A GAME-THEORETIC FRAMEWORK FOR ROBOT MOTION PLANNING

BY
STEVEN MICHAEL LAVALLE

B.S., University of Illinois at Urbana-Champaign, 1990
M.S., University of Illinois at Urbana-Champaign, 1993

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois

A GAME-THEORETIC FRAMEWORK FOR ROBOT MOTION PLANNING

Steven Michael LaValle, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1995
Seth A. Hutchinson, Advisor

The primary contribution of this dissertation is the presentation of a dynamic game-
theoretic framework that is used as an analytical tool and unifying perspective for a wide
class of problems in robot motion planning. The framework provides a precise math-
ematical characterization that can incorporate any of the essential features of decision
theory, stochastic optimal control, and traditional multiplayer games. The determina-
tion of strategies that optimize some precise performance functionals is central to these
subjects, and is of fundamental value for many types of motion planning problems.

The basic motion planning problem is to compute a collision-free trajectory for the
robot, given perfect sensing, an exact representation of the environment, and completely
predictable execution. The best-known algorithms have exponential complexity, and
most extensions to the basic problem are provably intractable. The techniques in this
dissertation characterize several extensions to the basic motion planning problem, and
lead to computational techniques that provide practical, approximate solutions. A gen-
eral perspective on motion planning is also provided by relating the similarities between
various extensions to the basic problem within a common mathematical framework.

Modeling, analysis, algorithms, and computed examples are presented for each of
three problems: (1) motion planning under uncertainty in sensing and control; (2) mo-
tion planning under environment uncertainties; and (3) multiple-robot motion planning.
Traditional approaches to the first problem are often based on a methodology known as

preimage planning, which involves worst-case analysis. In this context, a general method

for determining feedback strategies is developed by blending ideas from stochastic opti-
mal control and dynamic game theory with traditional preimage planning concepts. This
generalizes classical preimages to performance preimages and preimage plans to motion
strategies with information feedback. For the second problem, robot strategies are ana-
lyzed and determined for situations in which the environment of the robot is changing,
but not completely predictable. Several new applications are identified for this context.
The changing environment is treated in a flexible manner by combining traditional config-
uration space concepts with stochastic optimal control concepts. For the third problem,
dynamic game-theoretic and multiobjective optimization concepts are applied to motion
planning for multiple robots. This allows the synthesis of motion plans that simulta-
neously optimize an independent performance criterion for each robot. Several versions
of the formulation are considered: fixed-path coordination, coordination on independent

configuration-space roadmaps, and centralized planning.

A GAME-THEORETIC FRAMEWORK FOR ROBOT MOTION PLANNING

Steven Michael LaValle, Ph.D.
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1995
Seth A. Hutchinson, Advisor

The primary contribution of this dissertation is the presentation of a dynamic game-
theoretic framework that is used as an analytical tool and unifying perspective for a wide
class of problems in robot motion planning. The framework provides a precise math-
ematical characterization that can incorporate any of the essential features of decision
theory, stochastic optimal control, and traditional multiplayer games. The determina-
tion of strategies that optimize some precise performance functionals is central to these
subjects, and is of fundamental value for many types of motion planning problems.

The basic motion planning problem is to compute a collision-free trajectory for the
robot, given perfect sensing, an exact representation of the environment, and completely
predictable execution. The best-known algorithms have exponential complexity, and
most extensions to the basic problem are provably intractable. The techniques in this
dissertation characterize several extensions to the basic motion planning problem, and
lead to computational techniques that provide practical, approximate solutions. A gen-
eral perspective on motion planning is also provided by relating the similarities between
various extensions to the basic problem within a common mathematical framework.

Modeling, analysis, algorithms, and computed examples are presented for each of
three problems: (1) motion planning under uncertainty in sensing and control; (2) mo-
tion planning under environment uncertainties; and (3) multiple-robot motion planning.
Traditional approaches to the first problem are often based on a methodology known as

preimage planning, which involves worst-case analysis. In this context, a general method

iii

for determining feedback strategies is developed by blending ideas from stochastic opti-
mal control and dynamic game theory with traditional preimage planning concepts. This
generalizes classical preimages to performance preimages and preimage plans to motion
strategies with information feedback. For the second problem, robot strategies are ana-
lyzed and determined for situations in which the environment of the robot is changing,
but not completely predictable. Several new applications are identified for this context.
The changing environment is treated in a flexible manner by combining traditional config-
uration space concepts with stochastic optimal control concepts. For the third problem,
dynamic game-theoretic and multiobjective optimization concepts are applied to motion
planning for multiple robots. This allows the synthesis of motion plans that simulta-
neously optimize an independent performance criterion for each robot. Several versions
of the formulation are considered: fixed-path coordination, coordination on independent

configuration-space roadmaps, and centralized planning.

iv

To my dad, Richard S. LaValle

ACKNOWLEDGMENTS

I would first like to thank my advisor, Professor Seth Hutchinson, for his encourage-
ment and advice over the years and for providing me with the opportunities to learn and
expand my interests. The quality of this work was greatly improved through his many
helpful comments and suggestions.

I would also like to thank Professor Rajeev Sharma for his collaborative contributions
to the work in Chapter 3, for being a co-supervisor of my Beckman Institute research
assistantship, and for being a good friend. I am very grateful for the helpful insights and
comments made by the remaining dissertation committee members: Professors Narendra
Ahuja, Tamer Bagar, Jean Ponce and Mark Spong. I also thank Dr. Ricardo Uribe for
being a good friend and always challenging me to think in new directions.

I have been fortunate to have had the opportunity to meet with many researchers,
which has led to many interesting research discussions. I would especially like to thank
Randy Brost, Garry Didinsky, Mike Erdmann, Pierre Ferbach, Piotr Gmytrasiewicz, and
Dan Koditschek, for their helpful comments.

Peggy Currid made many helpful comments and suggestions regarding the manuscript.

I am grateful for the many friends at the University of Illinois who have made my
graduate-school days quite enjoyable. I especially thank Brian Calvert, Becky Castano,
Andrés Castafio, Scott Finkle, Keith Foszcz, Armando Fox, Jim Freeman, Fred Geiger,

Gary Kalmanovich, Kevin Lee, Ken Moroney, Kevin Nickels, Sandeep Pandya, Lorraine

vi

Sandford, Ilan Shimshoni, Narayan Srinivasa, and Steve Sullivan. I also thank Sharon
Collins for her constant help and enjoyable sense of humor over the years.

I am grateful for having several excellent teachers at John F. Kennedy H.S. in Manch-
ester, Missouri, who provided inspiration at a pivotal point in my life. I especially thank
Nancy Wesselman for providing needed encouragement and convincing me of the value
of education, and I thank Patricia Short for giving me a chance when almost no one else
would. I also thank Mary John, Tom Smith, and Joseph Walsh.

I thank my family for being patient and understanding during my time in graduate
school, especially my dad, Richard, my sister, Renee Martise, and my grandma, Anna
Pasternak. I also thank my family in Poland and Ukraine for their boundless hospitality
during my visits. I thank Bill Hurst for being my best friend for many years. I am very
grateful for all of the love and support offered by my mom, Rose, who passed away while
I was in graduate school.

Finally, I thank Jean-Claude Latombe for inspiring me to pursue motion planning
when he visited Illinois and for offering me the chance to work with him at Stanford.

Portions of this work were sponsored by the National Science Foundation under grant

#IRI1-9110270, a Beckman Institute research assistantship, and a Mavis Fellowship.

vii

TABLE OF CONTENTS

CHAPTER Page
1 INTRODUCTION e e s 1
1.1 The Role of this Dissertation 1
1.2 An Overview of Robot Motion Planning 3
1.2.1 The basic problem o Lo 3

1.2.2 Planning under uncertainties 8

1.2.3 Additional extensions L. 11

1.3 Basic Motion Planning as an Optimal Control Problem 13
1.4 Extending the Basic Motion Planning Problem with Game Theory 18
1.4.1 An overview of game theory 18

1.4.2 A synthesis of motion planning and game theory concepts 21

1.4.3 Benefits of the proposed framework 23

1.5 Dissertation Organization 26

2 MOTION PLANNING UNDER UNCERTAINTY IN SENSING AND

CONTROL e 29
2.1 Imtroduction L 29
2.2 Background and Motivation 32
2.2.1 Priorresearch o 32
2.2.2 Motivation L 38
2.3 General Definitions and Concepts 42
2.3.1 States, stages, and actions 42
2.3.2 Imperfect sensing and information spaces 45
2.3.3 Representations of the information state 47
2.3.4 Strategy conceptso 49
2.3.5 Specific model details L. 55
2.4 Forward Projections Lo 58
2.4.1 Nondeterministic forward projections 58
2.4.2 Probabilistic forward projections 62
2.4.3 Computed examples 65
2.5 Performance Preimages Lo 71
2.5.1 Nondeterministic performance preimages 72

viii

2.5.2 Probabilistic performance preimages 74

2.5.3 Computed exampleso 76
2.6 Designing Optimal Strategies 79
2.6.1 Defining optimality oL 80
2.6.2 The principle of optimality 83
2.6.3 Approximating the statespace 87
2.6.4 Approximating the information space 89
2.6.5 Computational performance 92
2.6.6 Computed examples, 94
2.7 Discussion 101
2.8 Conclusion L 109
MOTION PLANNING UNDER ENVIRONMENT
UNCERTAINTIES e 110
3.1 Imtroduction 110
3.2 Background and Motivationo 111
3.3 Mathematical Modeling 000 117
3.3.1 The environment process 117
3.3.2 Defining the robot behavior 120
3.3.3 Defining loss with dynamic regions 121
3.4 Determining Optimal Strategies 125
3.4.1 Applying the principle of optimality 125
3.4.2 Computationalissues 126
3.5 Computed Examples o Lo 128
3.5.1 Changing configuration space 128
3.5.2 Hazardous regions and shelters 138
3.5.3 Servicing problems Lo 141
3.6 An Extension to a Part-Transferring Problem 145
3.6.1 Mathematical modelingo 147
3.6.2 Computed examples 152
3.7 Additional Models and Applications 166
3.7.1 Imperfect environment information: incorporating uncertainty in
environment sensing L Lo o oo 167
3.7.2 Nonstationary motion planning problems 171
3.7.3 Nondeterministic uncertainty 173
3.8 Conclusions e 174
MOTION PLANNING FOR MULTIPLE ROBOTS 176
4.1 Introduction oL 176
4.2 Background and Motivation o000 181
4.2.1 Basic definitions.o oo oo 182
4.2.2 A proposed solution concept 186
4.2.3 Relationships to established forms of optimality 188

ix

4.3 Motion Planning Along Fixed Paths 193

4.3.1 Concepts and definitions 194
4.3.2 Algorithm presentation 197
4.3.3 Computed examples 201
4.4 Motion Planning Along Independent Roadmaps 203
4.4.1 Concepts and definitions 203
4.4.2 Algorithm presentation 205
4.4.3 Computed examples 209
4.5 Unconstrained Motion Planning 211
4.5.1 Concepts and definitions 213
4.5.2 Algorithm presentation, 216
4.5.3 Computed exampleso 216
4.6 Discussion and Conclusions 0L 217
TOWARD BROADER MOTION PLANNING 223
5.1 Imtroductiono 223
5.2 Principle Modeling Components 224
5.3 Unifying the Concepts from Chapters 2-4 228
5.3.1 Defining the game components 229
5.3.2 Generalizing planning concepts 231
5.3.3 Determining solutions 235
5.4 Additional Problem Formulations 236
5.5 Utilizing Formulations 0oL 244
CONCLUSIONS s e s e s 248
6.1 Summary of Contributions 248
6.2 Perspective 252
APPENDIX A PROOF OF PROPOSITION 3 253
REFERENCES 257
VITA . 271

Figure

1.1

1.2

21
2.2

2.3
24
2.5
2.6
2.7

2.8

2.9
2.10

2.11
2.12

LIST OF FIGURES

A basic, two-dimensional motion planning example is shown: (a) a planar
robot translates in the plane and must avoid obstacles; (b) the free con-
figuration space, Cyre is indicated in white; (c) a path in Cj.. that can
bring the robot to a goal configuration.
Four sources of uncertainty in the motion planning problem.

Four types of uncertainty that are considered in this chapter.
(a) A classic 2D “peg-in-hole” insertion task without rotation; (b) such a
task can be represented in configuration space with bounded uncertainty
in commanded velocity and sensed configuration (ey denotes the angular
uncertainty bound; €, denotes the positional uncertainty bound, and G
denotes the goal region); (c) the classical preimage.
Motions under the generalized damping model with friction. The dashed
lines indicate the friction cone. oo
A dynamic game against nature with: (a) perfect information and (b)
imperfect information. L L.
The termination condition forces the robot to halt at a given state. The
halting stage is a priori uncertain for a given initial state and strategy.

A depiction of a two-stage forward projection under nondeterministic con-
trol uncertainty.
A depiction of a two-stage forward projection under probabilistic control
uncertainty. L L L L Lo
Part (a) depicts a simple peg-in-hole example, and part (b) depicts a more
complicated example. The obstacles are indicated by gray regions, and
the black region represents the goal.
The nondeterministic forward projection is represented by the lightly-
shaded regions.o
The nondeterministic forward projection is represented by the lightly-
shaded regions.o
The forward projection at several stages, with probabilistic uncertainty. .
The forward projection at several stages, with probabilistic uncertainty. .

xi

Page

68
69
70

2.13

2.14

2.15
2.16

2.17

2.18

2.19

2.20

2.21

2.22
2.23

2.24

2.25

2.26

3.1

3.2
3.3
3.4
3.5

3.6

Sample paths of the random process that results from the given strategy
(assuming probabilistic uncertainty). Part (a) corresponds to the peg-in-

hole problem, and part (b) corresponds to the more complicated example.

Several computed performance preimages for the classic peg-in-hole prob-
lem: (a) a classical preimage; (b) a single-stage probabilistic preimage for
a uniform state transition pdf; (c) a single-stage probabilistic preimage for
a truncated Gaussian state transition pdf; (d) a multi-stage probabilistic
preimage for a uniform state transition pdf.
A plot of L under probabilistic uncertainty.
In these examples, the obstacles displace the curves. Parts (a) and (b)
show example problems, and parts (c) and (d) show corresponding com-
puted performance preimages. In these examples, the obstacles displace
thecurves. L
Interpolation is performed on the shaded region to obtain a more accurate
valuefor L (..o o
Optimal strategies and performance preimages for the peg-in-hole prob-
lem under probabilistic control uncertainty (shown in (a) and (b)) and
nondeterministic control uncertainty (shown in (¢) and (d)).
A plot of L* with probabilistic uncertainty and perfect information.

The forward projection for the optimal strategy under perfect state infor-
mation. L L e
Several examples that were computed under probablistic uncertainty and
perfect state information. oL L.
A plot of L* under probabilistic uncertainty.
The forward projection for the optimal strategy under imperfect state
information.
Examples that were computed under probablistic uncertainty and imper-
fect state information. L.
Examples that were computed under nondeterministic uncertainty and
imperfect state information.o o000
A plot of L* under nondeterministic uncertainty and imperfect state in-
formation.

A changing environment in which the workspace changes over time, by: (a)
the opening and closing of “doors,” and (b) appearance and disappearance
of “transient” obstacles.
A problem that involves safe and hazardous regions in addition to obsta-
cles. . . e e
A problem of processing random service requests in the workspace.

