presentation of the �lter appearing here.
The general form of the generic nondeterministic �lter is

X k+1 (� k+1 ) = � (X k (� k ); uk ; yk+1 ): (59)

Let X 1 � X denote the initial I-state. We thus interpret X 1 as �0, and X 1 2 I ndet . The �lter
uses the sensor mappingh : X ! Y and state transition function F : X � U ! pow(X ). After
the �rst observation, the set of possible states isX 1(y1) = X 1 \ h� 1(y1). In words, this simply
intersects the initial possible states with the preimage due to y1.

Now suppose inductively that X k (� k ) has been given, as appearing in (59). First consider taking
into account uk . This yields:

X k+1 (� k ; uk ) =
[

xk 2 X k (� k )

F (xk ; uk ): (60)

This can be considered as the set of all states that can be reached by starting from some state in
X k (� k ) and applying an action uk 2 U. See Figure 29.

The next step is to take into account the observationyk+1 . This information alone indicates that
xk+1 lies in the preimageh� 1(yk+1 ). Therefore, an intersection is performed to obtain

X k+1 (� k+1 ) = X k+1 (� k ; uk ; yk+1 ) = X k+1 (� k ; uk ) \ h� 1(yk+1 ): (61)

This completes the detailed speci�cation of (59). �

After starting with the initial subset of X , the nondeterministic I-states at any stage can be
computed by iterating (60) and (61) as many times as necessary. Note, however, that this generic
�lter may have high complexity or might not even be computable. This depends on the particular
structure of the problem and on how the I-states are encoded;Section 4.3 will provide some settings
in which the computations are simple and e�cient.
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Figure 29: The �rst step in computing the nondeterministic I -state is to take the union of F (xk ; uk )
over all possiblexk 2 X k (� k ). It is the e�ect of applying an action when the current state is not
precisely known.

4.2.6 Probabilistic (Bayesian) �lters

A generic probabilistic (or Bayesian) �lter can also be made. We de�ne I prob as the probabilistic
I-space, which is the set of all probability density functions over X . It is assumed that such density
functions exist (which might not be possible for some state spaces). Using� k , we denote an I-state
as p(xk j� k ) and note that p(xk j� k ) 2 I prob.

Filter 10 (Generic Probabilistic (Bayesian) Filter)
The �lter takes the general form

p(xk+1 j� k+1 ) = � (p(xk j� k ); uk ; yk+1 ); (62)

which should be compared to the nondeterministic version (59).
To construct the �lter, we use the sensor modelp(xk jyk ) and the state transition model p(xk+1 jxk ; uk ).

The initial density, corresponding to �0, is a given prior p(x1). The �lter presented here is derived
in Section 11.2.3 of [37] using the same notation. Other sources include [8, 31, 49].

Assume for now that X is discrete. The �lter (62) can be nicely expressed by �rst considering
the e�ect of uk , followed by yk+1 . Starting from p(xk jyk ) and using uk in the state transition model,
we obtain

p(xk+1 j� k ; uk ) =
X

xk 2 X

p(xk+1 jxk ; uk ; � k )p(xk j� k )

=
X

xk 2 X

p(xk+1 jxk ; uk )p(xk j� k ):
(63)

Taking this result and applying the sensor model onyk+1 yields

p(xk+1 jyk+1 ; � k ; uk ) =
p(yk+1 jxk+1 ; � k ; uk )p(xk+1 j� k ; uk )

X

xk +1 2 X

p(yk+1 jxk+1 ; � k ; uk )p(xk+1 j� k ; uk )
: (64)

If X is not discrete, then the summations above are replaced withintegrals. �

Once again, there may be considerable computational challenges when implementing these �lters.
Many sampling-based techniques, such as particle �lters, have been developed and used in practice
to implement them. For their application in robotics, see [49].

For some problems, the probabilistic I-space collapses nicely and the computations become e�-
cient.
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Filter 11 (Kalman Filter)
The most famous and useful example of this is theKalman �lter . It can be considered as a
specialized version of Filter 10 that just happens to work out e�ciently. In the special case in
which both f and h are linear functions, and p(� ), p( ), and p(x1) are Gaussian, all probabilistic
�lter I-states become Gaussian. This means that the probabilistic I-space, I prob, does not need to
represent every conceivable probability density function. The �lter I-state is always trapped in the
subspace ofI prob that corresponds only to Gaussians. The subspace is denotedas I gauss.

The motion model is calledlinear-Gaussian (or LG). Each Gaussian density onRn is fully spec-
i�ed by its n-dimensional mean vector� and an n � n symmetric covariance matrix, �. Therefore,
I gauss can be considered as a subset ofRm in which m = 2n + ( n

2 ). For example, if X = Rn ,
then I gauss � R5, because two independent parameters specify the mean and three independent
parameters specify the covariance matrix (not four, because of symmetry).

The full Kalman �lter is expressed below, but the full deriva tion, which is lengthy but not di�cult
and can be found in virtually any textbook on stochastic control (e.g., [4, 31]).

All of the required spaces are Euclidean, but they may have di�erent dimensions. Therefore, let
X = Rn , U = � = Rm , and Y = 	 = Rr . Let Ak , Bk , Ck , Gk , and Hk each denote a matrix with
constant real-valued entries and which may or may not be singular. The matrices are assumed to
have appropriate dimensions for the multiplications below. The k subscript is used to indicate that
a di�erent matrix may be used in each stage. In many applications, the matrices will be the same
in each stage.

The motion model in this setting becomes

xk+1 = f k (xk ; uk ) = Akxk + Bkuk + Gk � k ; (65)

The notation f k is used because the model can vary with stages.
The sensor mappingyk = hk (xk ;  k ) is

yk = Ckxk + H k  k : (66)

Note that with Ck , the sensor output may also vary with stages.
In each stage, disturbance parameters� k and  k are modeled with zero-mean Gaussians. Thus,

each has an associated covariance matrix, denoted by �� and �  , respectively. Using the model
given so far and starting with an initial Gaussian density over X , all resulting I-states will be
Gaussian [31].

Since every I-state inI gauss can be represented by a mean and covariance, let� k and � k denote
the mean and covariance ofp(xk j� k ). The expressions given in the remainder of this section de�ne
a derived information transition equation that computes � k+1 and � k+1 , given � k , � k , uk , and
yk+1 . The process starts by computing� 1 and � 1 from the initial conditions.

Assume that an initial condition is given that represents a Gaussian density overRn . Let this be
denoted by � 0, and � 0. The �rst I-state, which incorporates the �rst observation y1, is computed
as � 1 = � 0 + L 1(y1 � C1� 0) and

� 1 = ( I � L 1C1)� 0; (67)

in which I is the identity matrix and

L 1 = � 0CT
1

�
C1� 0CT

1 + H1�  H1
� � 1: (68)

Although the expression for L 1 is complicated, note that all matrices on the right were given.
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Now that � 1 and � 1 have been expressed, the base case is completed. The next part is to give
the iterative updates from stagek to stagek +1. Using � k , the mean at the next stage is computed
as

� k+1 = Ak � k + Bkuk + L k+1 (yk+1 � Ck+1 (Ak � k + Bkuk )) ; (69)

in which L k+1 will be de�ned shortly. The covariance is computed in two steps; one is based on
applying uk , and the other arises from consideringyk+1 . Thus, after uk is applied, the covariance
becomes

� 0
k+1 = Ak � kAT

k + Gk � � GT
k : (70)

After yk+1 is received, the covariance �k+1 is computed from � 0
k+1 as

� k+1 = ( I � L k+1 Ck+1 )� 0
k+1 : (71)

The expression forL k is
L k = � 0

kCT
k

�
Ck � 0

kCT
k + H k �  H k

� � 1: (72)

To obtain L k+1 , substitute k + 1 for k in (72). Note that to compute � k+1 using (69), � 0
k+1 must

�rst be computed because (69) depends onL k+1 , which in turn depends on � 0
k+1 .

Although the expressions above appear complicated, note the simple structure of the Kalman
�lter:

(� k+1 ; � k+1 ) = � (( � k ; � k ); uk ; yk+1 ): (73)

�

Due to the collapsing I-space and e�cient updates, the Kalman �lter provides a beautiful solution
to the class of linear Gaussian models.