The environment modes can form a partitionof X.
The environment process can be considered as a finite-state Markov pro-
cess with state transition probabilities.
A contact dynamic region.

xii

71

104

3.7 An enclosure dynamic region.
3.8 Dynamic regions are lifted into the state space.
3.9 (a) A door problem; (b) 20 sample paths; (c) v* at e = 0; (d) v* at e = 1;
(e) isoperformance curves at e = 0; (f) isoperformance curves at e = 1.
3.10 (a) A problem that has 18 doors; (b) 20 sample paths.
3.11 The isoperformance curves for v*. oL
3.12 Cost-to-go functions for: (a) e=0and (b)e=7.
3.13 Four sample paths for a changing configuration space problem with two
doors. . ..
3.14 Four sample paths for a transient obstacle problem.
3.15 (a) A hazardous region and shelter problem; (b) 20 sample paths; (c)
isoperformance curves at e = 0; (d) isoperformance curves at e = 1.
3.16 Four sample paths for a hazardous region and shelter problem.
3.17 (a) A servicing problem; (b) 20 sample paths; (c) v* at e = 0; (d) v* at
e = 1; (e) isoperformance curves at e = 0; (f) isoperformance curves at
e=1. . e
3.18 Four sample paths for a servicing problem with a nonholonomic robot.
3.19 An example of the variation of the cost of the fine motion planning de-
pending on the contact position with the destination region. Contact at
A will give rise to a smaller expected time for mating compared to B. . .
3.20 A translating robot problem in which P=2, S=2 and D=2.
3.21 (a) Level-set contours of the cost-to-go function for e = (1,1,1,W); (b)
the contours for e = (1,1,1,C); (c) the optimal actions as a vector field
for e = (1,1,1,W); (d) the optimal actions for e = (1,1,1,C).
3.22 A simulation result under the implementation of v*.
3.23 A translating robot problem in which P =6, S = 4, and D = 3, with one
of the destinations having two components. The first destination has two
connected components. L
3.24 A simulation result under the implementation of v*.
3.25 A rotating rigid robot problem in which P=1, S =2, and D=2.
3.26 A simulation result under the implementation of v*.
3.27 A translating robot problem in which P =2, S =1, and D = 3, and the
destination of a request is allowed to change stochastically.
3.28 A simulation result under the implementation of v*.
3.29 A three DOF manipulator with a constrained, rotating end-effector is in
a workspace in which P=2, S=2,and D=2.
3.30 A simulation result under the implementation of v*.
3.31 A three DOF manipulator is in a workspace in which P =1, § = 2, and
D = 4. The first source has two disconnected components.
3.32 A simulation result under the implementation of v*.
3.33 A motion planning problem that involves a doorway and a moving obstacle
that has a known trajectory.

xiil

162

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.10
411

4.12

4.13

4.14
4.15

4.16
4.17
4.18

4.19

5.1
5.2
5.3
5.4

Al

An illustrative example of potential difficulty in defining a combined ob-
Jective. . . . Lo L e e
Differing degrees of centralization.
The set X/, and its cylindrical structure on X.
We are interested in obtaining strategies that are minimal with respect to
the partial ordering that exists on I'/~.
Part (a) shows an illustrative example of the coordination space represen-
tation. Parts (b) and (c) depict two minimal strategies.
For a stationary problem, this algorithm finds all of the minimal quotient
strategies in 8" x 82 x -« x SN L.
Part (a) shows a three-robot fixed-path problem, and part (b) shows the
corresponding coordination space.
An example that yields four minimal quotient strategies.
A two-robot example in which one of the robots can make a decision about
which path to continue along. The white circles indicate current locations,
and the black circles indicate potential next locations.
The corresponding path branch in the representation of R.
Suppose that I} (2}, ut) = At for all k € {1,... ,K} and 1 € {1,... ,N}.
This algorithm finds all of the minimal quotient strategies in R! x R? x
X RN
There are two symmetric minimal quotient strategies. The black and white
discs represent A' and A?, respectively. The black and white triangles
indicate the goal configurations.00 .
Parts (a), (b), and (c) show the independent roadmaps for A', A2, and
A3, respectively. Part (d) shows the initial positions on the roadmaps.

A representative of one of four minimal quotient strategies.
Two of five minimal quotient strategies for a two-robot problem with ro-
tation. L e
An example that has three minimal quotient strategies.
One solution out of 16 is shown for three rotating robots.
One representative minimal quotient strategy is given for two robots, al-
lowed to translate in ®2. L
Two alternative solutions are presented for the example problem from
Section 4.1. e e e

The effect of nature on the game.
Motion planning with vision feedback.
A two-robot terrain exploration problem.o
A parallel gripper that squeezes parts for alignment.

See the proof of Proposition 3.

xiv

CHAPTER 1

INTRODUCTION

1.1 The Role of this Dissertation

We are confronted with a number of difficult issues as we strive to design robots that
operate with a great deal of autonomy in complex or cluttered environments. Robots are
requested to accomplish tasks such as assembling parts, exploring terrain, handling haz-
ardous materials, delivering objects, and performing routine maintenance or surveillance.
Advancement in such areas as robot control, sensor modeling and integration, grasping,
manipulation, and motion planning continues to increase our understanding and ability
to develop sophisticated robot systems that accomplish more difficult tasks.

The primary focus of this dissertation is on motion planning, which can be considered
a topic of fundamental robotics research. Motion planning represents a task that is
required to accomplish many larger tasks, in a variety of robotic systems. Such systems
include mobile robots that navigate in potentially hostile environments, or multiple-
link manipulators that must avoid collisions in a workcell. At a general level, motion
planning can be considered as a way to simplify the interface between a human operator
and a robotic system, by allowing the robot to automatically determine detailed motion

commands that accomplish a particular task. This relieves the user from the burden of

specifying tediously detailed instructions for the robot. In its basic formulation, the goal
of motion planning is to compute a plan that, when executed, will bring a robot from
an initial configuration (or location) to a goal configuration, while avoiding obstacles in
the robot’s environment. Extensions of the basic problem incorporate such additional
concerns as kinematic or dynamic constraints, compliant motions, imperfect sensing and
execution, uncertain information about the environment, or the coordination of multiple
robots.

The central theme in this dissertation is that dynamic game theory represents a
general mathematical structure and unifying perspective on motion planning problems.
Although game theory is sometimes viewed informally as a formulation of classical board
games, game theory is used in this dissertation to refer to a more general mathematical
formulation that can incorporate any of the essential features of statistical decision theory,
Markov processes, optimal control theory, and interactions between multiple decision
makers. In general, game theory should not be viewed as a direct solution method nor
algorithm, but rather as a precise mathematical formulation of optimal decision-making
problems. In the same sense that configuration space concepts have been useful for the
presentation and comparison of different motion planning problems (see [109]), game
theory represents a powerful set of concepts and tools that can be exploited in motion
planning research.

Additionally, this mathematical formulation is useful for the development of compu-
tational methods that yield useful motion plans. Approaches to several extensions of the
basic motion planning problem will be presented. These extensions might traditionally
require quite different methodologies, but are attacked in this dissertation with a game-
theoretic approach that yields novel results on the individual problems and a unifying

view that relates the similarities between the problems.

The remainder of this chapter provides the general background and motivation for
this dissertation. Section 1.2 presents a brief overview of motion planning research and
related issues. Before describing a game-theoretic view of motion planning, Section 1.3
describes how basic motion planning can be characterized as an optimal control problem.
By generalizing this optimal control problem to a game formulation, many extensions
of the basic motion planning problem can be characterized. Such extensions include
motion planning under various forms of uncertainty and planning for multiple robots.
These problems are addressed in this dissertation from a game-theoretic perspective; the
general motivation for formulating extended motion planning problems in this manner is
the subject of Section 1.4. Section 1.5 indicates the topical organization of the remainder

of this dissertation.

1.2 An Overview of Robot Motion Planning

Extensive surveys of motion planning research can be found in [91], [109]; in this
section, we present only a brief overview of motion planning. Section 1.2.1 describes the
basic motion planning problem. Section 1.2.2 provides an overview of motion planning
under various forms of uncertainty. Section 1.2.3 discusses additional extensions of the

basic motion planning problem.

1.2.1 The basic problem

Our description of the basic motion planning problem is a very brief summary of the
presentation in [109]. This problem is also referred to as as gross-motion planning [91]
or collision-free planning. A robot, A, is considered as a rigid object that is capable
of moving in a physical workspace, W, which is usually defined as R" with n = 2 or

n = 3. Mathematically, A is treated as a closed set that is allowed to undergo rigid body

transformations (positive isometries) in the workspace. Coordinate frames are attached
to both the robot and the workspace, which are related through the specification of a
vector quantity q that in general indicates the position and orientation of the robot frame
with respect to the workspace frame. The quantity q is termed a configuration of A. The
set of possible configurations is termed the configuration space, and is denoted by C, which
can be represented as the subset R" x SO(n) of order n, in which SO(n) represents the
Special Orthogonal Group. The configuration space in general is a manifold that admits
a local parameterization of dimension six when n = 3, and dimension three when n = 2.

Alternatively, a nonrigid robot could be defined in the workspace. For instance, this
is useful for modeling a multiple-link manipulator that has revolute or prismatic joints.
The position of each joint can be defined in its own local coordinate frame, and the
simultaneous specification of each joint angle will determine the configuration of the
robot. Once the configuration space is defined, the motion planning problem can be
analyzed in the same manner as for a rigid robot.

Let a collection of closed sets {Bi, ... ,B,} be called a set of obstacles, for which each
B; € W. In the workspace, the robot is not allowed to “collide” with obstacles. Let
the closed subset B; U --- U B, of the workspace be called the obstacle region. The open
subset of C that corresponds to configurations in which the transformed robot does not
intersect the obstacle region is referred to as the free configuration space, and is denoted

by Cree. This can be stated formally as
Cf'ree = {q € C|A(q) NB= Q}a (11)

in which A(q) represents the transformed robot, and B is the obstacle region B U- - -UB,.
The set C \ Cfree can be considered as the obstacle region in configuration space.
Let qinit € C denote an initial configuration, and qgoe denote a goal configuration.

The basic motion planning problem can be formulated as follows:

Find a continuous path 7 : [0,1] — Cfree, such that 7(0) = Qi and 7(1) = Qgoal-

If the robot is permitted to “touch” the obstacle region, Cy,. is replaced by the valid
configuration space, Cyaiq, which is the closure of Cy. (i-e., it includes the boundary
of Cfree). This enables the possibility of guarded motion and compliance, which, for
example, allows the robot to execute a motion along the tangent of an obstacle boundary
[130], [195].

Figure 1.1 illustrates a simple motion planning example. Figure 1.1(a) shows a planar,
rectangular robot that is only capable of translating in the plane. Suppose that the task
is to bring the robot from its configuration shown in Figure 1.1(a) to the upper right
portion of the workspace. Notice that there are two “openings” that lead into the upper
right portion of the workspace. Figure 1.1(b) shows the configuration space in which the
obstacle region is shaded. The point in the robot represents the origin of the robot’s
local coordinate system; this system is translated to produce .A(q), in which q in this
case represents a two-dimensional translation vector. Because the robot is not capable of
rotation, there is only one “opening” through which the robot is allowed to travel while
avoiding collision. Figure 1.1(c) shows a path in the configuration space that allows the
robot to reach its goal configuration.

There are roughly three general approaches to the basic motion planning problem
[109]: cell decomposition methods, roadmap methods, and artificial potential field meth-
ods. Cell decomposition methods partition the configuration space into regions within
which a collision-free path is easy to determine, and this path can be easily connected
to collision-free paths of adjacent regions. A solution to the motion planning problem is
determined by searching for a sequence of collision-free cells that initially includes gy,
and finally includes qgoq. Approaches to configuration space partitioning can be catego-

rized as ezact cell decomposition, in which cells are typically constructed by determining

/

(a) (b)

Figure 1.1 A basic, two-dimensional motion planning example is shown: (a) a pla-
nar robot translates in the plane and must avoid obstacles; (b) the free configuration
space, Cpre is indicated in white; (c) a path in Cf,. that can bring the robot to a goal
configuration.

critical sets in an algebraic description of the configuration space (e.g., [4], [39], [166]),
and approximate cell decomposition, in which each cell is assumed to be of the same basic
shape, and the configuration space is usually decomposed in a hierarchical manner (e.g.,
(8], [109], [122]).

In a roadmap approach, a one-dimensional network of paths is constructed that pre-
serves the connectivity of the free configuration space. A solution path is constructed
by connecting Qni and Qgea to the roadmap and performing a graph search on the
extended roadmap. The wisibility graph approach generates a roadmap by connecting
certain vertices of the boundary of the free configuration space, Cyrc., and is primarily
suitable for two-dimensional, polygonal configuration-space planning problems [54], [71],
[125], [161]. The topological retraction operation has been used in a roadmap genera-

tion approach that continuously retracts Cy,. onto its generalized Voronoi diagram [138].

Other roadmap methods are described in [23], [31], [36].

In the prior two approaches, a path is constructed by analyzing the global structure
of Cree; however, in most artificial potential field methods, the robot moves locally
according to some forces that are defined as the negative gradient of an artificial potential
function. This approach was taken in [98] for real-time collision avoidance. The potential
function is typically defined on Cy.. (although sometimes on the workspace [12]) as the
sum of an attractive potential that pulls the robot toward the goal, and a repulsive
potential that pushes the robot away from obstacles. One of the primary concerns in
this approach is the existence of local minima in the potential function. In [92] heuristic
search is performed over nominal paths at a global level, and in [11], [12] Brownian motion
is combined with motion planning to escape local extrema. In [158], [159], [160] it has
been shown that for some problems, a global navigation function can be constructed that
ensures the existence of a single minimum that lies at the goal configuration.

Approaches to the basic motion planning problem are often evaluated with regard to
completeness and computational complexity. An algorithm is considered to be complete if
it is guaranteed to find a solution path whenever one exists. The exact cell decomposition
method is complete, but extremely expensive with doubly-exponential time complexity in
the dimension of the configuration space. The best-known complete method constructs
a roadmap through geometric stratifications and has time complexity that is exponential
in dimension [31]. Approximate cell decomposition methods usually achieve resolution
completeness, which means that the algorithm can dynamically adjust the resolution until
a solution is found; however, due to the hierarchical partitioning of n-dimensional cells,
the time and space complexity grows quickly with the dimension of the configuration
space [109]. Potential field methods are typically far more computationally efficient than
the other approaches; however, completeness is usually sacrificed. A notable exception is
the work of [160], which is a complete and efficient method, for a certain class of planning

problems in which the free configuration space is diffeomorphic to a “star world.”

1.2.2 Planning under uncertainties

The success of a motion planning approach in an implemented robotic system depends
to a large extent on the manner in which various forms of uncertainty are modeled
and treated. Motion planning under uncertainty therefore represents a very important
extension of the basic problem and has received much attention from the motion planning
community.

Two common representations of uncertainty have been applied to motion planning
problems. One representation restricts parameter uncertainties to lie within a specified
set. A motion plan is then generated that is based on worst-case analysis (e.g., [32],
[62], [110], [124]). We refer to this representation as nondeterministic uncertainty. The
other popular representation expresses uncertainty in the form of a probability density
function. This often leads to the construction of motion plans through average-case
or expected-case analysis (e.g., [26], [74], [170]). We refer to this case as probabilistic
uncertainty.

Uncertainty can be introduced into a motion planning problem in a number of ways.
We organize this uncertainty into four basic sources for discussion (as categorized in
[117]). See Figure 1.2. We will describe each of the sources of uncertainty in isolation,
although in general any combination of these types can be considered simultaneously in
a motion planning formulation. The first two forms of uncertainty will be the topic of

Chapter 2, and the remaining two forms will be the topic of Chapter 3.

Configuration-sensing uncertainty Suppose that Csee (0r Cyaiig) is given. Under
uncertainty in configuration sensing, incomplete or imperfect information is utilized by
the robot to make an inference about its configuration. This information could come from
sensor measurements or motion history. With a nondeterministic uncertainty model, the

robot might have sufficient information to infer that q lies in some subset () C Cyc.. For

Configuration Space Configuration Space

©

Configuration Sensing Configuration Predictability

Environment Space Environment Space

©

Environment Sensing Environment Predictability

Figure 1.2 Four sources of uncertainty in the motion planning problem.

example, in [32], [62], [110], [124] this representation of uncertainty is used to guarantee
that the robot recognizably terminates in a goal region. With a probabilistic model,
the robot might infer a posterior probability density over configurations, p(q), that is
conditioned on sensor observations, initial conditions, or additional knowledge. Examples
that handle configuration-sensing uncertainty with probabilistic representations include

[26], [189).

Configuration-predictability uncertainty Suppose that both Cy,.. and the current
configuration, q € Cy,. are given. Motion commands can be given to the robot, but with
control uncertainty the future configurations cannot, in general, be completely predicted.
With nondeterministic uncertainty, the robot may infer that some future configuration

will belong to a subset () C Cfre.. The method of preimage backchaining constitutes of

large body of work in which bounded uncertainties are propagated and combined with
configuration-sensing uncertainty, to guarantee that the robot will achieve a goal (e.g.,
[32], [47], [62], [66], [110], [124]). With a probabilistic model, future configurations can
be described by a posterior density over configurations, p(q), that is conditioned on the
initial configuration and the executed motion command. Examples of work that include a
probabilistic representation of configuration-predictability uncertainty include [15], [26],

[74].