It would be wonderful if the same type of simpli�cation that t ook us from general Bayesian �lters
to the Kalman �lter were possible for the case of nondeterministic �lters. It turns out that there
are many circumstances in which analogous behavior occurs.This is the subject of Section 4.3.

4.3 Combinatorial Filters

This section adapts the nondeterministic �lter (Filter 9) t o a family of problems for which the
computations become very e�cient. By careful choice of models, the computation step illustrated
in Figure 29 can be computed in an exact, combinatorial way. This leads to a family called
combinatorial �lters .

4.3.1 Obstacles and beams

This topic is adapted from [50]. Consider what information can be obtained from the knowledge
that one or more moving bodies pass through detection beams.See Figure 30(a). An unpredictable
point body moves inside of a given polygonal regionE in the plane. The state space isX = E � R2.
There are several static binary detectors, as in Model 14, and for each the detection regionV is
a line segment for which each endpoint connects to@E(the boundary of E). Each detector is
called a beamand is uniquely labeleda, b, c, and so on. Rather than output 0 or 1 as in (11), we
modify h so that each outputs 0 or its own label instead of 1. We can combine the beams into
a single sensor that produces a label whenever the corresponding beam is crossed. If the body is
not touching any beams, then the combined sensor continuously yields 0. An observation history
~y will therefore be compressed to indicate the sequence of beams that were crossed over time. For
example ~y = cbabdeeefefor the state trajectory in Figure 30(a).
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Figure 30: (a) Imagine placing some beam-shaped detection sensors around an indoor environment.
(b) Virtual beams could even arise by noticing when towers become aligned in an image while
exploring a �eld. (c) Alternatively, virtual beams could ar ise from a robot using a compass: A
virtual beam is crossed whenever a target is directly north.

There are many ways to physically implement this model. We could, for example, use the safety
beams shown in Figure 4(h). We could even obtain \virtual beams" through an entirely di�erent
physical sensor model. For example, Figure 30(b) shows 5 landmarks (imagine them as towers)
in the plane. If a robot moves in the plane and uses a camera, itcould detect when a pair of
landmarks is perfectly aligned. This would correspond to having beams placed as shown in the
�gure. Alternatively, Figure 30(c) shows how virtual beams would appear if a robot has a compass
and can determine precisely when a landmark is directly south of its position.

Now think about what can be inferred after receiving a sequence of beam crossings. Clearly, the
sensing model is too weak to recover the state. For the example in Figure 31(a), suppose that the
beams divideE into three two-dimensional regions,r1, r2, r3. Let R = f r1; r2; r3g. For this simple
example, if the initial region is given, then the new region can be determined after each beam is
crossed. This assumes that the body never touches a beam without crossing it completely.

Filter 12 (Simple Region Filter)
Consider any environmentE � R2 in which a �nite collection of beams is arranged so that: 1) every
beam either touches@Eat each end or shoots o� to in�nity, 2) every beam is uniquely labeled,
3) no pair of beams intersects. LetR be the set of two-dimensional regions formed by taking the
maximal connected regions that can be traversed by the body without crossing a beam (this was
applied to generate the three regions in Figure 31(a)).

For this general problem, we can make a simple �lter that keeps track of the current region,
assuming it was known initially. Let I = R and specify �0 = r0 as the initial region. Using the
�lter template (49), we obtain � : R � Y ! R and

r k = � (r k� 1; yk ): (74)

The next region r k can be easily determined oncer k� 1 and yk (the most recent beam crossed) are
given. �

We now consider a more complicated problem, such as the one shown in Figure 31(b). Suppose
that the initial region is not known. Furthermore, we will al low a much more complicated collection
of beams. We still require all beams to have linear detectionregions for which both ends reach@E.
However, beams may or may not have each of the following threeproperties:
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Figure 31: (a) A simple example, which leads to three regions, r1, r2, and r3. (b) Beams may be
directional, may intersect, and may be indistinguishable.

1. Beams may or may not bedistinguishable. Two or more beams could produce the same label.

2. Beams may or may not bedisjoint . In other words, a pair of beams may intersect in the
interior of E .

3. Beams may or may not bedirected. If a beam is directed, then we know which direction that
body went when crossing. The beams in Figure 31(a) were undirected. For some beams in
Figure 31(b), the beam's natural direction is shown with a triangular pointer placed on the
beam. A body may traverse such beams in the natural directionor in the opposite direction.
This information can be observed. For example, we may receive a if beam a is crossed in the
natural direction, or receive a0 for crossing in the opposite direction.

In spite of this complicated problem, the setR of regions can be de�ned as before. Eachr 2 R is a
connected two-dimensional region inR2 in which the body can travel without crossing a beam. We
de�ne a multigraph G as follows. Every vertex inG corresponds to a region inR2. A directed edge
is made fromr1 2 R to r2 2 R if and only if the body can cross a single beam to go fromr1 to r2.
The beam label is placed on the edge. If the beam is undirected, then directed edges are made in
both directions with the same label. If beama is directed, then the label isa in one direction and a0

in the other. Note that a self-loop edge may be formed if a beamcan be crossed while remaining in
the same region. Figure 32 shows a simple example in which there are two beams and two regions.

Filter 13 (Nondeterministic Region Filter)
We now describe a �lter that keeps track of the set of possiblecurrent regions. It can be considered
as an special case of Filter 9 for which the nondeterministicI-space has structure that makes the
�lter easy to compute. Let I = pow( R), and �0 = R0, a set of possible initial regions. The
multigraph G is given (it can be computed from a description ofE and the beam locations). A
simple example is shown in Figure 32.

The method keeps track of possible regions bymarking the corresponding vertices ofG. Initially,
mark every vertex in R0; all other vertices are cleared. The �lter proceeds inductively, yielding
Rk+1 = � (Rk ; yk+1 ). At stage k, the marked vertices are precisely those corresponding toRk .
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Figure 32: (a) An example that has two intersecting beams, one directed and one undirected. (b)
The corresponding multigraph G.

Suppose thatyk+1 is observed, which extends the sensor word by one observation. For each marked
vertex, look for any outgoing edge labeled withyk+1 . For each one found, the destination vertex
is marked. Any vertex that was marked at stagek but did not get marked in stage k + 1 becomes
cleared. Note that the total number of marked vertices may increase because from a single vertex
there may be multiple edges that matchyk+1 . Also, this approach works for the case of partially
distinguishable beams because the match is based on the observation yk+1 , rather than the partic-
ular beam. The set of marked vertices yieldsRk+1 . �

Filter 14 (Multiple Body Filter)
What if there are multiple bodies moving in E? Filter 13 could be generalized to keep track of
which room each body might be in. Consider the example in Figure 33 in which two bodies move
in an annulus-shaped environmentE . The state space isX = E 2 � R4. Since there are two agents,
there are 9 possible combinations: (1; 1), (1; 2), (1; 3), (2; 1), (2; 2), (2; 3), (3; 1), (3; 2), and (3; 3).
In terms of the �lter template (49), we let I = pow( R � R). Initially, �0 is given, which is the set
of possible initial room combinations. For example, someone may tell us that they are both in R1,
in which case�0 = f (1; 1)g.

For simplicity here, assume that beams cannot be crossed simultaneously by two bodies. To
make the �lter, we can directly extend the method of Filter 13. Let G2 be the multigraph formed
by taking the Cartesian product G� G in the sense that the vertices correspond to all ordered pairs
of regions. Each edge inG2 is formed if a transition from one ordered pair to another is possible
after a single observationyk+1 . Once G2 is formed, the method of propagating markers over the
vertices, used in Filter 13, can be adapted and used here. In each iteration, the set of possible
region pairs is maintained.

If there are n bodies in the environment, then the method can be extended byforming an n-fold
Cartesian product of R to obtain I and a n-fold product of G to obtain Gn . If the number of
bodies is unknown but bounded byn, then the disjoint union of I-spaces andGi is formed, for each
i from 0 to n. If the number is bodies is unbounded, then the method as described fails. �

Of course the scheme described in Filter 14 is computationally prohibitive if there are many
bodies and regions. Asymptotically, the number of verticesin Gn is exponential in n. There
are many opportunities to dramatically reduce the �lter com plexity depending on the particular
information of interest. This remains an open research problem: Determine what information can
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Figure 33: (a) Two bodies move in an environment consisting of three regions and three undirected
beams. (b) A simple �lter with only four I-states is su�cient to keep track of whether the two
bodies are together in some region.

be maintained by a region �lters that have much lower complexity. This is similar to the task of
minimizing automata using Nerode equivalence classes in the classical theory of computation [26].