Environment-sensing uncertainty Analogous to configuration-sensing uncertainty,
suppose that a space of possible environments, F, is known to the robot. Although
a space of configurations is a well-defined concept in robotics literature, we must define
what is meant by a “space of environments.” For the purpose of discussion, let £ contain
different possibilities for Cyyee.

Under environment-sensing uncertainty, incomplete or imperfect information is uti-
lized by the robot to make an inference about its environment. With a nondeterministic
uncertainty model, the robot might have sufficient information to infer that the environ-
ment e belongs to some subset F' C E. For example, in [140], [155], the environment
is restricted to a plane populated with unknown polygonal obstacles, which are then
discovered using visual “scans” to build a visibility graph for motion planning. In [127],
unknown obstacles are allowed to be of arbitrary shape, and the sensor data consists of
“tactile” information for a point robot. With a probabilistic model, the robot might infer
a posterior probability density, p(e), over environments, which is conditioned on sensor

observations, initial conditions, or additional knowledge (e.g., [53], [56], [88], [185]).

Environment-predictability uncertainty Suppose again that the space of environ-

ments F is known by the robot; however, in addition, the robot knows its current en-

10

vironment e € FE. Predictable motion commands might be given to the robot, but
with environment-predictability uncertainty, future environments cannot be completely
predicted. With nondeterministic uncertainty, the robot may infer that some future envi-
ronment will belong to a subset F' C E. With a probabilistic model, future environments
can be described by a posterior density over environments p(e) that can be conditioned on
the initial environment, the robot configuration, or an executed motion command. This

form of uncertainty has received less attention, and will be elaborated on in Section 3.2.

1.2.3 Additional extensions

Several other extensions have received considerable attention in motion planning lit-

erature.

Multiple robots Suppose there are N robots A', A2, ... , AV that are capable of mov-
ing in a common workspace. One formulation of the multiple-robot motion planning task
is to bring each robot from an initial configuration q,,;, to a goal configuration qzoal, while
avoiding collisions with obstacles and other robots.

Numerous approaches to multiple-robot motion planning have been considered in pre-
vious literature; a more detailed description of the multiple-robot motion planning prob-
lem and related issues will be presented in Chapter 4. Approaches are often categorized
as centralized (as in, e.g., [11], [167]) or decoupled (as in, e.g., [61], [137]). A centralized
approach typically constructs a path in a composite configuration space, which is formed
by combining the configuration spaces of the individual robots. A typical decoupled ap-
proach independently generates a path for each robot, and then considers the interactions
between the robots. The suitability of one approach over the other is usually determined
by the tradeoff between the computational complexity associated with a given problem,

and the amount of completeness that is lost.

11

Constrained motions In addition to geometric constraints imposed by obstacles, the
motions of the robot might be further constrained. For instance, consider a four-wheeled
mobile robot that has a steering mechanism with a bounded turning radius. This type
of example is further described in Section 3.5.3.

Constraints can be categorized as holonomic or nonholonomic. A holonomic con-
straint is an algebraic restriction of the configuration space. A nonholonomic constraint
is expressed by a nonintegrable, differential equation on the configuration space. This
implies that velocities in the configuration space are restricted and must be taken into
account in addition to geometric configuration space constraints.

Nonholonomic motion planning is often considered one of the most mathematically
challenging extensions of the basic motion planning problem. An overview of the central
difficulties in nonholonomic motion planning appears in [111]. Some recent references for

nonholonomic motion planning include [13], [67], [118], [121].

Manipulation If the robot is allowed to interact with objects in its environment, many
additional issues must be addressed. One of the most important manipulation planning
concerns is the motion of the robot when it is in contact with obstacles. Force compliant
control is usually permitted, which enables the robot to move along obstacle boundaries
[130]. A variety of motion models have been considered for compliant control (e.g., [35],
[148], [154], [169], [195], [196]). More complex interactions have also been analyzed, such
as the motion of objects as they are pushed by a manipulator [25], [59], [128], [132], [191].
Object grasping also becomes an important concern when incorporated into a motion
plan [24], [41], [76], [150]. In [1] a method for analyzing the transfer of objects in the
workspace to accomplish a motion planning task is presented. Coordinated, multirobot

manipulation has been considered in [90], [133], [203].

12

Moving obstacles Suppose that the workspace contains obstacles Bi(t),... , B,(t)
that may possibly be in motion. A motion planning problem in this environment can
be analyzed by constructing a time-varying free configuration space, Cypec(t) [109]. The
configuration-time space can be constructed as an extension of the configuration space,
and standard motion planning methods can be applied. One difficulty with this form
of planning is the computational complexity. In [157], for example, Reif and Sharir
show that motion planning in a three-dimensional environment is PSPACE-hard when
the robot’s velocity is bounded, and NP-hard when there is no such bound. In [30]
Canny and Reif prove the NP-hardness of a more restricted problem—that of motion
planning for a point robot in the plane with bounded velocity, when the moving obsta-
cles are convex polygons moving at constant linear velocities without rotation. These
intractability results have encouraged heuristic approaches, especially as applied to more

limited geometric models—for example, in [69], [96], [175].

1.3 Basic Motion Planning as an Optimal Control
Problem

In this section we describe how basic motion planning can be characterized as an
optimal control problem. This type of characterization was introduced for motion plan-
ning in [72]. In this dissertation, extensions of the basic motion planning problem will
be viewed as extensions of the optimal control problem. It is, therefore, useful to char-
acterize basic motion planning as an optimal control problem to make these extensions
more clear. It is important to note that we are not using control theory in this section
to study such issues as robot dynamics, controllability, or stability, but simply to recast

the basic motion planning problem.

13

Optimal control concepts Optimal control theory is a vast subject, and only some
key definitions are provided here. A more thorough introduction to optimal control theory
can be found in [2], [28], [106]. Let X C R" represent a state space in which zo € X
represents the initial state of a system. Let u : [0,%;] — R" represent a control function
in which [0, ¢;] represents an interval of time. The control at time ¢ is given by u(t), and
the system state at time ¢ is given by z(¢). The system equation can be represented as
& = f(z(t),u(t)), which defines how the state will evolve over time.

A loss functional is defined that evaluates any state trajectory and control function:

La(),u0) = [U0, u(®)dt +Qlatty)). (12

The integrand [(x(t),u(t)) represents an instantaneous cost, which when integrated can
be imagined as the total amount of energy that is expended. The term Q(z(ty)) is a
final cost that can be used to induce a preference over trajectories that terminate in a
particular portion of the state space by penalizing the final state of the system. One can
also take ty = oo and describe an asymptotic final state (o).

Suppose that the initial state, zg, is given. The optimal control design task is to

select a control function u(-) that causes Equation (1.2) to be minimized.

Encoding the basic problem Recall that the goal of the basic motion planning
problem is to compute a path 7[0,1] — Cjree such that 7(0) = qinir and 7(1) = Qgoa,
when such a path exists. The natural choice for the state space is X = Cypee. If robot
dynamics were also included in the problem specification, then X might be expanded to
include time derivatives on the configuration space.

We next define a simple system equation, f(z(t),u(t)) = u(t) for all ¢. This is not

intended to be the most reasonable model of a particular robotic system, but rather it

14

is used to encode the basic motion planning problem. We can assume for all ¢ that the
control input is either normalized, ||u(t)|| = 1, or u(t) = 0.

The initial state of the system is fixed, o = q;,i:- The loss functional can be simplified
to L(z(-),u() = Qlaty)). We take Qa(ty)) = 0 if 2(t;) = Qyou, and Qx(ty)) = 1
otherwise. This partitions the space of admissible controls into two classes: control
functions that cause the basic motion planning problem to be solved receive zero loss;
otherwise, unit loss is received.

The motion planning problem requires a collision-free path. This can be obtained
by mapping the space of control functions into the space of state trajectories. For a
given u(t),t > 0 and z, a state trajectory z,(t),t > 0 can be completely predicted. If
L(zy(-),u(-)) = 0, then the determined state trajectory is a solution to the basic motion

planning problem, which can be expressed as 7(s) = z,(sts).

Incorporating optimality The previous formulation considered all control inputs
that achieve the goal to be equivalent. By changing the loss functional, the optimal-

path-length motion planning problem can be formulated:

b .
[Nelat it (ty) = Qgou

00 otherwise

L(z(-), u()) = (1.3)

The term [y’ ||¢||dt measures path length, and recall that #(t) = u(t) for all .

It is well known that the optimal path generally maps into the closure of Cjye. (for
example, see [109], which discusses the search for semi-free paths). Because Cjy.. is open,
we define the state space for this case to be X = C,u4. A variety of other possibilities
exist for defining the loss functional. For example, Gilbert and Johnson defined a loss

functional for motion planning that takes into account the distance between the robot

and obstacles [72].

15

A discrete-time representation The motion planning problem can alternatively be
characterized in discrete time. For the systems that we will consider, discrete-time repre-
sentations can provide arbitrarily close approximations to the continuous case, and will
be used throughout this dissertation. It will be seen in coming chapters that discrete-time
representations can simplify the development of computational methods.

With the discretization of time, [0,%;] is partitioned into stages, denoted by k €
{1,...,K 4+ 1}. Stage k refers to time (kK — 1)At. If ¢; is finite, the final stage is given
by K = |t;/At]. Let zj represent the state at stage k. At each stage k, an action uy

can be chosen. Because

dov . x(t + At) — z(t)

g 1.4
dt AtSo At ’ (1.4)

the state transition equation can be approximated as
Tpt+1 = Tk + Ug. (15)

As an example of how this representation approximates the basic motion planning
problem, consider the following example. Suppose Cpree C R2. It is assumed that
|lug]| = 1 and, hence, the space of possible actions can be sufficiently characterized

by the parameter ¢y € [0,2m). The discrete-time state transition equation becomes

Tpi1 = o + At cos(é1) : (1.6)

sin(ok)
At each stage, the direction of motion is controlled by selecting ¢r. Any K-segment
polygonal curve of length KAt can be obtained as a possible state trajectory of the
system. If an action is included that causes no motion, shorter polygonal curves can also

be obtained.

A discrete-time representation of the loss functional must also be defined:

K

L(.’.El, e 3 TK4H1, ULy - - ,’LLK) = Z lk(Ik, Uk) + ZK+1(.TK+1), (]_7)
k=1

16

in which /; and lg,; serve the same purpose as [and () in the continuous-time loss
functional.

The basic motion planning problem can be represented in discrete time by letting
ly=0forallk € {1,..., K}, and defining the final term as lx11(zx+1) = 0 if 2k = Qgoat,
and lg41(zx41) = 1 otherwise. This gives equal preference to all trajectories that reach
the goal. To approximate the problem of planning an optimal-length path, [, = 1 for
all k € {1,...,K}. The final term is then defined as lx41(zx+1) = 0 if 24 € qgoas, and

lK+1(£EK_|_1) = oo otherwise.

Implications The previous formulations have shown an equivalence between the basic
motion planning problem and a specific version of the optimal control problem. Therefore,
an algorithm that solves a basic motion planning problem equivalently solves a specific
optimal control problem. For example, the visibility graph approach can be considered as
a method for determining an optimal controller for a particular optimal control problem
in R®? with polygonal constraints on the state space and the loss functional (Equation
(1.3)).

One key difference between this optimal control problem and those typically consid-
ered in control theory literature is the set of geometric constraints on the state space that
appear because of obstacles in the workspace. These constraints represent an unusual
twist to the control problem and must be confronted in a robotics context. Another
difference is that a goal (or reference) trajectory that serves as a reference for compar-
ing solutions is often specified for standard control problems; however, in basic motion
planning the primary task is to select the trajectory (the collision-free path).

The optimal control formulations that are considered in this section are limited, how-
ever, in a number of ways: (1) only open-loop control functions are considered; (2) no

form of uncertainty is assumed; and (3) only a single robot is being controlled. One

17

purpose of this dissertation is to generalize this specific optimal control formulation to a
useful mathematical structure that characterizes many extended motion planning prob-

lems.

1.4 Extending the Basic Motion Planning Problem
with Game Theory

This section provides an overview of how game-theoretic concepts can be used to
model and analyze extensions of the basic motion planning problem. The discussion is
presented at a high level because specific modeling details are covered in the individual
chapters that handle particular motion planning problems. In Chapter 5 a detailed math-
ematical structure is presented that unifies a broad class of motion planning problems,
including those particularly addressed in this dissertation. In a sense, Chapter 5 can be
considered as a continuation of the current section in which more detailed arguments are
made through the support of its preceding chapters. Section 1.4.1 provides an overview
of game theory as it is used in this dissertation. Section 1.4.2 describes how motion plan-
ning concepts can be combined with game theory. Section 1.4.3 discusses the general

benefits of this framework.

1.4.1 An overview of game theory

The subject of game theory has been pursued for over sixty years, leading to a wide
variety of literature and viewpoints on the subject. In this dissertation game theory is
used to describe a dynamic (or sequential) decision-making problem that involves multiple
decision makers and one or more loss functionals (or performance criteria). In this case,

its use is much more general than a “game” in the intuitive sense. The formulations

18

presented in this dissertation share similarities with concepts from statistical decision
theory (e.g., [20], [46], [45]), optimal control theory (e.g., [28], [105], [202]), dynamic
noncooperative game theory [6], and games considered in artificial intelligence research
(e.g., [149], [198]).

The amount of cooperation that occurs between decision makers in a game is one of
the key differences between different branches of game theory literature. If the decision
makers act in unison but each has different loss functionals, the multiobjective optimiza-
tion problem is obtained [85], [164], [205]. In a situation in which there is a common
loss functional and all decision makers wish to act cooperatively, team theory is obtained
[37], [86], [99]. If some subsets of the decision makers can choose their actions in uni-
son, so that a mutually beneficial outcome can be obtained, we have a cooperative game
[18], [141]. Games of this type can sometimes be cast as optimization problems in which
some function of the individual decision maker performance criteria is optimized. With-
out cooperation the decision makers choose actions that take into account interests that
conflict with the other decision makers. This is referred to as a noncooperative game.
The most extreme case of conflicting interest is a zero-sum game, in which two decision
makers are diametrically opposed. A “solution” to a game of the noncooperative type is
referred to as an equilibrium because it represents a game strategy that provides a bal-
ance between the independent interests of the decision makers. One well-studied branch
of noncooperative game theory involves problems of pursuit and evasion [81], [94], [199],
[200], [201].

Game theory can also model a situation in which some decision makers represent dis-
turbances that must be overcome by the other decision makers. For instance, uncertainty
can be introduced into the state transition equation of an optimal control problem. As
will be discussed shortly, such problems can be viewed as a game against nature [144].

If this uncertainty is represented probabilistically, the game against nature becomes a

19

problem of stochastic optimal control theory [17], [105], which represents a well-studied
branch of control theory. If the uncertainty is represented nondeterministically, worst
case analysis is performed, and the game against nature can be considered as a form of
robust controller design [5].

The participants in a game are referred to as decision makers (or players). The optimal
control problem that was formulated in Section 1.3 can be considered as a degenerate
game that involves only a single decision maker. Each decision maker has available to
it a set of actions (or control functions). With a discrete-time formulation, the decision
makers repeatedly choose actions; with a continuous-time formulation, a control function
is specified [6], [28], [151]. The decision makers are capable of manipulating the game
state. A state transition equation defines how the state space changes as a function of
the current state and the actions of the players.

State measurements are specified as mappings from the state space to an observation
space. This can model, for instance, the projection from the workspace or configuration
space to a sensor space, which has been investigated in the robotics literature [50], [100].
An information space can be defined that is generated by some amount of history or
memory that a decision maker maintains. In general there are two types of information
that are considered: (1) actions taken in the past by one or more decision makers, and (2)
state measurements. Each point in the information space represents a particular history
that has resulted, and is referred to as an information state.

A strategy specifies the behavior of a decision maker by conditioning its actions on
the information state. A strategy could be specified deterministically, yielding a pure
strategy or deterministic strategy, or it could be specified with probability distributions
over the sets of actions, yielding a mized strategy or randomized strategy.