Filter 15 (Two-Bit Filter)
A simple example is presented in Figure 33. Two bodies move ina simple environment and we
are interested only in one particular question: Are the two bodies together in a region, or are they
separated by a beam? It turns out that a particular �lter can b e designed for this question, and it
is dramatically simpler than the generic one from Filter 14. The I-space isI = f T; Da; Db; Dcg and
the �lter is depicted in Figure 33(b). The T I-state means that the bodies are together. EachDx

I-state means that they are in neighboring regions and are separated by beamx. The automaton in
Figure 33(b) de�nes the �lter �k = � (�k� 1; yk ) by indicating the transitions caused by each speci�c
yk . If the initial I-state is given, then this simple \two-bit" �lter can always, correctly answer the
question about whether the two bodies are together (represented by the T I-state). �

Filter 15 dramatically reduces the complexity of Filter 14 by �nding the perfect I-space. How
can this be done for other problems? Many exciting problems for future research remain!

In addition to trying to simplify the region �lters, we might also want to make them more robust
by tolerating disturbances in the beams. There may be false positives and false negatives, as
described in Model 31 (faulty detectors). If we learned probabilistic models of these disturbances,
then Filter 13 can be adapted to the probabilistic case. The I-space is the set of all probability
density functions overR. This would follow the template of Section 4.2.6, resultingin a probabilistic
�lter (Filter 10) that starts with a prior p(r1) and iteratively computes p(r k+1 j ~yk+1 ) using only
p(r k j ~yk ) and yk+1 . At each stage, the �lter maintains a probability density ov er the possible
regions that contain the body, based on the entire observation history.

4.3.2 Shadow information spaces

This topic is adapted from [53]. For these �lters, imagine that several robots carry detection sensors
(from Section 3.2.5) and move through a common environment that contains numerous moving
point bodies, as shown in Figure 34. Suppose thatq represents the con�guration of all robots and
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Figure 34: Imagine trying to keep track of bodies outside of the �eld of view of sensors. These
regions, shown in white, are calledshadows. This example has nine shadows.

V (q) � E is their combined detection region in some environmentE . The topic of interest is the
part of E that is not visible to the sensors at a particular instant. We de�ne S(q) = E n V (q) and
call it the shadow region. See Figure 35. Assume that if any body entersV (q) it is detected by
the sensors. Now think about portions ofS(q) within which bodies become trapped: Within any
connected component ofS(q), a body cannot leave without being detected. We therefore consider
a family of �lters based on analyzing the connected components of the shadow regionS(q) and how
they change over time.

A shadow region can generally be partitioned into a �nite set of such components, calledshadow
components. As the robots move, the particular S(q) gradually changes. The only changes of
interest to us are the following combinatorial events:

1. Disappear: A shadow component vanishes, which eliminates a hiding place for the bodies.

2. Appear: A shadow component appears, which introduces a new hiding place for the bodies.

3. Split: A shadow component splits into multiple shadow components.

4. Merge: Multiple shadow components merge into one shadow component.

These are the only events that will concern us. To keep this paper simple, assume that: 1) no two
events occur simultaneously, 2) a shadow component splits into at most two components, and 3)
at most two components may merge into one. The events are illustrated in Figure 36.

Each time period over which no combinatorial events occur can be referred to as a stage. During
a stage, if the particular shape or size of a shadow componentvaries, it will not be of interest. Each
shadow component during a stage will be denoteds, and an entire set ofn shadow components at
stagek is denoted

Sk = f s1; s2; : : : ; sng: (75)
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Figure 35: (a) The detection region for a single robot that carries a detection sensor. (b) The
corresponding shadow region, which has 5 connected components.

a. b. c.

Figure 36: (a) A disappear or appear event occurs, dependingon the direction of motion. (b,c) A
split or merge event is illustrated, depending on the direction of motion.

We start with S1 as the initial shadow components. Based on a combinatorial event, we obtain
a transition from Sk to Sk+1 . Typically, most components remain unchanged. For the disappear
event, Sk+1 = Sk n f sg for some components. For an appear event, some news is used to obtain
Sk+1 = Sk [ f sg. For the split and merge events, three components become involved in the change.
Let M (s; s0; s00) denote a merge relation, which is true when s and s0 merge to form s00. Likewise,
let S(s; s0; s00) denote asplit relation, which is true when s splits to form s0 and s00. Figure 37 shows
a simple example.

We call the complete sequence (S1; : : : ; Sk ), together with the speci�cation of the split and merge
relations, a shadow sequence I-state, and denote it by � k . Let I sseq denote the shadow sequence
I-space, which corresponds to all possible� k for a given problem. We assume that for whatever
given problem, the mapping from I hist to I sseq exists and can be applied to yield� k from the
observation and action histories.

We now de�ne some �lters that keep track of information over I sseq.

Filter 16 (Pursuit-Evasion Filter)
Suppose we would like to keep track of whether each shadow component is known not to contain
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Figure 37: This example shows �ve stages, caused by each of the four combinatorial events.

any agents. This is useful, for example, to record the statusof a pursuit strategy when solving a
visibility-based pursuit-evasion problem [18, 23, 47].

The �lter needs only to maintain a single bit per component:

� \0" means that there is de�nitely no body in s1

� \1" means that might be a body in s1

The �lter will obtain all of the information it needs from the shadow sequence I-state. For each set
Sk of shadow components, we associate a mappingbk : Sk ! f 0; 1g which assigns a status bit to
each shadow component. The initial mappingb1 is given. If there might be an evader in a shadow
component and we have no idea which one, then a common initialassignment isb1(s) = 1 for every
s 2 S1.

Now consider the operation of the �lter when transitioning f rom � k to � k+1 . Assume that bk is
already computed, and we have to determinebk+1 . The only additional information used comes
from the split and merge relations from stagek to k + 1. For any shadow component that appears,
we assignbk+1 (s) = 0. For any that disappears, there is no assignment to make. The split and
merge relations are utilized to handle the other two event types. If S(s; s0; s00), then bk+1 (s0) = bk (s)
and bk+1 (s00) = bk (s). If M (s; s0; s00), then bk+1 (s) = 0 if and only if bk (s0) = 0 and bk (s00) = 0.

To gain an intuition for this �lter, imagine that we are searc hing for a \lost" moving body which
is outside of the �eld of view of the sensors. We do not know where it might be initially, which
motivates assigning a value of 1 to every shadow component. As shadow events occur, we must
update the bits so that every components 2 Sk+1 that might contain a body hasbk+1 (s) = 1. Any
component for which we are sure a body does not lie obtains the0 status. If components merge,
then we can assign 0 only if both original components are certain not to contain a body. �

Filter 17 (Count Bounding Filter)
For this �lter, we want to keep track of how many bodies there are in every shadow component.
This simply replaces eachbk function of Filter 16 with two functions `k : Sk ! C and uk : Sk ! C
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in which C = N[f 0; 1g . The function `k is the lower boundon the number of bodies in each shadow
component. Likewise,uk is the upper bound. As the names suggest, we require that̀(s) � u(s) for
any shadow components.

The �rst functions `1 and u1 are assumed to be given. If no information is available for a shadow
components, we could assigǹ 1(s) = 0 and u1(s) = 1 . Now consider the incremental operation of
the �lter. If a component s appears, it receives̀ k+1 (s) = uk+1 (s) = 0. If a component disappears,
there is nothing to do. If S(s; s0; s00), then `k+1 (s0) = 0, `k+1 (s00) = 0, `k+1 (s0) = uk (s), and
uk+1 (s00) = uk (s). If M (s; s0; s00), then `k+1 (s00) = `k (s) + `k (s0) and uk+1 (s00) = uk (s) + uk (s0).