The effects of noise or disturbances can be modeled by the addition of a special

decision maker called nature [20]. One of the primary interests in this dissertation is

20

the modeling and incorporation of uncertainty into a robot strategy. Nature might be
assumed to have a known, randomized strategy that interferes with the efforts of the
decision makers. Nature could alternatively be assumed to implement a nondeterministic
strategy. A game that involves only one “true” decision maker and nature is often referred
to as a game against nature [20], [190].

The selection of a strategy for a decision maker is governed by its real-valued loss
functional. The loss functional in Section 1.3 was used to select the best control function
as a solution to the basic motion planning problem. Typically, the loss functional will
not directly evaluate the strategy, but instead will evaluate the full history of actions
and states that occurred. Given one or more loss functionals, an appropriate concept of

optimality must be chosen.

1.4.2 A synthesis of motion planning and game theory concepts

This section relates game-theoretic concepts to robot motion planning at a general
level. In robotics, some connections have previously been drawn between certain motion
planning problems and specific forms of game theory. For instance, in [190] it was argued
at an abstract level that robot manipulation planning in the presence of probabilistic
uncertainty can be considered as a game against nature (which is equivalent to the
stochastic control problem [105]). In [52], [79] team theory was proposed for planning the
locations of sensors and integrating sensor information. A two-person zero-sum game was
defined in [80] that models robustness with respect to uncertainty in a sensor-based robot
plan. In [3], a two-player differential game was defined, which leads to the coordination
of two independent robot manipulators.

First, consider the “decision makers” involved in a robot motion planning game. Each

robot that has the potential to make decisions can be considered as a decision maker in

21

a game. Different aspects of uncertainty can be modeled as decisions that are made by
nature.

In robot motion planning research, the notion of a configuration space has been ex-
tremely useful for the comparison and analysis of problems (e.g., [109]). In game theory,
the state space serves the same basic purpose, which is to precisely represent each situ-
ation that can occur by a point in a space. For a basic motion planning problem that
involves a single robot, a natural choice for the state space would be Cgee Or Cparig- With
the multiple robot problem considered in Chapter 4, we will define the state space as a
subset of the Cartesian product of the configuration spaces for each of the robots. For
the application in Chapter 3, the state space represents one copy of C,.. for each possible
mode of an environment. If dynamic constraints are also relevant to the planning prob-
lem, then the state space can be expanded to incorporate these additional parameters.

Once a state space is selected for a given problem, the state transition equation pro-
vides local laws of motion for the robot(s). This view perhaps shares the most similarities
with the artificial potential field approach to motion planning, in which the robot often
considers a sequence of local motion decisions that lead to the achievement of the goal.
For most of the problems considered in this dissertation, the motions of the robots are
not very constrained by the state transition equation: they are usually allowed to move at
a fixed velocity in any direction in the state space, except when prohibited by obstacles.
One exception is in Section 3.5.3, in which results for a nonholonomic, car-like robot are
presented. In general, the state transition equation can be used to model very complex
motions.

Concepts similar to the state space and state transition equation have appeared in
motion planning literature; however, two key differences in our context are the additional
concepts of strategy and loss. These produce a different line of reasoning when deter-

mining a solution to the problem. As stated previously, the solution representation for

22

the basic motion planning problem is a path. In this dissertation, the solution represen-
tation is a strategy, which can be considered as a controller that is based on information
feedback. This distinction is particularly important when uncertainty is involved, since it
allows a robot to dynamically choose its actions based on current information. This type
of behavior is similarly achieved with conditional multistep plans in preimage planning
[110].

Loss functionals are used to explicitly guide the selection of a strategy. Once a
concept of optimality is defined, a statement of the ideal strategy can be expressed in
terms of the loss functional(s). As described in Section 1.3, the loss functional is useful
for evaluating a control function, and in the game-theoretic sense, loss functional(s) are

useful for evaluating a strategy.

1.4.3 Benefits of the proposed framework

The primary claim of this dissertation is that game theory represents a unifying
mathematical structure for a wide class of problems in motion planning. Section 1.4.2
indicated how game theory can be used in general to describe motion planning prob-
lems. This section states some of the benefits of this characterization at a general level.
More specific benefits are described in Chapters 2 through 5, after the background and
motivations are given for particular problems.

One concern might be that the generality offered by a game-theoretic formulation
comes at the cost of sacrificing important parts of the problem description. General-
izations that relate fairly distinct problems can sometimes be obtained by abstracting
away details. In almost any case, the construction of a mathematical model for a phys-
ical process involves the abstraction of certain details for the purpose of analysis and

obtaining solutions. It is important, however, to understand that we are using game

23

theory to describe problems that are already models of physical robotics problems. The
game-theoretic formulation does not necessarily omit any of the details that were part of
an original motion planning problem formulation. In a basic motion planning problem,
Cfree (along with qpir and qgeq) completely encodes a problem and, therefore, directly
defines the state space.

The game structure allows the basic model to be expanded in a useful way that does
not necessarily eliminate details from the original formulation. Once a problem has been
mathematically characterized, there are a number of clear directions along which it can
be generalized. A problem generalization might combine the fundamental aspects of two
distinct problems that were already analyzed. For instance, if solutions are known for a
two-robot planning problem, and for a problem with one robot that faces environment-
predictability uncertainty, then a game structure can be defined that models two robots
in a changing uncertain environment.

Alternatively, once a specific motion planning application has been encoded in game-
theoretic terms, individual aspects of that application can then be generalized in a
straightforward manner. For example, the preimage concept has been useful in spe-
cific motion planning problems that involve configuration-predictability uncertainty. By
using the game-theoretic formulation, this concept is generalized to a broad class of prob-
lems in Chapter 2, and further generalized in Section 5.3. The notion of a performance
preimage is obtained that can be utilized for problems with probabilistic representations,
information-feedback strategies, multiple robots, etc.

The perspective provided by a general game structure can also serve as a basis for
comparing different planning problems. It was shown in [109] that many motion planning
problems that appear distinct can be shown to be nearly equivalent by mapping the

problems into the configuration space. The same type of situation can occur with a

24

general game formulation because each problem can be represented with components
that are embedded in a common mathematical structure.

The game formulation still might not appear useful if the solutions to any of the
formulated problems were impossible to obtain. However, one advantage is that there
are very powerful optimization tools from control theory that can be exploited. One of
the most useful concepts is the principle of optimality [16], which states that an optimal
solution can be recursively decomposed into optimal parts. This results in a dynamic
programming methodology, which forms the basis of the computational methods for all
of the problems investigated in this dissertation. In general, this optimization concept
has been useful in a variety of contexts, both for producing analytical solutions and for
numerical computation procedures.

The class of problems that can be solved by directly using the principle of optimality
is fairly restrictive. In both control theory and game theory, the classic set of problems
that can be solved are those with a linear state transition equation and quadratic loss
functional [2], [6], [28]. As an example, the principle of optimality forms the basis of the
analytic solution to the linear-quadratic Gaussian (LQG) optimal control problem [105].
Because few problems can be solved analytically, there has been a large focus on numerical
dynamic programming procedures [17], [107], [108], even in robotics applications [9], [89],
[135], [186].

In many situations, the game-theoretic formulation cannot be expected to directly
yield a numerical solution, particularly if the dimension of the state space or information
space is high. Nevertheless, we believe that the framework can serve as a reference
for comparing partial or approximate solutions to a problem. This type of comparison
occurs with Bayesian decision theory (of which game theory is a generalization). In
practice, the optimal Bayes decision rule often cannot be evaluated; however, methods

such as the nearest-neighbor decision rule are developed in which the performance can

25

be related to that of the optimal rule [46], [51]. Hence, the tradeoffs can sometimes
be determined between an optimal solution that is computationally prohibitive, and a

proposed approximate or heuristic solution.

1.5 Dissertation Organization

This chapter has provided a general introduction and background for this dissertation.
Chapters 2 through 4 present detailed analysis and computation methods for specific
classes of motion planning problems.

Chapter 2 handles motion planning under uncertainty in configuration predictability
and configuration sensing (commonly referred to as planning under uncertainty in sensing
and control [62], [124], [110]). Traditional approaches are often based on a methodology
known as preimage planning, which involves worst-case analysis. We have developed a
general method for determining feedback strategies by blending ideas from stochastic
optimal control and dynamic game theory with traditional preimage planning concepts.
This generalizes classical preimages to performance preimages and preimage plans to mo-
tion strategies with information feedback. For a given problem, one can define a perfor-
mance criterion that evaluates any executed trajectory of the robot. We present methods
for selecting a motion strategy that optimizes this criterion under either nondetermin-
istic uncertainty (resulting in worst-case analysis) or probabilistic uncertainty (resulting
in expected-case analysis). We present dynamic programming-based algorithms that
numerically compute forward projections (a concept used in previous motion planning
literature), performance preimages, and optimal strategies; several computed examples
of forward projections, performance preimages, and optimal strategies are presented.

Chapter 3 handles motion planning under uncertainty in environment predictability

and environment sensing. This results in a general method for analyzing and computing

26

motion plans for a robot that operates in an environment that changes over time in
an uncertain manner. The changing environment is treated in a flexible manner by
combining traditional configuration space concepts with a Markov process that models
the environment. A motion strategy provides a motion command for the robot for each
contingency with which it could be confronted. We allow the specification of a desired
performance criterion, such as time or distance, and determine a motion strategy that is
optimal with respect to that criterion. Computed examples are presented for problems
that involve changing configuration spaces, hazardous regions and shelters, processing
of service requests, and delivering objects that appear in different locations. Several
extensions of the basic framework that incorporate additional concerns, such as sensing
issues or changes in the geometry of the robot, are also presented.

Chapter 4 describes two contributions to geometric motion planning for multiple
robots: (1) motion plans can be determined that simultaneously optimize an indepen-
dent performance criterion for each robot; and (2) a general spectrum is defined between
decoupled and centralized planning, in which we introduce the concept of coordination
along independent roadmaps. By considering independent performance criteria, we in-
troduce a form of optimality that is consistent with concepts from multiobjective opti-
mization and game theory research. Previous multiple-robot motion planning approaches
that consider optimality combine individual criteria into a single criterion. As a result,
these methods can fail to find many potentially useful motion plans. Roadmap coordina-
tion is useful because greater flexibility is obtained over fixed-path coordination without
the computational burden of optimizing strategies in a higher-dimensional space. We
present implemented, multiple-robot motion planning algorithms that are derived from
applying the principle of optimality to a partially-ordered space, for three problem classes
along the spectrum between centralized and decoupled planning: (1) coordination along

fixed, independent paths; (2) coordination along independent roadmaps; and (3) general,

27

unconstrained motion planning. Several computed examples are presented for all three
problem classes that illustrate the concepts and algorithms.

Chapter 5 presents a general mathematical structure that unifies the concepts pre-
sented in Chapters 2 through 4, and provides a discussion about future research based

on this perspective. Chapter 6 summarizes the contributions made in this dissertation.

28

CHAPTER 2

MOTION PLANNING UNDER UNCERTAINTY
IN SENSING AND CONTROL

2.1 Introduction

It has been widely acknowledged in the literature that modeling and overcoming
uncertainty is crucial to successful motion planning in practical environments. This
chapter focuses on planning under uncertainty in configuration sensing and configuration
predictability, which were discussed in Section 1.2.2. In motion planning literature, this
problem has also been described as motion planning under uncertainty in sensing and
control.

Traditional approaches are often based on a methodology known as preimage planning,
which involves worst-case analysis. In this chapter, a general approach is presented for
determining feedback strategies by blending traditional preimage planning ideas with
concepts from stochastic optimal control and dynamic game theory. This generalizes
classical preimages to performance preimages and preimage plans to motion strategies
with information feedback. Both nondeterministic and probabilistic representations of
uncertainty are considered. Constructing a traditional termination criterion becomes

equivalent to formulating an optimal stopping problem [17] within our approach. Motion

29

strategies are selected that optimize a loss functional, and are computed by a dynamic
programming-based algorithm.

Instead of avoiding collisions, we exploit interactions between the robot and objects,
e.g., such operations as compliant motions, pushing, and grasping. Many researchers
have considered the problem of achieving a goal configuration under uncertainty while
permitting compliant motions; this has been referred to as the fine-motion planning
problem in, e.g., [32], [62], [110], [124], and the manipulation planning problem in, e.g.,
[26]. In other research, the phrase manipulation planning has been used to refer to
problems that involve the transfer of objects in the workspace (e.g., [1], [109]), but we
do not consider such problems in this chapter.

We use the term manipulation planning in this chapter to refer specifically to the prob-
lem of achieving a goal configuration under uncertainty in sensing and control while per-
mitting compliant motions. The methods presented in this chapter can also be adapted
to collision-free planning (we have computed results for many cases); however, in this
chapter we focus only on manipulation planning because the basic collision-free planning
issues under sensing and control uncertainties are included in the manipulation planning
model. Section 2.2 provides an overview of manipulation planning research and discusses
the significance of our approach.

Section 2.3 provides the general definitions and concepts that form the basis of our
approach. Some of the notation, although not previously used to characterize manipula-
tion planning problems, is borrowed from control theory (as used in [6], [105] and Section
1.3). After the general concepts and definitions have been presented, they are utilized
in Sections 2.4, 2.5, and 2.6 to present forward projections, performance preimages, and
the determination of optimal motion strategies, respectively. Computed examples are

presented at the conclusion of each of these three sections.

30

z | Worst-case analysis of Worst-case analysis of
2 state-feedback strategies information-feedback
T strategies
oCc %
[()} o
T O =,
g2 °
o
22 | Expected-caseanalysisof | Expected-case analysis of
> g | state-feedback strategies information-feedback
>) Strategies
Perfect Imperfect

State Information

Figure 2.1 Four types of uncertainty that are considered in this chapter.

The concepts in each of Sections 2.4 through 2.6 can be logically divided into four
components that represent different types of uncertainty (see Figure 2.1). The precise
meaning of these types of uncertainty should become clearer after reading Sections 2.2
and 2.3. These types are based on two choices: (1) using probabilistic representations
versus nondeterministic (or bounded-set) representations; and (2) modeling control errors
and assuming perfect sensing versus modeling both control and sensing errors. Proba-
bilistic and nondeterministic representations each offer distinct advantages; hence, both
are included in our approach. Probabilistic representations lead to expected-case analy-
sis, and nondeterministic representations lead to worst-case analysis; relevant issues are
discussed in Section 2.2. By assuming perfect sensing, we can observe many effects of
control uncertainty on manipulation planning. These results are applicable when reason-
able state estimation (i.e., configuration estimation) can be performed. The addition of
sensing uncertainty can be considered as an extension in which the configuration space
is replaced by an information space derived from the sensing and action history. The
motion planning analysis for this case is performed on this information space, as opposed

to the original configuration space.

31

Section 2.7 discusses several issues regarding our current approach and how it can be

extended. Section 2.8 provides some brief conclusions.

2.2 Background and Motivation

Section 2.2.1 provides an overview of previous manipulation planning research. Sec-
tion 2.2.2 discusses the key contributions of this chapter in the context of previous re-

search.

2.2.1 Prior research

Preimage planning constitutes a large body of research that assumes that sensing
and control errors lie within bounded sets. The approach was first conceptualized by
Lozano-Pérez et al. [124]. Geometric reasoning techniques are used to construct a robot
plan that guarantees the robot will terminate in a specified subset of configuration space,
regardless of where the errors might lie within the bounded sets. This plan is generally
constructed using recursive subgoals, as a form of backchaining. For each subgoal, a
preimage is formed that allows the robot to achieve the subgoal for a fixed command,
starting from the subset of the configuration space attained from the previous subgoal.
Figure 2.2 shows a simple example of a preimage. In general, a preimage is defined as
the set of all configurations from which a robot is guaranteed to halt in the goal region
under the execution of a motion command.

We will next discuss several important aspects of manipulation planning that have
been elucidated in preimage planning research, and conclude Section 2.2.1 by summariz-

ing some additional related motion planning research.

32

Preimage

(b)

Figure 2.2 (a) A classic 2D “peg-in-hole” insertion task without rotation; (b) such a task
can be represented in configuration space with bounded uncertainty in commanded ve-
locity and sensed configuration (ey denotes the angular uncertainty bound; €, denotes the
positional uncertainty bound, and G denotes the goal region); (c) the classical preimage.
Motion models One of the most important manipulation planning concerns is the
motion of the robot when it is in contact with obstacles. Force compliant control is
usually permitted, which enables the robot to move along obstacle boundaries [35], [78],
[130], [148], [154], [169], [195], [196]. As stated in Section 1.2.3, a variety of motion
models have been considered for compliant control, and the generalized damping model
has been most often considered in the context of manipulation planning [32], [62], [109],
[110], [124], [195]. More complex interactions have also been analyzed, such as the motion
of objects as they are pushed by a manipulator [25], [59], [128], [132], [191]. Figure 2.3
depicts the type of motion that occurs when the generalized damping model is combined
with friction. If the commanded velocity does not point into the friction cone, but points
into the obstacle boundary, then the robot moves along the boundary. If the commanded
velocity points into the friction cone, then the robot remains motionless. When the robot

is not in contact, the set of available motions could be constrained, as for nonholonomic

33

Commanded

Velocity \ / \ /
' / TangenE'\aI /
) / Velocity /
Reaction Force \\ / /
/ Commanded Reaction Force
\\ / Velocity /

Friction causes sticking Tangential motion

Figure 2.3 Motions under the generalized damping model with friction. The dashed
lines indicate the friction cone.

robots as discussed in [13], or the robot might be free to move along any continuous path.
For manipulation planning problems, it is thus important to allow different motions to

be defined on different subsets of the configuration space.

Modeling uncertainty Two basic representations of sensing and control uncertainty
have been proposed in the manipulation planning literature. We refer to these as non-
deterministic uncertainty and probabilistic uncertainty, as done in [57]. Under nonde-
terministic uncertainty, it is assumed that parameter uncertainties lie in a bounded set.
Worst-case analysis is performed to yield a motion plan that is guaranteed to be suc-
cessful, regardless of the true value of uncertain parameters within the bounded set.
This uncertainty representation is the most common in previous manipulation planning
research. Under probabilistic uncertainty, probability densities are used to represent un-
certainty associated with parameters. Each uncertainty representation offers advantages.
Nondeterministic models do not require a statistical representation of the errors and,
hence, are often easier to specify. If the uncertainty model is correct, the guarantee that

the goal is achieved is useful, particularly when the penalty is severe for not achieving it.

34

As noted in [26], [57], a guaranteed motion plan does not exist for many tasks; however,

a plan can alternatively be computed that achieves the goal with some probability.

History Operation under sensing uncertainty can be improved by incorporating sens-
ing and/or control history into the robot’s decision making. This is mathematically
equivalent to the use of information feedback in control theory and dynamic game the-
ory. Several approaches to manipulation planning have incorporated sensor information.
Erdmann presented an approach that yields motion strategies that are conditioned on
knowledge states [58]. These knowledge states are inferred from the sensing history and,
at a high level, correspond closely to using information feedback. Latombe et al. used
sensing and control history to infer a subset of configuration space defined as a goal
kernel, in which the robot can successfully switch between commands in a multiple step
plan, or terminate in the goal region [110]. Goldberg assumed that no sensor information
was available, and conditioned squeezing operations on the history of previous operations
(which is equivalent to the control history) [74]. Donald and Jennings have defined per-
ceptual equivalence classes that determine distinguishable scenarios for a mobile robot
based on its sensing history and the projection from the configuration space onto the

sensor space [50].

Termination condition The decision to halt the robot has been given careful atten-
tion in manipulation planning research, particularly in cases that involve configuration-
sensing uncertainty. A motion plan might bring the robot into a goal region (reachability),
but the robot may not halt if does not realize that it is in the goal region (recognizability)
[62]. Under nondeterministic uncertainty, it is said that a plan achieves a goal if the

robot is guaranteed to halt in the goal region.

35

A logical predicate called the termination condition is typically defined [110],

TC(t,q"[0,1],£°]0,t]) € {true, false}, (2.1)

in which q*[0,] and £*[0, t] represent the full history of position and force sensing up to
time ¢. A specialized version of (2.1) is usually implemented for practical considerations.
Several specialized definitions of (2.1) are given under different assumptions about history

in [62], [109].

Computing manipulation plans Mason has shown that preimage backchaining is
bounded complete (i.e., if a solution with a bounded number of motions exists, the
preimage backchaining method will find it), and that it suffices to consider directional
preimages (i.e, preimages computed with respect to a single, fixed motion direction) as
subgoals in the recursive backchaining process [131]. These results, however, do not
imply that preimages are computable. In fact, Erdmann has proven by a reduction from
the halting problem that, in arbitrary environments, preimages and backprojections are
uncomputable [62]. That the recursively defined constraints in the proof do not generally
occur in practice led Erdmann to conjecture without proof that in an environment with
a known finite number of constraints, preimages should be computable. Canny has
shown that this is indeed the case when the set of possible robot trajectories has a finite
parameterization and when the set of feasible trajectories is a semi-algebraic subset of the
parameter space [32]. Canny’s approach is to cast the manipulation planning problem
as a decision problem in the theory of the real numbers, and then to use quantifier
elimination algorithms (see, e.g., [39]) to derive parametric semi-algebraic sets that are
preimages.

Erdmann realized that conditions for recognizability and reachability could be decou-

pled [62]. This led to the development of the backprojection, which can be considered

36

as an approximation to the preimage that does not directly incorporate the termination
condition. Backprojections from recognizable goal regions constitute valid preimages (al-
though not necessarily maximal), and are considered in [47], [62], [110]. A directional
backprojection is a backprojection computed for a single, fixed motion direction. The
nondirectional backprojection [22], [48] is a subset of C x S' in which there is one direc-
tional backprojection for each orientation in S' (we use C to denote the configuration
space). Donald has shown that the topology of the directional backprojection changes
only at a finite set of critical velocity orientations in S [47]. Therefore, the nondirec-
tional backprojection can be represented by a finite set of directional backprojections;
one for each critical orientation, and one for each noncritical interval.

In general, the manipulation planning problem under sensing and control uncertainty
has been shown to have high complexity. Consider the problem of finding a sequence
of motions that is guaranteed to move every point in a polyhedral initial region to a
polyhedral goal region, amidst polyhedral obstacles, while permitting compliance. This
problem, considered in traditional preimage planning, has been shown by Natarajan
to be PSPACE-hard in ®? [136]. Canny showed that this problem is nondeterministic

exponential-time hard in R3 [31].

Other related approaches Several other planning problems and approaches are re-
lated to the context developed in this chapter. In a series of papers by Donald [47], [48],
[49], it was shown how a planner that is capable of recognizing failure (in addition to
success) can be used to implement error detection and recovery strategies. Under this
model, the robot is allowed to try a new plan after realizing that a failure has occurred,
as opposed to continuing the failed plan. This represents an important use of sensor
information, and expands the previous notion of reachability to include failure. Gold-

berg applied preimage planning ideas to construct manipulation plans that orient an

37

object using a parallel gripper without sensors [74], [75]. Fox and Hutchinson developed
methods for computing backprojections that include visual constraint rays that result
from the correspondence between edges in the workspace and the image plane [66]. Algo-
rithms for computing motion plans in the presence of probabilistic uncertainty for mobile
robots have been developed in [44], [89], [100]. In [188] a sensory uncertainty field was
introduced that indicates positional sensing accuracy for a mobile robot as a function
of configuration. The field is then used to determine a continuous path from the initial
configuration to the goal configuration that minimizes the amount of expected sensing
error or some combination of sensing error and path length. A sensor uncertainty field
that includes differential sensor observations was presented in [142]. Object grasping has

also been carefully studied in the context of manipulation planning under uncertainty

(e.g., [24]).

2.2.2 Motivation

Consider two basic questions about the performance of a particular robot strategy:
(1) How likely is the goal to be achieved? and (2) If the goal is achieved, how efficient is
the solution? In manipulation planning work, usually only the first question is precisely
addressed, although there is often some weak preference for more efficient plans (e.g.,
fewer backchaining steps). In traditional preimage backchaining work, people have been
interested in generating strategies that answer the first question by guaranteeing that
the goal will be achieved.!

When a probabilistic or stochastic formulation is considered, both of these questions
should be carefully considered. Many stochastic models will lead to guaranteed goal

achievement for any possible set of bounded-velocity motion commands, even though

1One notable exception is the consideration of sensorless backchaining in terms of geometric optimality
on a Markov chain that describes grasped part orientations [74].

38

the probability that the goal will be achieved in some reasonable finite time interval is
very small. For example, continuous Brownian motion will eventually lead the robot to
any nonzero-measure goal region, which under perfect sensing indicates that Brownian
motion achieves probabilistic completeness (a term used in [12]). This fact forms the basis
for incorporating specific diffusion processes into robotic plans in [57]. For our context,
however, the expected time to actually achieve the goal can be arbitrarily high. This
indicates that for at least some problems, the probability that the goal will eventually
be achieved is of little value for selecting a planning strategy.

In general, the same type of difficulty can be imagined under nondeterministic uncer-
tainty. There might exist a large set robot strategies that are guaranteed to achieve the
goal, but many solutions could be impractical if the execution time is too high. There-
fore the efficiency of the solution (e.g., the amount of time the robot is expected to take
to achieve the goal) is of great importance in evaluating a robot strategy under general
models of uncertainty. This form of efficiency has also been useful in related robot con-
trol contexts (e.g., [21], [95], [176]). In this chapter, it is shown how objectives can be
precisely defined that answer both of the questions above and guide the selection of a
robot strategy.

The classical preimage has been a useful conceptual tool for developing manipulation
planning algorithms. In its most common use, however, the preimage is defined in a
limited manner. Usually a preimage requires that: (1) the robot executes a fixed motion
command, and (2) elements in the preimage indicate from where the robot is guaranteed
to achieve the goal. In our work, we replace fixed motion commands with a state-feedback
or information-feedback controller for which trajectories can be evaluated with a precise
objective. We also consider models that do not limit preimages to guaranteeing that the
goal is achieved. A notable departure from this model was in the definition of probabilistic

backprojections in [26], [27]. One motivation behind probabilistic backprojections, as

39

well as our approach, is that worst-case analysis tends to eliminate the consideration of
many reasonable robot strategies. The absolute requirement that the goal is recognizably
achieved can be too strong, particularly as the amount of uncertainty in control and
sensing is increased. Furthermore, if bounded uncertainty models are replaced by smooth
probability density functions, then it becomes impossible to guarantee? that the goal will
be achieved in a fixed amount of time, except in restricted cases. For this reason, we
consider the formulations under probabilistic uncertainty to represent important tools
for analyzing manipulation planning problems.

The relationship between sensor and action history and decision making has long
been considered important in planning under uncertainty (e.g. [62], [109], [124]). For
our context, we want to optimize the performance of the robot, while directly taking into
account the complications due to limited sensing. By using the concept of information
state, as considered in stochastic control and dynamic game theory, we provide a useful
characterization of this relationship. When there is perfect state information, the robot
conditions its actions on its current state (or configuration); however, with imperfect state
information, the robot actions are conditioned on information states. We will define a
robot strategy to be a mapping (or sequence of mappings) on an information space,
which a prior: takes into account the various contingencies presented during execution.
For this reason, no form of dynamic replanning is required. The information state concept
is similar to the definition of knowledge states, considered in [58], and has also recently
been proposed in [10].

The general structure of our formalism allows error models to be changed without al-
tering the general computational approach. This can facilitate the iterative improvement
of error models that are appropriate for a particular robotic system. For instance, if a

better sensing model (in which the error is described in terms of a probability density

2“Guarantee” in a stochastic setting should technically be replaced by “achieve with probability one.”

40

function) is determined for a given application, the appropriate density can be replaced,
and much of the general approach remains the same. The formulation of objectives can
also easily be changed.

We next discuss the type of solutions that can be obtained. Recall from Section
2.2.1 that the computational complexity of a basic manipulation planning problem is
PSPACE-complete for 2 [136] and nondeterministic exponential-time hard for R? [31],
[32]. Solutions for various stochastic, Markov systems are also known to have difficult
complexity [144], [145]. In optimal control theory, which has many commonalities with
our approach, closed-form solutions can rarely be found, which allows efficient compu-
tation of the solution for a particular system. Bertsekas considers solvable stochastic
control problems to typically be exceptions in applications [17]. For example, one of the
most celebrated solutions in stochastic optimal control theory is for the linear-quadratic
Gaussian (LQG) regulator problem [2], [6], [28]. For this case, however, the system (or
motion model in our terms) is linear, the loss functional is quadratic, the uncertainties
are characterized by Gaussian random variables, and the state space does not have ge-
ometric constraints. These represent severe restrictions on the set of problems that can
be solved.

For manipulation planning problems that we define, there are several complications
in comparison to a solved problem such as LQG: (1) the motion models are complex in
comparison to a linear model, particularly when contact with obstacles occurs; (2) the
performance depends directly on halting the robot (or system state) in some subset of the
configuration space (or state space); and (3) we would like to use different densities (for
probabilistic uncertainty) or bounded sets (for nondeterministic uncertainty) to model
uncertainty without the burden of performing a distinct, detailed analysis for each case.

These complications offer limited hope for computation of closed form, exact solutions,

which motivates us to consider numerical solutions as a practical alternative. Brost and

41

Christiansen have argued that numerical solutions may be the only practical approach
to probabilistic backprojection computation [26]. Given the variety of problems that we
wish to consider, a numerical computation method provides the greatest flexibility. We
present algorithms that are based on the dynamic programming principle, and apply
them to a general set of manipulation planning problems. The numerical solutions that
we obtain can be improved at the expense of greater computation. The complexity of
our method, however, is exponential in the dimension of the state space or information

space, which we consider to be practical for a few dimensions.

2.3 General Definitions and Concepts

In this section, we define the general concepts and terminology that form the basis
for our approach. We conceptualize the manipulation planning problem as a dynamic
game that is played between two decision makers, the robot and nature, that influence
the general state of the system. The robot has a general plan to achieve some goal,
while nature makes some decisions that potentially interfere with the robot. Section
2.3.1 presents the basic concepts that characterize the motions and control of the robot.
Section 2.3.2 introduces information space concepts, which are used for planning under
configuration-sensing uncertainty. Section 2.3.3 describes alternative representations of
the information states. Section 2.3.4 defines a robot strategy, the incorporation of a ter-
mination condition into a strategy, and the evaluation of a strategy with a loss functional.
Section 2.3.5 presents a specific model that is based on previous manipulation planning

research, which will be used for the examples in this chapter.

2.3.1 States, stages, and actions

42

State space The position of a robot, A, in a workspace is represented by a point in
an n-dimensional configuration space, C, for which n is the number of degrees of freedom
of A. For manipulation planning, a subset of C, denoted as C,q;q, i usually defined
(see Section 1.2 and [109] for configuration-space details). This corresponds to points
in C at which either: (1) A does not touch an obstacle, or (2) the boundary of A is
in contact with the boundary of some obstacle, but the interiors do not overlap. The
second condition enables the possibility of guarded motion and compliance [195], which,
for example, allows the robot to execute a motion along the tangent of an obstacle
boundary. For the examples in this chapter, we define the state space as X = Cyqiq (for

collision-free planning, we would use X = Cj,., which is the interior of Cyiq)-

Stages Consider a discretized representation of time as stages, with an index k£ €
{1,2,...,K}. Stage k refers to time (k — 1)At¢. The state at stage k is denoted by
x,. We generally take At sufficiently small to approximate continuous paths. The final
stage, K, is only defined to ease technical considerations as the system evolves toward
infinite time. Because we expect the robot to achieve the goal in some finite time (if it is
achievable), consideration of infinite-length trajectories is not necessary. The specifica-
tion of K is not required by our algorithms due to stationarity, which will be discussed
in Section 2.3.4. The formalism could also be defined in sufficient generality without dis-
cretizing time, and consequently defining controlled diffusions [104]; the definitions that
would follow require the use of stochastic differential equations and measure-theoretic
concepts. For our context, a discretized representation of time facilitates the develop-
ment of the numerical computation approach. Furthermore, actual robot systems will be
limited to discrete-time sampling for acquiring sensor information and executing motion

commands. Hence, the discrete-time representation seems most appropriate.

43

Actions An action (or command), which is denoted by uy, can be issued to A at each
stage k. Let U denote the action space for A, requiring that uy € U. Nature also chooses
actions. Let 6, denote an action for nature, which is chosen from a set ©. Consider 6
to be a vector quantity that is divided into two subvectors, 8 and 6; (i.e., 6, = [0F 6}]).
As will be seen shortly, 63 affects the outcome of A’s actions, and 6} affects the sensor

observations of A.