So far the �lter seems to lose important information. Let c, c0, and c00be the actual number of
bodies in s, s0, and s00, respectively. Even though these quantities are unknown, if S(s; s0; s00), then
we must havec = c0+ c00. Likewise, if M (s; s0; s00), then c+ c0 = c00. The �lter should keep track of
this information as well.

An interesting interpretation can be made. Let S0
k be the set of all shadow components observed

up to stage k, even including ones that have disappeared. Letm be the number of elements in
S0

k . For each i from 1 to m, an unknown integer represents the number of bodies in a particular
shadow component. Anm-dimensional vector v of integers can represent the number of bodies in
every component. The set of all possiblev is a subset ofZm (each Z is the set of all integers).
For component of v, upper and lower bounds are determined, which means thatv is restricted to
an axis-aligned rectangular subset ofZm . Furthermore, constraints of the form c = c0 + c00and
c + c0 = c00due to splits and merges further restrict the set of possiblev. Since all constraints are
linear, the set of allowablev all lie in a polytope in Rm . To ask particular questions about how
many bodies are in a particular shadow component, taking allconstraints into account, an inte-
ger linear program is obtained. E�cient solutions to this pa rticular program are described in [53].�

Filter 18 (Team Maintenance Filter)
Filter 17 can be extended easily to the case of partially distinguishable bodies. Suppose that each
body belongs to ateam. There could be only one team, which means they are all indistinguishable.
If each is on a unique team, then they are all fully distinguishable. As an example in between,
suppose they are classi�ed as men or women. This yields two teams, and bodies are assumed to be
indistinguishable inside of each team.

For this problem, we simply make a \vector version" of Filter 17, with one part for each team.
For each shadow component and team, an upper and lower bound is maintained. All �lter updates
are handled for each team independently [53]. �

An important complication can be easily considered in the �lters above, and it is important
to practical implementations. A body may pass in or out of the detection region V(q), in which
case we obtain additional information to be used in the �lters. In this case,V (q) may be treated
as a special component for which the exact count on the numberof bodies is known. Consider
extending Filter 17. If we observe a body entering from shadow component s into V (q), then we
should decrement by one the upper and lower bounds associated with s. Likewise, if a body leaves
V(q) and enters some shadow components, then we could increment its bounds. Such details are
worked out in [53].

4.3.3 Gap navigation trees

We now develop a �lter that is closely related to the shadow I-space. If a single robot with a
gap sensor is placed into a simply connected environment, Model 25 (simple gap), then every gap
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corresponds directly to a shadow component. For example, when the robot is placed as in Figure
35(a), there are 5 gaps and each one corresponds to a shadow component.

Return to the shadow sequence I-state. We can similarly de�ne a gap sequence I-state. The
notions of combinatorial events and stages from Section 4.3.2 are used here. Rather than (75), we
obtain

Gk = f g1; g2; : : : ; gng; (76)

in which Gk is the set of gaps that exist over stagek, which is an interval of time during which no
combinatorial events occur. We start with G1, and have transitions from Gk to Gk+1 in the same
way as with shadow components: Gaps may disappear, appear, split, or merge. Furthermore, the
merge and split relations are used here. This results in agap sequence I-state
 k and gap sequence
I-space, I gseq.

As part of 
 k , we additionally assume that the split and merge relations can be inferred from
the observation history. Here we obtain M (g; g0; g00) and S(g; g0; g00), de�ned in the same way as
for shadows in Section 4.3.2. Note that this may or may not be possible in practice, depending in
particular on how the gap sensor is implemented. In other words, to determine M (g; g0; g00), there
needs to be su�cient information to infer that g00was formed precisely asg and g0 merged.

Filter 19 (Gap Navigation Tree)
We describe a �lter over an I-spaceI trees of rooted trees [51]. Each tree captures some critical
structure of the environment and is combinatorially equivalent to the notion of a shortest path tree
that arises in visibility algorithms [ ?]. Initially, for 
 1, the I-state �0 2 I trees consists of a root
node that is connected to one child node for every gap inG1. Every child vertex is labeled with its
corresponding gap name.

The construction of the tree will now be described inductively. Assume that a tree �k has been
computed by the �lter. Using the new gaps Gk+1 , a new tree �k+1 is formed. Assuming that only
one event occurs from stagek to k + 1, it must either be an appear, appear, split, or merge. The
�lter is de�ned by describing the \surgery" that performed o n �k to obtain �k+1 . For an appear
event, a new child is added from the root and given the label ofthe new gap. For a disappear
event, the corresponding child is deleted from�k to obtain �k+1 .

For a merge eventM (g; g0; g00), consider the two subtrees corresponding to the two gapsg and g0.
A new child of the root is inserted with label g00. The subtrees corresponding tog and g0 are moved
from the root and attached to g00to indicate that these were merged intog00. In the case of a split
event, the process works in reverse. ForS(g; g0; g00), if there are already subtrees corresponding to
g0 and g00, then these are attached as children of the root wheng is deleted. If there are no subtrees
labeled g0 and g00, then new child nodes corresponding tog0 and g00are attached to the root. More
details appear in [37, 51]. �

What is actually being recorded by the tree in Filter 19? The critical events are actually caused
by generalizedin
ections and bitangents. Figures 39 and 40 show these cases. If the robot crosses
an in
ection ray, then an appear or disappear event occurs, depending on which direction it crosses.
If the robot crosses a bitangent ray, then a split or merge event occurs, again depending on the
direction. It turns out that the inner segments of bitangent s are part of a well-known structure
called the shortest-path graph(or sometimes called thereduced visibility graph[34]). An example is
shown in Figure 38. Consider all pairsp; p0 of points in a simply connected polygonal environment
E . For each pair, there is a unique shortest path, which happens to be piecewise linear. Except for
the initial and �nal path segments, all other segments must be either polygon edges or bitangent
edges. Every nonsmooth point along the path corresponds to are
ex vertex along @E(interior
angle greater than� ).
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Figure 38: The shortest-path graph. It is somtimes referredto as a (reduced) visibility graph [34].

If the robot explores enough of the environment, it is shown in [51] that the tree produced by
Filter 19 encodes a portion of the shortest-path graph that is su�cient for optimal navigation to
any place in E from the current robot location. This is depicted in Figure 41. Distance-optimal
navigation can be performed using this �lter, and is brie
y d escribed in Section 5.1.3.

4.4 Grid-based exploration and mapping

For the �nal examples of �lters, consider a grid-based physical state space. Although this does not
correspond to the way we ordinarily view the physical world,it is convenient for modeling purposes
and has been used in many previous works. See Figure 42(a). There is a single robot, with position
coordinates described by a pair (i; j ) of integers. There are only four possible orientations (such

Disappear

Appear

(a) (b)

Figure 39: (a) The robot crosses a ray that extends from an in
ectional tangent. (b) A gap appears
or disappears from the gap sensor, depending on the direction.
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Merge

Split

(a) (b)

Figure 40: (a) The robot crosses a ray that extends from a bitangent. (b) Gaps split or merge,
depending on the direction.

as north, east, west, south). LetZ � Z = Z2, in which Z is the set of all integers. At every (i; j ),
suppose atile is placed which may be either \white" or \black". The robot ma y occupy any white
tile at any time; however, it is unable to occupy a black tile.

Recall the continuous-space models from Section 3.1.1. Fora known map, the state space was
X � R2 � S1. For the grid-based counterpart to this model, R2 is replaced byZ2 and S1 is replaced
by the set D of four directions. An environment, or map, E is just a connected set of white tiles.
This can be expressed as a set of (i; j ) pairs. If E is known, then X = E � D . This would be
appropriate for a discrete robot localization problem. However, it is more interesting to consider a
simultaneous localization and mapping (SLAM) problem, in which neither the robot con�guration
nor the map E are known. In this case, letE denote the set of possible environments, resulting in

X � Z � Z � D � E : (77)

More precisely,X is the set of all (i; j; d; E ) for which ( i; j ) 2 E , d 2 D, and E 2 E.
Now we create a motion model. Only two actions are needed: 1) move forward in the direction

the robot is facing, and 2) rotate the robot 90 degrees counterclockwise. If the robot is facing a
black tile and forward is applied, then a sensor reports that it is blocked and the robot does not
move.