State transition equation To describe the effect of a robot action with respect to

state, we define a state transition equation as

Tp41 — f(xk,uk,HZ). (22)

Hence, given a robot action, nature’s action, and the current state, the next state is
deterministically specified. During execution, however, A will not know the action of
nature. A specific example of a state transition equation is given in (2.15) of Section 2.3.5.

When considering nondeterministic uncertainty, we use the state transition equation

to obtain the following subset of X:
Fk+1(.’17k, ’U,k) = {f(ﬂ?k, Uk, 0;;) S X|9;cl S @a}. (23)

This set represents the possible next states that can result from a single application of
the state transition equation.

Under probabilistic uncertainty, we assume that the probability density function
(pdf), p(6%), is known. For this probability density and the remaining probability densi-
ties in the chapter, we implicitly assume there is some underlying probability space, and
random variables with densities are constructed using appropriate measurability condi-
tions (see [197] for a treatment of these technical concerns). By using the state transition

equation, we can obtain a pdf for 2,1, which is represented by p(zki1|zk, uk)-

44

In general, we will use the notation, F', to refer to minimal subsets of X that can
be inferred from the arguments. The role of F' in our expressions for nondeterministic
uncertainty can be considered analogous to the role of p in probabilistic expressions.
Thus, F' is a generic representation for a subset of X, while p is a generic representation

for a density on X.

2.3.2 Imperfect sensing and information spaces

In this section, we consider uncertainty in sensing, which implies that the current
state is not known by the robot, and actions must be chosen on the basis of imperfect
information. Therefore, actions taken by the robot will be conditioned on an information
space, as opposed to the state space. This information space concept has been adapted

from stochastic control [105] and dynamic game theory [6] to fit our particular context.

Sensor observations We begin by defining a general model of robot sensing. A sensor
can be viewed as a mapping from states onto sensor values with potential interference
that is caused by nature. At every stage k, the robot makes an observation that is

governed by the equation,

Yr = hi(zk, 03), (2.4)

which we term the observation equation. A specific example of an observation equation
is given in Equations (2.16) and (2.17) of Section 2.3.5.

The values, yi, belong to a sensor space, denoted by Y. This model indicates that
the robot receives information at every possible stage; however, this assumption can be
relaxed. For example, in visual servo control applications, the servo rate for the robot
joint controllers is typically much faster than the sampling rate of the vision system (see,

e.g., [129]). It might also be the case that a sensor only provides information at randomly

45

chosen stages (as is the case for the visual servo system reported in [65], in which the
vision system’s sampling rate varies according to the amount of processing required to
track moving objects in the scene). Such variations are straightforward to consider.
Suppose that we are considering nondeterministic uncertainty. The set of possible
values for z; after only observing y; can be determined from the observation equation

as:
Fio(ye) = {zr € Xlyx = h(zx,05),6; € ©°}. (2.5)

Under probabilistic uncertainty, we assume that the pdf, p(65), is known. By using
the observation equation, we can obtain a pdf for x, which is represented by p(xg|yx)-
As a simple example, h could represent a position sensor that measures x; with Gaussian
noise. If h(zg,0;) = xr + 65, and p(6;) is a Gaussian density, then p(zx|yx) is Gaussian.
If Y = X and h; is reduced to the identity map from X to Y, then the sensing model
reduces to perfect state information.

Equation (2.4) represents the output equation used in control theory, and is also sim-
ilar to the projection of world states onto sensor values, as used in previous robotics
contexts (e.g., [50]). Also, such transformations have been studied extensively in statis-

tical image modeling [70], [115], [178] and in sensor error modeling [93].

History and information As discussed in Section 2.2.2, the relationship between
sensing and action has long been considered important in motion planning under uncer-
tainty. The following definitions precisely describe the sensing and action history that A

has available. For a given stage k, let 7, denote some subset:

me C {ur, uay o Uk—1, Y1, Y2, - - Yk} (2.6)

The value 7;, is a set of past actions and observations that are known to A at stage k, and

is termed the information state of A. For instance, we could consider a memoryless robot,

46

in which 7, = y;. As another example, we could have a sensorless robot as considered in
[74], in which 7, = {uy,... ,ux—1}. We could also consider the stage index k as part of
the information space for the purpose of developing robot strategies that involve timing;
however, we will not explicitly consider k as part of 7, in this chapter.

The set of values that 7, can assume is denoted by Ny, and is termed the information
space. We define an information structure as the set of Ny for all 1 < k < K. As it is
presently defined, the dimension of the information space grows linearly with the number
of stages, which appears impractical. It turns out that alternative representations of the

information space can be determined; this is the subject of Section 2.3.3.

2.3.3 Representations of the information state

In this section, we present alternative ways to interpret the information space. Under
nondeterministic uncertainty, this interpretation will be a subset of the state space. Under
probabilistic uncertainty, this interpretation will be a pdf on the state space.

Consider the case in which the robot has perfect memory. Each 7, then corresponds
to complete history of previous robot actions and observations. If U is n;-dimensional
and Y is ny-dimensional, then, in general, the dimension of Ny will be [k(n1 + n2) + ng)-
dimensional. A space that grows significantly with each stage (and becomes infinite-
dimensional when K = oo) is very unappealing for designing strategies. The information
space representations presented in this section do not grow with the number of stages

and provide more intuitively satisfying characterizations of the information state.

The case of nondeterministic uncertainty An alternative to maintaining a growing
history is to consider subsets of X that represent the possible current states, xj, for a
given information space value, ;. We will represent the minimal subset of X that can be

inferred from 7y as Fi(ny). In other words, Fy(n;) represents the set of all states, zy, that

47

could possibly be the true system state, given the history 7. By using this approach, we
will show that the information state subset Fjy1(nx+1) can be determined from Fj(n),
when uy and y,,; are given.

For practical purposes, Fj(n;) can be considered as an alternative representation of
the information state. This representation is intuitively satisfying because we can think
of the uncertainty as a set that represents possible locations in the state space X. In
traditional preimage planning research, uncertainty due to imperfect sensing has often
been viewed in this way.

We briefly indicate how an information state subset is obtained at a given stage.
Initially, we have Fj(n;). An expression for Fj,1(nx,1) can be derived in terms of F(n),
ug, and yxy 1. Suppose inductively that we have Fj(ng). First consider the effect on
the state space of using the action, ug. Recall from Equation (2.3) that Fy(xg, ug)
represents the possible values zj,; that could be obtained through a single application
of the state transition equation. We can define

Feri(moue) = U Frra(zn, u)- (2.7)

T EFy(ng)

Note that 7,1 can be specified with 7, ug, and ygy1. Recall from Equations (2.5) that
F.(yx) denotes the set of possible values for x; after only observing y;. By maintaining

consistency with the observation of ., the following can be obtained:

Froi1(Mes1) = Fror1 (Ue+1) () Fro1 (e, ug), (2.8)

which depends on (2.3) and (2.5).
If A does not have perfect memory, then the condition {n,us} is replaced in (2.8)

by the appropriate subset of history.

The case of probabilistic uncertainty Under probabilistic uncertainty, the infor-

mation state can be considered as a conditional density on the state space, denoted

48

as p(xg|ng). This approach can be used to determine the information state density
P(Tk+1|Me+1) from p(xg|me), when uy and ygiq are given. This observation allows the
development of several well-known stochastic control results, such as the Kalman filter,
when all densities in the information space take some parametric form of fixed, low di-
mension [105]. This representation is intuitively satisfying, because we can think of A’s
uncertainty model as a density representing possible locations in the state space X.

We briefly indicate how the information state density is obtained. These equations
can be considered as probabilistic versions of the nondeterministic results. Initially, we
have p(z1|m:). We can derive an expression for p(zx41|mk+1) in terms of p(x|nk), ug, and
Yk+1- Suppose inductively that we have p(zx|ny). First consider the effect on the state
space of using the action, u;. Using the density representation of the state transition

equation (from Section 2.3.1) we obtain, through marginalization with respect to Xj,

P(@ks1 |k, uk) = / P(Zkt1|Th, wr)P(@k| MK) A (2.9)

Recall from Section 2.3.1 that p(zyy1|xk, ux) is inferred from the state transition equation.
Note that 1,1 can be specified with 7, ux, and yx,1. By using Bayes’ rule on X, and

Yi11, the following can be obtained:

x x , U
p(T |Tes1) = P(Wr+1|Tr+1)P(Trr1 [0 ur) , (2.10)

/p(yk+1|$k+1)P($k+1\77k, Uk) AT 41

which is a function of p(yk+1|zx+1) as defined in Section 2.3.2. A more detailed discussion
of (2.10) can be found in [105]. If A does not have perfect memory, then the condition

{nk, ur} is replaced in (2.10) by the appropriate subset of history.

49

2.3.4 Strategy concepts

Motion strategies At first it might seem appropriate to define some action wuy for
each stage. In general, due to the control uncertainty, it is not possible to predict the
trajectory of the robot for given motion commands. It is, therefore, advantageous to
allow the robot to respond to information that becomes available during execution.

We consider robot strategies for two cases: perfect information and imperfect infor-
mation. Figure 2.4 shows block-diagram representations of the concepts that will be
described in this section. Suppose that the robot has perfect state information. We can
implement a state-feedback strategy at stage k as a function g, : X — U. For each state,
Ty, a strategy yields an action uy = gx(zx). The set of mappings {g1,92,...,9x} is
denoted by g and termed a (robot) strategy of A.

If the robot does not have direct access to state information, its actions are instead
conditioned on the information state. In this case, we define a strategy at stage k of A
as a function g, : Ny — U. For each information state, 7, a strategy yields an action
ur = gr(nk). In a sense, the “planning” actually occurs in this information space. These
strategy concepts are equivalent to a feedback control law [17], [105], and are similar to
a conditional multi-step plan in manipulation planning [110].

We also define a strategy, 7%, for nature. Nature is considered as a decision maker
that can interfere with the robot; therefore, we allow nature’s actions to depend in
general on the state, z;, and the action of the robot, uy. We can define a pure or
deterministic strategy for nature as a mapping at each stage as 72 : X x U — ©. Under
nondeterministic uncertainty, we will assume that nature implements a deterministic
strategy that is unknown to the robot. Let I'® refer to the space of strategies that are

available to nature under nondeterministic uncertainty.

50

Action

Robot Strategy State Transition State

Equation
Cont rol f
Acti on
Initial State

Nature Strategy

™ Robot Strategy ~ [*°U°" g

State Transition State
Equation

Cont rol T
Action
Initial State

Nature Strategy |sensing
Action

Information| |nformation Goservation| g i
! ensor Mappin
State Mapping Pping

Initial Information
(a)

Figure 2.4 A dynamic game against nature with: (a) perfect information and (b) im-
perfect information.

o1

Under probabilistic uncertainty, we consider a randomized or mized strategy for na-
ture, in which the action of nature is represented by a pdf, p(6x) (or we can more generally
consider p(f|xk,ux)). The specific action of nature at stage k is denoted by 6y, sampled
from the random variable O. Therefore, the robot is given a pdf, p(f), that character-
izes the action taken by nature at stage k. Although the randomized strategy is known
by the robot, the actions that will be chosen are sampled from a random variable at each

stage, and are thus unknown to the robot.

Termination conditions The notion of a termination condition has been quite useful
for formulating robot plans that tell the robot when to halt, based on its current, partial
information [62], [110], [124]. The same concept is needed in our context; hence, we

define a termination condition T'Cy at each stage by a binary-valued mapping,
TCy : N, — {true, false}. (2.11)

The termination condition can be considered as a special type of action that can cause
the robot to halt. With perfect state information, /Ny is simply replaced by X in Equation
(2.11). We require that if TCy = true, then TCy, 1 = true. This implies that once the
termination condition has been applied, it cannot be retracted (i.e., the robot terminates
its motions).

Let T'C' denote the complete specification of T'Cy, for all k. The termination condition
is implemented so that the robot terminates at some stage £ < K+ 1, making the specific
choice of K not important, except that it is sufficiently large. We will use the notation
v to denote the pair (g,7C'), which can be considered as a strategy with termination
condition. This pairing is similar to the concept of a motion command as defined in [110].
We will use the notation I" to denote the set of all v that are available to the robot. It

can also been seen that the use of this termination condition in the determination of an

52

0 Stage K+1

Without use of termination condition

0 Stage K+1

With use of termination condition

Figure 2.5 The termination condition forces the robot to halt at a given state. The
halting stage is a priori uncertain for a given initial state and strategy.

optimal strategy is equivalent to defining an optimal stopping rule, as done in optimal
control theory [105].

When perfect information is available, the most appropriate choice for TCy is TCy =
true if and only if x4 lies in the goal region. The termination condition becomes more
interesting under imperfect information. Because the state x; cannot necessarily be
predicted for a given initial state, x; and strategy, v, the particular stage at which the
termination condition will be applied is uncertain. However, because the robot remains
motionless after the termination condition becomes true, we can consider the resulting

states at stage K + 1. Figure 2.5 indicates the effect of the termination condition.

Loss functionals We encode the objectives that are to be achieved by a nonnegative

real-valued functional L(z1, ..., Tx 41, U1, ..., uk, T'C), called the loss functional. Note that

93

the loss functional is not written as a function of ~, but in terms of the actual executed
trajectory and action histories. The ultimate goal of the planner is to determine a strategy
g and termination condition 7'C' that causes L to be optimized in an appropriate sense. As
will be discussed in Section 2.6, with nondeterministic uncertainty a strategy is selected
that optimizes worst-case performance, and with probabilistic uncertainty a strategy is
selected that optimizes expected-case performance.

We assume that a loss functional is of the following additive form, which, except for
the termination condition, is often used in optimal control theory [105] and is similar to

(1.7):

K
L(.’Iil, ey TE4+15 Uy -y UK, TC) = Z lk(.’Ek, Uk, TCk) + lK—H(-TK—H)-
k=1

(2.12)

The first K terms correspond to costs that are received at each step during execution of
the strategy. The final term, [x; is a cost that can be used to indicate the importance
of terminating in the goal. This form is quite general and facilitates the application of
the dynamic programming principle, as discussed in Section 2.6.

We next present two useful loss functionals that we have considered. Let G C X
represent a goal region in the state space. The following loss functional distinguishes

only between success and failure to achieve the goal:

0 if TK+1 € G
L(z1,..Tg 41, U1, -, ug, TC) = . (2.13)

1 otherwise

Under probabilistic uncertainty, this loss functional will yield the probability of success
for a given strategy (in the same manner that a 0-1 loss results in the probability of an
incorrect decision in Bayesian decision theory [46]).

Often we will want to consider the cumulative cost of executing motions. Under the

bounded velocity assumption, the following loss functional can measure the length of the

54

executed trajectory:

(K+1
Z l(uk,TC'k) if Tyl € G
k=1

L(Il, LK1, ULy eeny UK,TC) = X

(2.14)

Cy otherwise

Above, Il(uy, TCy) denotes the cost associated with taking action wuy, and we require
that I(ug, TCx) = 0 if TCy = true. Hence, loss does not accumulate after the robot
has terminated. We use C} to express how important it is to achieve the goal. As Cf
becomes less than a typical aggregate action cost that achieves the goal, then strategies

will be preferred that do not necessarily expect to achieve the goal.

Stationarity For the problems that we consider, the optimal action u;, and termina-
tion condition, 7'Cy, do not depend on the stage index, k. This is because the optimal
strategies for the problems in this context are stationary, a concept that is defined and
discussed in [6], [105]. Stationarity implies that such components as the state transition
equation, free configuration space, or loss functional are not stage-dependent. For exam-
ple, it might be the case that the workspace contains a known, moving obstacle. Many
quantities would then depend on the stage index, resulting in a robot strategy that was
time-dependent. This is analogous to the configuration-time space, C7, as considered
in [109] for planning amidst moving obstacles. In general, our approach supports the
analysis of time-dependent problems; however, we preclude them from consideration in

this chapter.

2.3.5 Specific model details

In this section, we present specific definitions of a state transition equation and an

observation equation. These models are inspired by those used in previous manipulation

95

planning research and are used in examples throughout this chapter. In general, a variety

of other types of models could be defined.

The control model Suppose the robot A is a polygon translating in the plane amidst
polygonal obstacles. The action set of A is a set of commanded velocity directions, which
can be specified by an orientation, yielding U = [0, 27). The robot will attempt to move
a fixed distance ||v||At (expressed in terms of a constant velocity modulus, |[v]|) in the
direction specified by u;. The action space of nature is a set of angular displacements
0;, such that —ey < 07 < €y, for some maximum angle €. Under nondeterministic
uncertainty, any action 8¢ € [—ey, €p] can be chosen by nature. When using probabilistic
uncertainty, p(0¢) could be a continuous pdf, which is zero outside of [—e¢p, €]

There are several cases to consider in defining the state transition equation, f. First
consider the state transition equation when x; € Cj, at a distance of at least ||v||At
away from the obstacles. If A chooses action u from state zy, and nature chooses 67,

then x;, is given by

cos(ug + 6%)
fzg, ug, 05) =z + ||v||At . (2.15)

sin(ug + 05)
Let Ceontact represent the boundary of Cyyee (hence, Ceontact = Coatia \Crree)- If T € Ceontact,
with a distance of at least ||v||At from the edge endpoints, then a compliant motion is
generated by using the generalized damper model (see e.g., [195]) for certain choices of
ug. If uy points into the obstacle edge with a sufficient angle to overcome friction, then
the robot moves a fixed distance parallel to the edge. Otherwise, the robot either remains
fixed, or moves away into Cf,... The remaining cases describe when the robot moves from
Cfree t0 Ceontact, from Ceontact 10 Cree, Or from one edge in C,qiq to another. These cases

are straightforward to define with the generalized damper model, as discussed in Section

2.2.1.

o6

This model of uncertainty does not correspond completely to that used in [26], [110],
[124]. In our model, nature repeatedly acts at each time At. To correspond more closely
with the traditional model, no additional uncertainty would be introduced if uy = ugy;.
Under the control model that we have defined, this would mean 6,1 = 0 if up = ugyq.
This model can be implemented by including the previous u, as a component of the state

space.

The sensing model We now present a sensing model that is similar to that used in
[26], [62], [110]. This sensing model will be used in Section 2.6.6. The robot A is equipped
with a position sensor and a force sensor. Assume that the position sensor is calibrated
in the configuration space, yielding values in R®2. The force sensor provides values in
[0,27) U {0}, indicating either the direction of force or no force (represented by 0).

We consider independent portions of the observation equation: AP for the position
sensor and h/ for the force sensor (which together form a three-dimensional vector-
valued function). We partition the sensing action of nature, 65 into subvectors 6;” and
H,Sc’f , which act on the position sensor and force sensor, respectively. The observation for
the position sensor is yf = h?(z, 0,7) = zx + 6;7. Under nondeterministic uncertainty,
;" could be any value in ©;". If probabilistic uncertainty is used, a density is presented,

such as

2. for ||6;7] < e
s T2 k P
p0") =4 "7 , (2.16)

0 otherwise

which is used for some examples in Section 2.6.6. In (2.16) a radius ¢, is specified, and
;" is two-dimensional.

For the force sensor we obtain either: (1) a value in [0,27), governed by y,{ =
hf (x4, HZ’f) = a(zg) + OZ’f, in which zy € Ceontact, and the true normal is given by a(zy),

or (2) an empty value,), when the robot is in Cfre.. When the robot configuration lies

57

in C.ontaet and probabilistic uncertainty is in use, then the density can be represented as

s for 07| < ¢
p(Oy) =4 % : (2.17)
0 otherwise

for some positive prespecified constant €; < %71’. We consider the random variables of

0:7 and 65 to be independent and identically distributed over all stages.

2.4 Forward Projections

In this section, we present forward projections for each of the four uncertainty cases
that are considered in this chapter. A forward projection is used to characterize the
possible future states, under the implementation of a strategy, from an initial state. The
forward projection concepts presented here are based on forward projection concepts
that have appeared in manipulation planning research (e.g., [26], [62]). In our work, the
forward projections result from the implementation of a strategy, 7. We conclude this

section by presenting some computed examples of forward projections.

2.4.1 Nondeterministic forward projections

Recall from Section 2.3.4 that under nondeterministic uncertainty, the strategy of
nature 4’ is deterministic, but unknown to the robot. Under perfect sensing, 7Y defines
a specific action 6, € © that will be taken by nature at every stage, k. The resulting
nondeterministic forward projection will include all of the system states that could result
from the various actions of nature. In this way, it yields a set of possible futures under

the implementation of a strategy.

o8

2.4.1.1 The perfect information case

We use the notation Fj(z;, g) to denote the minimal subset of X that is guaranteed
to contain z;, if the system begins in state x; at stage ¢ and strategy g is implemented
up to stage j.

Assume that some g is given, and that at stage k, the state z; is known. The action

taken by the robot at stage k is known to be uy = gi(zr). Therefore, we can write

Fii1(xk, 9) = Frga @k, gk (2k)) = Frga (T, uk), (2.18)

in which Fj,q(xg, ug) is given by Equation (2.3). Although the action is known, the
resulting next state z,,; is nondeterministic because of nature, 7 € ©¢.

Suppose that we wish to determine the outcome at stage zj. 2, if we know zx. From
(2.3), we already know that z4,; € Fjy1(xk, ux). The nondeterministic action of nature

at stage k + 1 must next be taken into account to yield

Frvo(zh, 9) = {f (Tht1, Upr1,0541) € X|2ht1 € Fiop1(2p,9), Oy € OF

(2.19)

This forward projection can also be expressed with a set union as

Fyio(z, 9) = U Frio(2r41, 9)- (2.20)

Tp41€F,11(T8,9)

One interpretation for this representation is that from each possible state in the single-
stage forward projection from stage k to stage k + 1, the single-stage forward projection
from stage k41 to stage k+2 is possible. The resulting subset of X represents the union
of all of these single-stage forward projections (see Figure 2.6).

The forward projection for a finite number of stages from stage 1 can be considered
as an iterated union,

Fi(z1,9) = L{ U U Fi(zk-1,9), (2.21)

T2€ 1,9) z3€F3(z2,9) T 1€F_1(T—2,9)

99

Stage 1 Stage 2 Stage 3

Figure 2.6 A depiction of a two-stage forward projection under nondeterministic control
uncertainty.

which is an extension of (2.20). The projection from any stage k to stage k + N can be
similarly defined.

The next step is to include the termination condition to determine a forward projec-
tion for 7y, as opposed to g. Recall that the robot remains motionless after 7°'C' becomes
true. Hence, the effect of the termination condition is equivalent to considering the re-
sulting location of the robot at stage K +1 (assuming that under all possible trajectories,
the termination condition was met before K + 1). This results in Fi 1(z1,), which can
be constructed by replacing g with v in Equations (2.18) to (2.21).

The classical reachability and recognizability concepts [62] can be defined using our
formalism. We say that the goal is reachable at stage k under «y if Fy(xz;,9) C G. In
other words, if the strategy is guaranteed to bring the robot into the goal region for some
k, then reachability at stage £ holds. We can also define a reachability that does not
depend on k. We can say that the goal is reachable if, for every possible state trajectory
{21, ..,2k41} (under the implementation of a given g), there exists a k such that z, € G.

A stronger condition is that the goal is recognizably achieved under 7, which means
that Fi1(z1,7) C G. This condition implies that the robot is guaranteeed to terminate

in the goal region.

60

2.4.1.2 The imperfect information case

We consider, as in the perfect information case, a deterministic strategy for nature,
7%, which is unknown to the robot. We will define the forward projection in a manner
similar to the perfect information case.

The previous forward projection, Equation (2.21), provided a subset of X in which
the system state will lie after the execution of a strategy. With imperfect sensing, we
can consider the motions to occur in the information space. In fact, we can consider the
information space as a new “state space” in which there is perfect “state” information.
For this reason, a forward projection can also be defined directly on the information
space.

It is assumed for the forward projection that the history has not yet been given.
Suppose that an information state, n, € Ng, is given. Under the implementation of g,
the action uy = gx(ny) is known.

We now define the information forward projection for a single stage. This will yield
a future subset of the information space, which is an intermediate concept that is used
to define the forward projection as a subset of the state space. We have previously used
F to represent a subset of X, and we will use F' to refer to a subset of the information
space. We obtain Fk+1(77k> 9(mk)) = Fk+1(7lka ug). The forward projection, Fk+1(7lka ug), is
defined as the set of all N1 € Ny such that if yx1 € Mey1, then Yo = hpyr (Tpy1, 054 1)
for some zy1 € Fy(zp,ur), 07, € ©°, and xy, € Fi,(n). This forward projection depends
on Equation (2.3), and Fj(nx) C X is the subset representation of the information state
from Section 2.3.2. To obtain the information forward projection from stage 1 to some

stage k, we can iteratively apply the same steps.

61

The information forward projection can be mapped to subsets of the state space. For
a given F, (11, g), the subset of X in which the system state will lie is

U Fe(m)- (2.22)

Mk €Fr(m1,9)

The goal is reachable at stage k if the set defined in (2.22) is a subset of G. As in
Section 2.4.1.1, we can replace g with v in the above expressions to yield the forward

projection with termination condition, Fk.1(n,7). Hence, recognizability can also be

defined.

2.4.2 Probabilistic forward projections

Under nondeterministic uncertainty, the forward projections yield subsets of the state
space; however, for probabilistic uncertainty, the forward projections will be specified by
pdf’s on the state space. We use the notation p(zy |z, g) in this section to represent the
density obtained at stage &k if the system begins at state xz; at stage k and strategy g is
implemented. This density follows directly from the state transition equation, and the

densities for nature of the form, p(6%).

2.4.2.1 The perfect information case

The following development parallels the development of the forward projection in
Section 2.4.1.1. Assume that some g is given, and that at stage k, the state xj is known.
The action taken by the robot at stage k is known to be u; = gx(xx). Therefore, we can

write

p($k+1\$k, g) = P($k+1\$k, 9k (l"k)) = P(l“k+1|33ka Ulc)- (2-23)

Recall from Section 2.3.1 that p(zx41|Tk, ux) can be determined from the state transition

equation.

62

p(x) p(x) p(x)

X X X
Stage 1 Stage 2 Stage 3

Figure 2.7 A depiction of a two-stage forward projection under probabilistic control
uncertainty.

Next consider predicting the outcome at stage k£ + 2, if we begin at stage £ and apply

Plarsaltn 9) = [(orsaloess, gt (0r4)p(@asalon, 91(2) daisa.

(2.24)

The result after applying two actions is a posterior density on X. Figure 2.7 depicts
the forward projection; this can be contrasted to Figure 2.6, which shows the forward
projection under nondeterministic uncertainty.

The forward projection for a finite number of stages from stage 1 results in the

posterior:

p(l"k|1f1,9) =

/p($k|33k—1, Ik—1(Te—1))P(Tk—1|Th—2, Gr—2(Tk—2)) - - - P(T2|T1, 91(21))dw2d3 - - - dT)o s
(2.25)
The projection from any stage k£ to stage k + N can be similarly defined.
The next step is to include the termination condition to determine a forward pro-
jection for v, as opposed to g. We can replace g with v in the conditions above, and
define p(zx1|z1,7) by using the assumption that the robot remains motionless after the

termination condition becomes true.

63

We can now define probabilistic notions of reachability and recognizability. The

probability that the goal is reached at stage k is given by

/Gp(xk:‘xlag)dxk: (226)

in which the region of integration is the goal region, G C X.

The probability that the goal is recognizably achieved is

/GP(HJK+1|$1, V)dT i1 (2.27)

2.4.2.2 The imperfect information case

In this section, we develop the forward projections for the case in which there is
probabilistic uncertainty in both sensing and control. The forward projection for this
case will be considered as a density on X, which is conditioned on a particular strategy
and initial state (either z; or ;). This density indicates where the robot will be likely to
end up when a fixed 7 is implemented, either after T'C' is satisfied, or at some specified
stage. We could also derive p(n|n1,), resulting in a pdf on the information space.

At stage k, the density on X after starting at 7, is given by
p(l"k|771a g) =
/p(l'k|77k—1; Ie—1(M—1))P(Mk—11M—2, Gr—2(Mk—2)) * = - (2|11, 91 (1)) —1 - - - .
(2.28)

The first term in the integrand can be determined using Equation (2.9). Each of the

remaining terms can be reduced to

p(nk+1|77k,9k(77k)) =p(yl, coe s Yk, UL, - - ,Uk\yl; vy Yk, UL, - ;Uk) =p(yk+1|77k,uk)-
(2.29)

This reduction occurs because most of the sensing and action history appears on both

sides of the density expression. The right side of (2.29) can be further reduced to

64

p(yk+1|77k7 Uk) =

/p(yk+1|xk+1)27(501c+1\77k,Uk)dxkﬂ = //p(yk+1|$k+1)P($k+1\«’Ck,Uk)p(ﬂfk|77k)dfckd$k+1,
(2.30)

in which all three terms in the final integrand are known. The density p(ygi1|Tes1)
is inferred from the sensing model; p(zg41|Tk, ux) is inferred from the state transition
equation; and p(zg|nk) is the density representation of the current information state.

To include the termination condition we replace g by v above to obtain p(xg41|m1,7)-
Reachability and recognizability can be defined in a manner similar to that in Sec-

tion 2.4.2.1.

2.4.3 Computed examples

In this section we present computed examples that illustrate the forward projection
concepts. These forward projections are provided under the assumption that constant
motion commands are given to the robot. In other words, some u € U is chosen, and a
strategy is defined as vy = u for all k£ € {1,..., K}. This will make the comparison of
our forward projections to previous research more clear. In Section 2.6.6, we will present
forward projections obtained under the implementation of the optimal strategies, as
computed by our algorithms. These will also be compared to the forward projections
shown in this section.

We have computed forward projection examples in a straightforward way, by using a
discretized, array representation for the state space. Under nondeterministic uncertainty,
this can be considered as a bitmap representation of the forward projection. Under
probabilistic uncertainty, the representation approximates a pdf on X by using a fine
grid. In the first step of the computation, the array is initialized to reflect the uncertainty

associated with the initial state. At each additional step, the forward projection for the

65

next stage is represented in a new array, which is determined by applying the given
strategy to the elements in the previous array (in the implementation, only two copies
of the array are needed at any given time). We have found that this computational
technique produces reasonable representations of forward projections.

For the examples considered in this chapter, we assume a two-dimensional, bounded
state space (i.e., Cypqia € R?), in which each coordinate is constrained to lie in the interval
[0,100]. This could, for example, represent the configuration space of a planar robot that
is capable of translating in the plane. The obstacles in the workspace will be indicated
in figures by gray regions, and a black region will represent the goal.

The first example is depicted in Figure 2.8(a), and can be considered as a configuration-
space representation of the classical peg-in-hole problem (see for example [26], [62], [110],
[124]). The second example is depicted in Figure 2.8(b), and is designed to spread the
possible locations of the robot over a large portion of the state space. The initial con-
figuration, z1, for these two examples is (50,96), and the top, central part of the state
space. We use the control model discussed in Section 2.3.5 and assume that ||v||At = 3,
which implies that the robot is capable of moving three units at each stage. We assume
that the maximum angular displacement that can be caused by nature is ¢y = 48.8°. The
given strategy is v, = 37 for all k € {1,..., K} (i.e., move down).

Figures 2.9 and 2.10 show the forward projections at several different stages, under
nondeterministic uncertainty. Figures 2.11 and 2.12 show forward projections under
probabilistic uncertainty. For these examples, we assume that p(f®) is uniform on the
interval [—eg, €p]. Initially, the pdf is sharply peaked; however, as control uncertainty
accumulates, the density becomes more diffuse. Whenever compliance is possible, the
density becomes narrower in the direction perpendicular to the edge. The compliant
motions have the effect of “funneling” the probability mass into smaller regions. The pdf

values become larger because the density must integrate to one. This effect can be seen

66

(a) (b)

Figure 2.8 Part (a) depicts a simple peg-in-hole example, and part (b) depicts a more
complicated example. The obstacles are indicated by gray regions, and the black region
represents the goal.

in Figure 2.12 as a triangular obstacle causes the probability mass to divide. In the final
stages, there is also a peaking effect; this corresponds to the robot sticking at some final

state. Maximizing the probability that the goal will be achieved can be thought of as

causing as much of the probability mass to stay in the goal as possible.

k=2 k=9 k=16 k=27

Figure 2.9 The nondeterministic forward projection is represented by the lightly-shaded
regions.

67

Figure 2.10 The nondeterministic forward projection is represented by the lightly-
shaded regions.