Suppose that the robot is initially placed on a white tile, in an unknown environment, with
an unknown orientation. What kinds of �lters can be made? Consider once again implement the
nondeterministic �lter (Figure 9). The �lter I-space is I = pow( Z � Z � D � E ). What are the
possible states consistent the history I-state?

Filter 20 (Naive Map List)
The nondeterministic �lter computes X k+1 (� k+1 ) � X from X k (� k ) after each action and obser-
vation. Without any insights, it appears we must enumerate all possible mapsE 2 E that are
consistent with the history I-state, and for each one, enumerate all possible (i; j ) 2 Z � Z and
orientations d 2 D. SinceX k (� k ) is in�nite, it is impossible to directly represent it as a set of sets
of tiles. One possibility is to declare in the model that all environments E must �t into a bounded
region. For example, suppose it is known that ifji j > 1000 or jj j > 1000, then the tile must be
black. In this case, we can apply (60) to compute the e�ect of an action, and (61) to take into
account the sensor reading. Obviously, this is horribly ine�cient. �
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Figure 41: The gap navigation tree captures the structure ofthe shortest paths to the current robot
location. The robot position is shown on the left. The tree onthe right characterizes precisely how
the shortest to the robot location are structured.
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(a) (b)

Figure 42: (a) A discrete grid problem is made in which a robotis placed into a bounded, unknown
environment. (b) An encoding of a partial map, obtained from some exploration. The hatched
lines represent unknown tiles (neither white nor black).
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Filter 21 (Keeping a Partial Map)
A much improved �lter can be made by compactly representing the set of possible maps, as shown
in Figure 42(b). Rather than being forced to label every (i; j ) 2 Z � Z as \black" or \white", we
can assign a third label, \unknown". Initially, the tile tha t contains the robot is \white" and all
others are \unknown". As the robot is blocked by walls, some tiles become labeled \black". The
result is a partial map that has a �nite number of \white" and \ black" tiles, with all other tiles
being labeled \unknown". An I-state can be described as two �nite sets W (white tiles) and B
(black tiles), which are disjoint subsets ofZ � Z. Any tiles not included in W or B are assumed to
be \unknown".

A further compression has been assumed. Since it is impossible to determine the precise initial
position and orientation, it seems harmless to arbitrarily invent some initial values. If the map
were given, then possible positions and orientations wouldbe constrained, but without the map,
there is no way to know. This should match your intuition. If I place you into Kentucky and give
you a map, you can describe your location in terms of the map'scoordinates. However, if you are
dropped into Kentucky without a map, then you might as well declare your starting position to be
the origin of the personal map that you will construct.

Therefore, the robot is declared initially to be at tile (0; 0) and facing east. All other i and j
coordinates are derived from the action history, which is essentially discrete odometry. The partial
map shown in 42(b) actually represents anequivalence classof partial maps that can be superim-
posed using a discrete translation and rotation. All of thishas been nicely compressed into a single
representation. �

5 Discussion

In this article, Section 2 introduced a wide range of physical sensors. Section 3 then developed
the notion of virtual sensors as mappingsh from a predetermined physical state spaceX into
an observation spaceY . This allowed sensors to be modeled in an implementation-independent
way. We then de�ned many categories of sensors which are compared in terms of h's preimages.
These models were also extended in several ways, including mappings over state-time spaceZ , state
trajectory space, ~X , and disturbances that are either nondeterministic or probabilistic. Section 4
then provided methods for aggregating observations made from spatially or temporally distributed
sensors. The main idea is to recall is that e�cient �lters can often be designed through a careful
choice of models, rather than incurring the full cost of generic probabilistic or nondeterministic
�lters.

The remainder of this section concludes the paper by giving ideas for uses of simple sensors and
�lters, indicating some topics for further reading, and presenting open challenges and problems.
There are many exciting directions for future research and timely opportunities to impact the
development of robust, e�cient, low-cost systems that mix sensors, actuators, and computation.

5.1 From Filtering to Planning and Control

Section 4 covered thepassiveproblem of gathering data from sensors and recorded actions, and
then making inferences. Filters can be used to estimate the state, count the number of bodies,
and so on, but they do not actively manipulate the state. In Section 5.1, we brie
y explain how
to connect the outputs of �lters to the set of actions so that actions are chosenbased on the �lter
I-state. The result may be called aplan, control law, policy, strategy, and so on. The process of
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funding such a solution may be calledplanning or control. Below, we choose the termsplans and
planning.

We view all planning problems as a search or optimization in an I-space, rather than the state
space (unless the I-space happens to coincide with the statespace). When there is substantial
uncertainty due to sensors, planning occurs over an appropriate I-space. The challenging task is to
design the system and resulting I-space so that task-solving plans can be e�ciently computed and
successfully executed. Ideally, we would like to accomplish tasks without having to fully reconstruct
or estimate the full external state.

5.1.1 Plans and Execution

Let I be any I-space. Suppose that a state transition model from Section 4.2.4 is available that
includes an action spaceU. Furthermore, suppose that a �lter � has been de�ned of the form (57).
This produces a new I-state�k 2 I from the previous I-state �k� 1 2 I , previous action uk� 1 2 U,
and new observationyk 2 Y .

Generally, the planning problem is to chose eachuk so that some predetermined goal is achieved.
Let G � I be called agoal region in the I-space. This should be correspond to the achievement
of a goal with respect to the physical world; if G cannot be de�ned to ensure this, then I must
be redesigned. Starting from an initial I-state �0 2 I , what sequence of actionsu1, u2, : : :, will
lead to some future I-state �k 2 G? Since future observations are usually unpredictable, it may be
impossible to specify the appropriate action sequence in advance. Therefore, a more complete way
to specify the action selections is to de�ne aplan:

� : I ! U: (78)

In this case, an action is determined from every I-state. During execution of the plan, the �lter is
executed, I-states are generated, and actions get automatically applied using � .

Using a �lter � , the execution of a plan can be incorporated as

�k = � (�k� 1; yk ; � (�k� 1)) ; (79)

which makes the �lter no longer appear to depend on actions. The �lter runs autonomously as the
observations appear.

The main challenge is to construct a plan that achieves the desired goals. This paper provides
only a starting point for addressing this. The main issues that arise repeatedly in planning are:

� Predictability: Are the e�ects of actions predictable in the I-space? If not, then plans
may be considered in which actions depends on future, unpredictable I-states. Otherwise,
execution may look like a predictable path in the I-space.

� Reachability: Is the goal region even reachable from the initial I-state? In other words, do
there even exist actions that will take us to the goal? Also, based on the I-space, does there
exist a plan that can reach the goal? If there is unpredictability, then we might additionally
require that the goal is guaranteedto be reachable, over all possible disturbances.

� Optimality: If there are many plausible alternative plans, then what cost criteria should be
formulated, and which plans are optimal with respect to them? Do optimal plans even exist?

� Computability: Given a description of the problem, can an algorithm be determined that
automatically computes a useful plan? In many cases, a plan is designed by a clever human;
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however, automated planning is desirable in many circumstances. If a plan is theoretically
computable, there are still practical issues such as algorithm complexity (running time and
space) and implementation di�culty.

5.1.2 Important Generic Examples

Several examples are given here in which plans are describedover various I-spaces that appeared in
Section 4. They are widely used in robotics, planning, and control theory. Their description here,
however, they may look unusual because we based all of them onI-space concepts.

Example 2 (State Feedback Plans)
Suppose we have a �lter that produces a reliable estimate ofxk using � k . Assume the �lter �ts the
general form (57), in which the I-space isI = X and �k is the estimate of xk . In this case, a plan
as expressed in (78) becomes� : X ! U.

Once the �lter is running, there is no need to worry in the planning stage about uncertainty
with regard to the current state. All sensing uncertainty is the problem of the �lter. This is a
standard approach throughout control theory and robotics: Produce a good state-estimating �lter
and then produce a plan or policy that uses state feedback. This enables the two issues of sensing
and planning to be decoupled. Although a useful approach in many settings, we are most interested
in this paper in ways to analyze both together, leading to simpler I-spaces, �lters, and planning
problems. �

Example 3 (Open-Loop Plans)
In this case, we use Filter 6, which simply counts the number of stages. Recall the simple update
equation (50) and I-spaceI = N. A plan is expressed as� : N ! U. This can be interpreted as a
specifying a sequence of actions:

� = ( u1; u2; u3; : : :): (80)

Such plans are often calledopen loopbecause no signi�cant sensor observations are being utilized
during execution. However, be careful, because some implicit time information is certainly being
used: It is known that u3 is being applied later than u2, for example.

In (80), the actions appear to execute forever. In practice,the plan may terminate after a �nite
number of stages. See Chapter 2 of [37] for discussions of termination issues. �

Example 4 (Sensor-Feedback Plans)
Now suppose that Filter 5 is applied, which produces only themost recent sensor observationyk .
In this case, a plan becomes� : Y ! X . It is wonderfully simple if such a \reactive" plan can solve
a useful task. For most tasks, however, some history of observations is needed. �

Example 5 (Plans Over History I-Space)
Recall Filter 8, which simply reports the complete history of all observations and actions obtained
so far. In this case, a plan is� : I hist ! U, which appears to be the most powerful plan possible.
Every action depends on all possible information that can beutilized. There are several drawbacks,
however. SinceI hist is large, it maybe be di�cult or impossible to even represent an interesting
plan. Furthermore, it may be hard to determine that the plan i s in fact achieving a goal. Expressing
the goal in this I-space may also be impractical because there is no direct connection to the state
space. �
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5.1.3 Problem-Speci�c Examples

The examples of Section 5.1.2 used generic I-spaces that do not necessarily take into account
problem-speci�c information to reduce the overall complexity of the planning problem. Using the
concepts of this paper, we encourage the following overall process:

1. Consider a system, which includes the environment, bodies, and sensors, and is designed for
some task or tasks.

2. De�ne the models, which provide the state spaceX , the sensor mappingh, and the state
transition function f .

3. Select an I-spaceI for which a �lter � can be practically computed.

4. Take the desired goal, expressed overX , and convert it into an expression overI .

5. Compute a plan � over I that achieves the task in terms ofI .

Ideally, these steps should all be taken into account together; otherwise, a poor choice in an earlier
step could lead to arti�cially high complexity in later step s. Worse yet, a feasible solution might
be lost. Consider how Steps 4 and 5 may fail. Suppose that in Step 3, a simple I-space is designed
so that each I-state is straightforward and e�cient to compu te. If we are not careful, then Step
4 could fail because it might be impossible to determine whether particular I-states achieve the
goal. For example, Filter 6 simply keeps track of the currentstage number. In most settings, this
provides no relevant information about what has been achieved in the state space. Suppose that
Step 4 is successful, and consider what could happen in Step 5. A nice �lter could be designed
with an easily expressed goal inI ; however, there might exist no plans that can achieve it. It could
be the case that the problem is impossible to solve in the physical world under any circumstances,
but a more common problem is that su�cient progress cannot bemade in I . This could mean, for
example, that when actions are applied as in (79), the desired I-states are not even reachable.

Just to give the idea, we consider a couple of examples that utilize the �lters of Section 4.

Example 6 (Gap Navigation Trees)
Suppose that we would like to fully explore a continuous, planar environment. The map, together
with position and orientation, is replaced in the current setting by a tree.

We start with Filter 19 and additionally introduce a motion m odel. The idea is that the robot
can \chase" a gap, which means that an actionu can be given so that the robot moves in the
direction of the gap until a critical event occurs: The gap will either disappear or split [37, 51].

The �rst task is to make a plan that explores the whole environment. Recall the \unknown"
labels from Example 21. The analogous issue here is that eachleaf of the tree might contain a part
of the environment that has not yet been explored. This meansthat if we chase that gap, we do not
know whether it will disappear or split. We therefore augment Filter 19 so that it records a single
bit of information for each leaf node. If we are certain that the gap would disappear, then we label
the corresponding leaf node as \primitive". The search strategy is to chase any ancestor of a non-
primitive leaf node, causing a sequence of splits, and terminating with a critical event for the leaf
node. If it splits, then a descendant is chased. If it disappears, then a new non-primitive leaf node
is selected and the plan continues. It is shown in [51] that ina simply connected environment, this
plan always terminates with all leaves labeled as \primitive". At this point, the entire environment
has been explored.

Once the entire environment has been explored, the tree can also be used for optimally moving the
robot between locations. Since there are no coordinates in which to express the goals, the sensing
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model and �lter are slightly augmented so that an object can be placed inE and is detected when
it is visible from the robot. As the object disappears from view, it is simply recorded in the tree as
if it were a disappearing gap. To return to the object optimally in terms of the shortest possible
Euclidean distance traveled, the plan chases every ancestor of the object [51].

The process above was followed by selecting a speci�c I-space in which the �lter could be e�-
ciently computed, the task could be speci�ed, and a successful plan was found. �

Example 7 (Searching a Grid)
Recall Filter 21. Suppose now that we want to use the �lter to move the robot so that every tile
in E is guaranteed to be visited. This strategy could be used to �nd an lost \treasure", which has
been placed on an unknown tile.

Here is a simple plan that uses this �lter. For any \unknown" t ile that is adjacent to a \white"
tile, we attempt to move the robot onto it to determine how to l abel it. This process repeats until
no more \unknown" tiles are reachable, which implies that the environment has been completely
explored. Several algorithm details are missing here, but you should be able to implement it without
trouble.

The method works; however, a far more interesting �lter and plan are given in [5] by carefully
using the task to reduce �lter complexity. Their �lter maint ains I-states that use only logarithmic
memory in terms of the number of tiles, whereas recording theentire map would use linear memory.
They show that with very little space, not nearly enough to build a map, the environment can nev-
ertheless be systematically searched. For this case, the I-state keeps track of only one coordinate
(for example, in the north-south direction) and the orientation, expressed with two bits. An entire
plan is de�ned in [5] that is guaranteed to visit all white til es using only this information (the
method is also summarized in Section 12.3.1 of [37]). �

5.2 Related subjects

The topics covered in this paper touch a wide variety of disciplines and research �elds. The
sensor-centric perspective introduced here is quite unique; concepts such as sensor lattices and
combinatorial sensors have not been introduced before. To fully understand and apply the ideas to
problems of interest, it is helpful to understand how they relate to existing �elds. Therefore, some
connections and tips for further reading are presented here. This is not meant as a brief survey of
\everything"; instead, it is a list of pointers to related to pics as seen from this unusual perspective.
For further reading on physical sensors themselves, see [17, 52].

Mobile robotics is the main inspiration for the concepts presented here, particularly the problems
of mobile robot localization, simultaneous localization and mapping (SLAM), navigation, pursuit-
evasion, target tracking, and searching. Most approaches require learning as much as possible about
the model and the robot con�guration while proceeding. For example, nearly all SLAM approaches
construct complete, precise geometric maps of the environment and maintain the robot con�gu-
ration at all times [13, 49]. The main source of uncertainty handled is sensor noise/disturbances,
rather than the preimages of Section 3.2.2. Probabilistic modeling and sampling-based algorithms
are employed to compute the I-states of Bayesian �lters (Filter 10). There are recent e�orts to
develop reduced-complexity probabilistic I-spaces (called belief spaces) for the purpose of planning
speci�c tasks [25, 32, 44]. Just as the Bayesian �lter I-space of all posterior pdfs collapsed nicely
into the Kalman �lter I-space of Guassians, attempts are made to restrict or approximate the
space of pdfs. Within robotics, preimages of sensor mappings have been considered in earlier works
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[11, 10]. Furthermore, preimages of the state transition mapping has also been explored, which
have the interesting property of reducinguncertainty as preimages become larger [15, 16, 20, 35, 38],
which is contrary to sensor preimages. In addition to the probabilistic I-spaces mentioned above,
nondeterministic I-spaces have appeared in robotics work in [14, 23].

Robotics itself is closely connected to the emerging �eld ofcyber-physical systems(CPS), which
covers engineering systems that combine sensing, actuation (or control), and computation. The CPS
�eld is a culmination of research from three earlier disciplines: 1) hybrid systems, which involves
the design of control laws for state spaces that have both discrete and continuous components; 2)
sensor networks, which studies �ltering and networking issues for a distributed collection of sensors
that wirelessly transmit information; 3) real-time and embedded systems, which develops special-
purpose computer systems placed into the physical world, typically involving sensor measurements.
With regard to hybrid systems, this paper certainly has mixed observation spaces with continuous
state spaces; however, the discrete vs. continuous distinction is not as critical as external physical
state vs. internal information state. Sensor networks typically involve stationary nodes; however,
the extension to actuatedsensor networks is essentially a multiple mobile robot system. In addition
to �ltering, however, concerns such as overall power consumption and networking e�ciency are
typically emphasized. With regard to real-time and embedded systems, the paper may indicate
new types of �lters that could be developed across space and time. With regard to CPS in general,
there is currently great interest in developing mathematical foundations. Since sensors must extract
information from the physical world, it seems that sensor mappings, preimages, sensor lattices,
�lters, and information spaces must be part of such a foundation.

Also related to robotics are the �elds of computer vision, compressed sensing, sensor fusion, and
machine learning. Computer vision and image processing focus on cameras, which are the most
widely utilized sensing sources. Vision techniques may be helpful for the physical implementation of
many virtual sensor models discussed in Section 3.2. Identifying or counting people, for example,
is a common vision task. At the intersection of robotics and vision lies visual servoing, which
performs robot control in the observation space of a camera [27]. Compressed sensing is a �eld
that has recently exploded with interest [12] by showing that extremely low resolution devices
(for example, a single-pixel camera) provide su�cient information for reconstruction. This im plies
enormous preimages in the sensor mapping, which �ts nicely with the minimalist philosophy in this
paper. The approaches can be considered as a form of random-projection-based dimensionality
reduction, enabled by the Johnson-Lindenstrauss Lemma. Sensor fusion has for decades been
concerned with the integration of sensor data from multiple sources, mainly for the purpose of
inference [24]. This paper takes a preimage-based approachto this integration, which is most
evident in the general triangulation principle of Section 4.1. Finally, machine learning provides
powerful techniques for discovering statistical relationships between observed data. This can be
useful for developing probabilistic sensor mappings and motion models. At one extreme, it is
sometimes possible to achieve desired outputs of a system bygathering input-output observations
without directly de�ning an external physical state space. This article, on the other hand, assumes
that powerful behaviors of the physical world, such as continuity of motion, the impassibility of
obstacles, rigid body mechanics, and so on, should be exploited in the �lter design process.

The similarity of the names information spaces and information theory suggests a connection
between them, but this is more of a name coincidence. Information theory [9] is part of commu-
nication theory in which the model looks much like a telegraph: A medium or channel is used to
send messages from one end to another. The central question is: How much information can be
pushed through the channel within a given time? This naturally led to a precise characterization
of information itself in terms of bit complexity. The term information space comes from sequential
(or dynamic) game theory, in which players in a game might not have access to the state after
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decisions have been made. Imagine, for example, the classical game of Battleship. How can possi-
ble ship locations be encoded during play? In 1944, Von Neumann and Morgenstern refered to a
player's state of \incomplete information" which they shortened to state of information [?]. Kuhn
later referred to information sets [30], and the idea was extended further toinformation spaces in
stochastic control [3, 31] and dynamic game theory [2]. Rather than talking about a communication
channel, as in information theory, information spacesin this article mainly arise due to the mapping
between the physical world and the internal computation states. This mapping may or may not be
viewed as a communication channel, and comminucation issues are independent of the important
preimage structure due to the mapping itself.

Returning to Figure 1, the connections to the classical theory of computation and algorithms
should be more clear. Rather than imagining an automaton interacting with a tape, we connect
the automaton (or a whole Turing machine) to the physical world and develop algorithms that
account for the preimages due to the sensor mapping. In this way, the \state" has both external
and internal components. The external components are most often continuous. The external space
may be enormous, but it does not have to be encoded in the usualway for computation. The
�lters of Section 4 may be considered as algorithms in the traditional sense, but it important to
keep in mind the sensor mappings that produce the information. The overall complexity of the
system depends on this. The \input" for these algorithms is essentially the physical world. When
the physical world is taken into account, alternative notions of decidability and complexity should
follow. In some of our own work we have taken early steps in this direction by comparing sensors in
the sensor lattice in Section 3.3 and by developing a generalapproach to comparing robotic systems
based on their reachability characteristics in I-spaces [43].

Section 5.1 brie
y expressed now this article is related to planning and control theory. Much
of the state space concepts, models, and notation in this article follow from control theory. For
example,y = h(x) is the standard notation used to express anoutput mapping. In its classical form,
however,y is usually not discrete and computation states are not considered. For a more complete
introduction to planning that �ts with the notation of this a rticle, see [37]. Other helpful references
include [8, 34]. Planning and control are also closely related to veri�cation , which involves showing
that there does not exist a solution policy, rather than �ndi ng one. In both the cases of planning
and control, it has almost always been assumed that the external, physical state needs to be fully
recovered through powerful sensors and �lters so that statefeedback can essentially be applied.
This decouples the problem of \handling uncertainty" from t he driving the system to its goal. This
is in sharp contrast to the main theme in this article, which advocates leaving the external state
ambiguous while nevertheless assuring that a task is achieved.

5.3 Future Challenges: Help!

Numerous open and interesting research challenges remain,both in the design of particular systems
and in establishing general mathematical foundations. When applying the ideas of this article to
a particular system, it is important to consider the task carefully so that the virtual sensor model
provides su�cient information without including irreleva nt data. For example, it is advantageous
early on if it is recognized that a binary detection sensor issu�cient, rather than a detailed camera
image. Following in this way, it may be possible to design spatial and temporal �lters that have
substantially reduced complexity in terms of computation time and space. This often involves
�nding an I-space that contains enough information to solve the problem and for which updates
can be e�ciently computed when new data are available. For active tasks, this may consequently
simplify the planning problem, as described in Section 5.1.

In terms of general, basic research, this paper has set up terminology and models and then barely
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scratched the surface on interesting questions that can be formulated and solved. The formulation
itself, mainly covered in Section 3, should be extended in many ways. The families of virtual sen-
sors, such depth sensors, relational sensors, and gap sensors are far from complete. Both new sensor
mappings should be developed within the families and new families themselves will undoubtedly
emerge as di�erent settings and tasks are considered. The additional complications of Section 3.4
require the most development. What virtual sensor models and families are appropriate for non-
deterministic and probabilistic disturbances? Can interesting virtual sensor models and families
be constructed over state-time spaceZ ? This is undoubtedly important for distributed systems in
which time synchronization is di�cult or impossible. At the experimental end, there are oppor-
tunities to design physical implementations of the proposed virtual sensors. What virtual sensor
models allow low-cost, low-energy, and reliable measurements? Some virtual sensors may appear
ideal for solving tasks, but may be impractical. It is therefore crucial to study implementability.
Even in cases where implementations exist, there is room to �nd better alternatives for the same
virtual sensor model.

Moving on to Section 4, both spatial and temporal �lters need much more development. For the
spatial case, what other well-known triangulation methodscan be expressed as the intersection of
preimages? Can novel spatial triangulation methods be designed for a distributed set of sensors?
What is the best way to handle disturbances, either in the nondeterministic or probabilistic setting.
Robustness can be achieved by using more sensors, but how canthe result of their combination
be expressed? Using the state-time spaceZ , what triangulation methods can be developed as the
intersection of preimages? Is it possible to cleanly express Global Position System (GPS) techniques
as the intersection of 3D preimages inZ ?

For temporal �ltering, what is the key to collapsing the I-sp ace down to simpler forms? The
most general spacesI prob (probabilistic) and I ndet (nondeterministic) are often too di�cult to work
with directly. A wise choice of virtual sensor model is one important step. The next critical
step is the choice of motion model. In the classical case of the Kalman �lter, the key was the
combination of a linear motion model, linear sensing model,and Gaussian noise (which has closure
under linearity). The combinatorial �lters of Section 4.3 w ere enabled by the simple assumption
that state trajectories are continuous in the con�guration space. A more detailed and precise
motion model might intuitively seem advantageous, but it could unnecessarily complicate the �lter.
The general problem of computing the e�ect of an action is equivalent to calculating reachable sets
of a control system. For nonlinear systems, the best known only algorithms are computationally
costly and produce only approximate reachable sets. Therefore, enormous advantages come in the
�lter design by simplifying the motion model. Many more e�ci ent combinatorial �lters based on
continuity of motion should be possible, working in a mannersimilar to Filters 12 to 18. There is
also the open problem of �nding other motion properties (instead of simple continuity) that might
lead to simpler �lters. Another direction is carefully stud ying the task to dramatically reduce
complexity, as in Filter 15, the two-bit �lter. Finally, can distributed �ltering methods be designed
that involve spatial triangulation combined with temporal updates? Perhaps multiple, distributed
I-states are obtained.

Another interesting direction for future research is the transition from �ltering to planning.
Historically, planning has started with complete, idealized models and then uncertainty concerns
were gradually inserted. By starting with sensor-centric considerations as in this paper, it should
be possible to design more e�ective planning algorithms at the outset, rather than incorporating
sensing uncertainty as an afterthought. Earlier examples of this approach in the literature include
bug algorithms [28, 29, 36, 40, 39, 48] and sensorless manipulation [16, 21, 41]. Given a planning
task and a �lter, what further reduction of the I-space is possible? Can a successful plan be found
that requires only a coarse partition of the �lter I-space? This amounts to preimages inI from a
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plan � : I ! U, considered as if it were a sensor mapping. Paralleling the development of motion
planning methods (see Chapters 5 and 6 of [37]), it should also be possible to develop bothcombi-
natorial and sampling-basedplanning methods for I-spaces. There are some examples for particular
problems. Recent sampling-based methods explore probabilistic I-spaces in [25, 32, 44]. Combina-
torial approaches to pursuit-evasion have led to exact nondeterministic I-space exploration [18, 23].
However, these are not as general as the methods that work well for motion planning. Can general
solutions be developed for I-spaces? Would combinatorial algorithms provide exact solutions for a
broad class of problems? Similarly, would sampling-based algorithms provide practical solutions to
a wide array of problems?

Finally, the notion of a sensor lattice has not been considered before. For this topic, many
interesting challenges remain. Many more virtual sensor models can be arranged in the lattice,
leading to related chains, trees, or directed acyclic graphs of sensors. The computational tradeo�s
as one virtual sensor is replaced with another in a �lter are not well understood. The lattice
merely indicates that one sensorcan be replaced with another, but may require unreasonable
computation. If a sensor is replaced in a system, what is the complexity change for the overall
system? The complexity of algorithms depends on the input, and it is important to develop
algorithmic complexity notions that take into account sensor mappings and their tradeo�s. One
�nal open question is whether sensor lattices or something with comparable power can be developed
for sensing models that have nondeterministic or probabilistic uncertainty.
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Figure 43: The physical world may contain vector �elds on which to base sensor measurements.

A Appendix

A.1 Models Based on Fields

A.1.1 Field De�nitions

A �eld is a function f : Rn ! Rm , in which n is the dimension of the environment (n = 2 or n = 3)
and m could be any �nite dimension. Usually, m � n.

As a �rst example, a map in Section 3.1.1 could equivalently be expressed as a functionf : R2 !
f 0; 1g in which f (qx ; qy) = 1 if and only if ( qy ; qy) 2 E . This causes a clear division ofR2 into an
obstacle region and a collision-free region; however, it issometimes useful to assign intermediate
values. Let the map be de�ned asf : R2 ! [0; 1 ) in which f (qx ; qy) yields an altitude. For an
outdoor setting, f could describe a terrain map. In this case,E is a set of functions in which each
f 2 E satis�es some properties, such as a bound on the maximum slope. If there are no other
obstacles, then the state space would beX = SE(2) � E .

Perhaps the most important example is the electromagnetic �eld generated by a radio transmit-
ter. In a 2D environment, this is captured by a vector �eld f : R2 ! R2; see Figure 43. Thus, a
2D vector is produced at every point in R2. A simpli�ed version could be de�ned as an intensity
�eld , f : R2 ! [0; 1 ), in which the scalar values represent the signal intensity(the magnitudes of
the original vectors).

Fields can also be de�ned with the consideration of other obstacles. For example, waves may
propagate through a world that is constrained to a polygonalregion.

A.1.2 Field Sensors

suppose that the world is two-dimensional and a �eld f : R2 ! R2 is known. Furthermore, the
particular E is known and is simply E = R2. Extensions that remove obstacles fromR2 are
straightforward. The state space here is simplyX = SE(2), which is parametrized asx = ( p; � ).

Model 43 (Direct Field Sensor)
This sensor observes the �eld vector. The sensor mapping is

h(x) = h(p; � ) = ( f 1(p); f 2(p)) ; (81)

which yields a two-dimensional observation vector. �

71



Model 44 (Direct Intensity Sensor)
This sensor provides the magnitude of the �eld vector. For radio signals, this could be achieved
using a non-directional signal meter. The sensor mapping is

h(x) = h(p; � ) = kf (p)k; (82)

which yields a nonnegative realintensity value. �

Model 45 (Intensity Alarm)
In the spirit of previous sensor models in the section, a binary sensor can be made that indicates
when the intensity is above a certain threshold� � 0. The sensor mapping is

h(p; � ) =
�

1 if kf (p)k � �
0 otherwise.

(83)

�

Model 46 (Transformed Intensity)
In most settings, it is unreasonable to expect to recover theprecise magnitude. We might never-
theless have a sensor that returns higher values as the intensity increases. Letg : [0; 1 ) ! [0; 1 )
be any strictly monotonically increasing smooth function. The sensor mapping is

h(x) = g(kf (x)k): (84)

If the observations h(x) are linearly proportional to the �eld intensity, then g is a linear function.
In general, g may be nonlinear.

To make the model more interesting,g might not be given. In this case, the set of possibleg
functions becomes a component of the state space andg becomes part of the state (in other words,
x = ( p; �; g )). Such a sensor can still provide useful information. For example, if y = h(x) is
increasing over time, then we might know that we are closer tothe radio transmitter, even though
g is unknown. �

Model 47 (Field Vector Observation)
This sensor directly measures the entire �eld vectorf (p); however, the vector is rotated based on
the orientation � . For example, if the �eld vector \points" in the direction 3 �= 4 and � = �= 4, then
the sensor observes the vector as pointing at 3�= 4 � � = �= 2. Let R(� ) be a 2� 2 rotation matrix
that induces a rotation by � . The rotated vector observation is

hfv (x) = R(� � )f (p): (85)

If f is given and� is unknown, then it can be determined usinghfv (x). Likewise, if � is known and
f is unknown, then f (p) can be determined fromf (p) = R(� )hfv (x). �

Now consider constructing a magnetic compass. If the �eld isknown, as in the case of the earth's
magnetic �eld, then we can look at the direction of the vector observed using Model 47 and infer
the direction � . The direction with respect to an arbitrary given �eld is giv en in the next model.
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Model 48 (Field Direction Observation)
The direction obtained by the observation vector (86). Let y0 = hfv (x). The sensor mapping is

y = hfdo (x) = atan2( y0
2; y0

1); (86)

in which y 2 [0; 2� ) and atan2 is the two-argument arctangent function, common in many pro-
gramming languages. �

Model 49 (Ideal Magnetic Compass)
Suppose it is known that the �eld vectors are all directed to the north. This means f (p) = (0 ; 1)
for all p 2 R2. This is, of course, not true of the earth's magnetic �eld, but we often pretend
it is correct. To obtain a compassy = h(x) = hfdo (x) � �= 2, which adjusts for the angular dif-
ference between� = 0 and North, � = �= 2. Under these idealized conditions, we should obtain
y = h(p; � ) = � . �

Model 50 (Magic Compass)
Without even referring to �elds, a kind of \magic" compass can be de�ned as

y = h(x) = h(p; � ) = �: (87)

This is a projection sensor, as de�ned in Model 5. It somehow (magically) obtains the orientation
without using �elds. �

We can use Model 49 to simulate Model 50 if the perfect �eld is given. Using perfect calibration,
any given �eld can be used to simulate this compass by simply transforming the angles produced
by Model 48.
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