A significant distinction between probabilistic and nondeterministic forward projec-
tions becomes clear after examining these results. Consider the problem from Figure
2.8(a). The nondeterministic forward projections indicate that little prediction is possi-
ble, because the set of possible states grows very quickly. The probabilistic projection is
approximately distributed over the same portion of the state space as the nondetermin-
istic projection; however, most of the probability mass appears to terminate in the goal
region. This corresponds closely to the arguments about worst-case analysis eliminating
many reasonable motion plans; these arguments were given in Section 2.2.2, and also in
[26], [27].

It is interesting to note that the densities in Figure 2.11 appear to be Gaussian, even
though the uncertainty model is specified as a uniform density. The effects of the control
uncertainty combine additively; therefore, the Central Limit Theorem [197] implies that
the densities will tend toward Gaussian. Even in Figure 2.12 at £ = 11, the probability
mass appears to be two disjoint Gaussians. We have observed that, as the probability
mass divides because of obstacles, the individual components also tend toward being
Gaussian. These results indicate that there may be little sensitivity to the particular

choice of error model, as long as the mean and variance remain constant.

68

0.4+ 0. 4+
0.3+ 0. 3+
P(x) P(x)
0.2+ 0.2+
0.1+
o
1
00 o5 50
60 ~ 40
40 60
x1 20 80 x2
100

o
0.3+ 0. a4
p(x) P(x)
0.2+ 0. 24
0.1+ 0. 14

o
0.3+ 0. 3+
pP(x) p(x)
0.2+ 0.2+
0.1+ 0. 1+
ol ol
100 100
80 20 80 20
60 o 40 60 o 40
40 40
x1 20 80 x2 x1 20 80 x2
100 100

k=26 k

Figure 2.11 The forward projection at several stages, with probabilistic uncertainty.

69

0.3+ 0. 3
P(x) P(x)
0.2+ 0. 2+

0.3+ 0. 3+
pP(x) P(x)
0.2+ o. 24
0.1+ 0.1+
ol y‘% !‘
3
100
80 20
60 a0
40 60
x1 20 80 x2
[§] 100

Figure 2.12 The forward projection at several stages, with probabilistic uncertainty.

70

(X
&
-

O
AL

Figure 2.13 Sample paths of the random process that results from the given strategy
(assuming probabilistic uncertainty). Part (a) corresponds to the peg-in-hole problem,
and part (b) corresponds to the more complicated example.

Figure 2.13 shows some additional results that are closely related to the forward
projections and that apply to the case of probabilistic uncertainty. Specifying a strategy
automatically defines a random process. The transition probabilities are known, and are
derived in part from the densities that represent nature’s actions. The random process can
be considered as a probability space in which the elements are sample paths. Each sample
path corresponds to one possible trajectory that could occur under the implementation
of the strategy. We can iteratively sample actions for nature and generate a path that
represents the state trajectory under the implementation of a strategy. The figures show

several sample paths that were superimposed.

2.5 Performance Preimages

In this section, we present performance preimages for each of the four uncertainty

cases considered in this chapter. A performance preimage describes a region in the

71

information space or state space from which the loss in achieving the goal lies within
a set of values. This concept generalizes the notion of classical preimages to arbitrary
performance measures, although the preimages are defined in discretized time in our
formalism. In the same way that classical preimages are useful for evaluating a motion
command, the performance preimage is useful for evaluating a strategy. We conclude this
section by presenting some computed examples of performance preimages and relating

them to previous literature.

2.5.1 Nondeterministic performance preimages

In this section, we assume that nature implements a deterministic, unknown strategy

7%, as defined in Section 2.3.4.

2.5.1.1 The perfect information case

We combine the classical preimage concept with the loss functional to evaluate a given
strategy. Suppose for a moment that the strategy for nature 7 was given to the robot;
the loss for choosing robot strategy 7 could then be expressed as L(z1,7,7’), because
the state trajectory can be deterministically predicted once z1, 7, and 7? are given. This
in turn implies that the action sequence uq,us,...,ux can also be predicted. Because

the strategy of nature is not known by the robot, we define

L(ﬂfl,’)/) = Ssup L(I1777 70)’ (23]‘)
7961"9

which represents the maximum loss that the robot could receive under the implementation
of v from 1. This corresponds to modeling nature as an opponent, as is done in minimax
design [5].

Recall that the classical preimage is a subset of X from which the robot is guaranteed

to achieve the goal for a fixed motion command. Suppose that we are evaluating the

72

trajectory of the robot with the loss functional in Equation (2.13) for a strategy that
consists of a fixed action, repeated at every stage (which is equivalent to a fixed motion
command). Elements z; € X such that L(z;,7) = 0 correspond to locations in the
state space from which the robot is guaranteed to achieve the goal and, hence, lie in the
classical preimage.

We will next generalize this classical preimage. Note that L(xl,) can be considered
as a real-valued function of x; for a fixed . Consider some subset of the reals, R C R.

We define the performance preimage on X as a subset of X that is given by
ig(v,R) = {z1 € X|L(z1,7) € R}. (2.32)

The set 7,(7, R) C X indicates places in the state space from which if A begins, the loss
will lie in R.

We can consider partitioning X into zsoperformance classes by defining an equivalence
class 7, (7, {r}) for each r € [0,).

For the loss functional in Equation (2.13), 7,(v,{0}) yields the classical preimage.
Under (2.14) and R = [0, m) we obtain a performance preimage that indicates all z; € X
from which the goal will be achieved with a loss that is guaranteed to be less than m.

If we replace v with g, and replace the condition “if zx,; € G” in (2.13) with “if

x € G for some k,” then 7(g,{0}) yields a backprojection similar to that in [62].

2.5.1.2 The imperfect information case

We next consider the case in which the robot has imperfect state information. Let
L(m,v,7?%) represent the loss that is obtained if the robot implements v and nature
implements /. Note that if the mapping from X to Y given by h and a fixed 6 is
invertible, then x;, can be recovered from %, and 5. Hence, when +/? is given, the complete

state trajectory can be recovered to evaluate L. If invertibility does not hold, then an

73

additional supremum must be taken over possible xj, given y; and 6;. By replacing z,

by 71 in (2.31), we define

L(m,v) = sup L(m,7,7%), (2.33)

yPer?
which represents the maximum amount of loss that the robot could receive under the
implementation of -, while starting from 7;. Note that here 7’ represents both control
and sensing actions.
The loss L(n:,7) can be considered as a real-valued function of n; for a fixed ~.
Consider some subset of the reals, R C R. We define the performance preimage on N,

as a subset of N, denoted by 7(y,R), that is given by
#(v,R) = {m € Ni|L(m,7) € R}. (2.34)

The set 7(y, R) C N; indicates places in the information space from which, if A begins,
the loss will lie in R. Such concepts such as isoperformance classes can also be defined

on the information space. We could also consider performance preimages on any Ng.

2.5.2 Probabilistic performance preimages

In this section, we assume that nature chooses actions by sampling from a known pdf,

p(#), which corresponds to a mixed strategy.

2.5.2.1 The perfect information case

Suppose that we wish to evaluate some v = (g, 7C') with a given initial state, z;. If
0 is given along with z; and a strategy ~, the entire state trajectory =, xs,... ,Tx 11 can
be deterministically specified. We can therefore specify the loss for this trajectory as a
function L(x1,~,6). This is true because, by using (2.2) and (2.4), x) can be determined

for every state when the value of nature’s action, 0, is given.

74

The expected loss incurred if v is implemented can be expressed as

L(zy,v) = / L(z1,7,6)p(0)do, (2.35)

in which € represents the actions taken by nature over all stages. The integral considers
each possible action sequence for nature, 6, weighted by the probability density value
p(#). For any given 6 (along with v and z;), the action sequence {uy,...,ux} and state
trajectory {z1,... ,zx,1} can be completely determined, allowing the evaluation of the
loss functional.

We observe for a fixed + that L(z;,7) can be considered as a real-valued function of
x1. Consider some subset of the reals, R C R. We define the performance preimage on

X as a subset of X,
7o(1,R) = {a1 € X|L(z1,7) € R}. (2.36)

The set 7,(v, R) C X indicates places in the state space from which, if A begins, the
expected loss lies within R.

We now describe some particular choices for R. Suppose that R = [0, r| for some
r > 0 (recall that L is nonnegative). The performance preimage yields places in X from
which the expected performance will be better than or equal to 7. If R = {r} for some
point r > 0, then we obtain places in X in which equal expected performance will be
obtained. We can consider partitioning X into isoperformance classes by defining an
equivalence class 7;(7, {r}) for each r € [0, 00).

The loss functional in Equation (2.13) implies that we are interested only in achieving
the goal, without any considering efficiency in the actual robot trajectory. The loss
L(z1,7) in this case represents the probability that the goal will not be achieved using

7. We consider some 7,(7, [0,{r}]) for r € [0,1] as a probabilistic preimage on X. The

probabilistic preimage thus indicates places in X from which the goal will be achieved

75

with probability of at least 1 — r. Furthermore, if we replace v with ¢, and replace the
condition “if xx1 € G” in (2.13) with “if z; € G for some k,” then 7,(g, [0, {r}]) yields
a probabilistic backprojection quite similar to that in [26]. We can also consider 7,(7, {r})
as an isoprobability class. The isoprobability class 7,(y,{0}) corresponds to the classical
preimage notion, in which the goal is guaranteed to be achieved, although in our case, it

is more appropriate to claim that the goal will be achieved with probability one.

2.5.2.2 The imperfect information case

In general, the robot A will begin in some uncertain initial state. Therefore, we also
consider performance preimages on the robot’s initial information space, N;. The preim-
ages represent places in the initial information space where, if A begins, the expected
performance will lie within some R C . This result specializes to Equation (2.36) in the
case of a given initial state, n; = y; = ;. As a minor extension, we could also consider
performance preimages on any information space Ny.

The expected loss incurred if v is implemented can be expressed as

L(m,~) = /L(m,’y, 0)p(6)do. (2.37)

For a subset R C R, we define the performance preimage on N; as a subset of Ny,

denoted by 7(v,R), that is given by
7(7,R) = {m € N1|L(m,7) € R}. (2.38)

Implications about the invertibility of A given y; and 6; are relevant here as in Sec-

tion 2.5.1.2.

2.5.3 Computed examples

In this section we present several computed preimages. As in Section 2.4.3, these

results are provided under the assumption that constant motion commands are given

76

to the robot. This will make the comparison of our preimages to previous research
clearer. In Section 2.6.6, we will show preimages obtained under the implementation of
the optimal strategies, as computed by our algorithms.

These examples were computed using the techniques that will be presented in Sec-
tion 2.6. It will be seen that representation of the performance preimages is a by-product
of determining the optimal strategy. The evaluation of a given strategy, which is done in
this section, can be considered as the trivial case of computing the optimal strategy for
which there is only one choice in the space of possible strategies.

We begin by returning to the peg-in-hole problem, which was discussed in Sec-
tion 2.4.3. Suppose that the fixed action is %71’, and that the maximum angular dis-
placement, ¢y = 14.3°. Recall that ¢y was given in Section 2.3.5. We will use Equation
(2.13) for all of the examples in this section because we have observed that (2.14) produces
very similar curves under fixed motion commands; when considering optimal strategies,
however, the differences between the two loss functionals become much more important.

Figure 2.14(a) shows a performance preimage under nondeterministic uncertainty.
The subset of the state space that is below the curve corresponds to places in the state
space from which the goal is guaranteed to be achieved. Note that this result does not
depend on ||v||At; this is because with nondeterministic uncertainty, the robot configu-
ration can lie anywhere within the cone generated from the initial state and +ey. The
curve shown in Figure 2.14(a) corresponds closely to the classical preimage that has been
determined for this problem in previous manipulation planning research (e.g., [62], [109]).

In Figure 2.14(b), we show probabilistic backprojections that are quite similar to
those that appear in [26], [27]. Figure 2.15 shows a three-dimensional plot of L(z,7).
We assume that p(6*) is uniform on the interval [—ey, €], and €y = 48.8°. We assume that

||lv]|At = 200, and let K = 1. There is only one decision-making stage, and the robot

can move enough distance to accomplish the goal in a single stage. The figures shows

7

isoprobability curves from 7,(v*,{0.2}) to 7,(7*,{0.9}), at evenly spaced probability
values. The innermost curve represents the 7(v*, {0.2}).

The remaining examples show performance preimages for cases in which there are
no similar results in the literature. Suppose that instead of using a uniform density for
control error, a zero-mean, truncated Gaussian density is used (this density was also used
in [25]). The resulting performance contours are shown in Figure 2.14(c). Again, we show
the preimages from 7,(7*,{0.2}) to 7(7*,0.9), at evenly spaced probability values. In
general, we can substitute any density into the model and observe the resulting preimages.

For the remaining examples in this section, we use probabilistic uncertainty and
assume that p(#®) is uniform on the interval [—ey, €p] and that ¢ = 48.8°. We also
assume that ||v||At = 3, which implies that the robot moves only a small amount before
additional control uncertainty is added. Figure 2.14(d) shows the resulting contours (with
the same preimage values as used previously).

We conclude this section with two additional examples, which are depicted in Fig-
ures 2.16(a) and 2.16(b). Probabilistic performance preimages are shown for these prob-
lems in Figures 2.16(c) and 2.16(d), respectively. These examples differ from the previous
example, because the configuration-space obstacles are more complex. We assume that
the initial state and fixed motion command are the same as used in the previous example.
In these examples, the curves appear separated around obstacle boundaries due to the
effects of compliant motion. For example, in Figure 2.16(c), the curves are separated
because of compliant motions on the top part of the triangular obstacle. Although there
is significant uncertainty in control, the edge of the triangle guides the robot into the

goal region, significantly reducing the expected loss.

78

60 60

40 40

20 20

100

80

160

La0 40

() (d)

Figure 2.14 Several computed performance preimages for the classic peg-in-hole prob-
lem: (a) a classical preimage; (b) a single-stage probabilistic preimage for a uniform state
transition pdf; (c) a single-stage probabilistic preimage for a truncated Gaussian state
transition pdf; (d) a multi-stage probabilistic preimage for a uniform state transition pdf.

2.6 Designing Optimal Strategies

Sections 2.4 and 2.5 have presented methods that evaluate a given strategy. Section
2.6 defines concepts of optimality and presents a computational approach that selects
a strategy. Section 2.6.1 defines optimality conditions for each of the four uncertainty
types that have been considered throughout this chapter. Section 2.6.2 presents the
principle of optimality, which represents a recursive constraint that significantly reduces

the amount of computation necessary to determine a solution. Section 2.6.3 discusses

79

Figure 2.15 A plot of L under probabilistic uncertainty.

computational issues caused by uncertainty in control. Section 2.6.4 discusses the addi-
tional issues involved when planning in the information space. Section 2.6.5 discusses the
computational performance. Finally, Section 2.6.6 presents computed optimal strategies,

including forward projections and preimages.

2.6.1 Defining optimality

A strategy, v, has been used in this work to precisely describe the behavior of the
robot with respect to state or information. The design problem is to select the most
desirable strategy, v*, from the space of allowable strategies I'. We have already de-
fined a loss functional that evaluates the state trajectory. Without the effects of nature’s
actions, the design problem would simply be formulated as selecting a strategy to pro-
duce a trajectory that minimizes the loss. Under nondeterministic uncertainty, nature is
considered as an opponent with diametrically opposed interests; therefore, a strategy is

selected to minimize the maximum amount of loss that could result from the strategy of

80

(a) (b)

[} 20 40 60 80 100 0 20 40 60 80 100

1 AN |
N

() (d)

Figure 2.16 In these examples, the obstacles displace the curves. Parts (a) and (b) show
example problems, and parts (c¢) and (d) show corresponding computed performance
preimages. In these examples, the obstacles displace the curves.

nature. Under probabilistic uncertainty, the actions of nature can be characterized with

probability densities; hence, a strategy is selected to minimize the expected loss.

2.6.1.1 Optimality under nondeterministic uncertainty

Perfect information Recall that 'Y denotes the space of deterministic strategies for

nature when nondeterministic uncertainty is considered. Under perfect information and

81

nondeterministic control uncertainty, the ideal choice for a strategy, v* € I', satisfies

IJ($1,7*) = 'lerlg i(xlaf)/) = inf sup L(Il,’)/, 70) (239)

Y€T o cro

for all z; € X. This indicates that from any initial state, the strategy will guarantee the
least possible loss given the worst-case actions of nature. This concept has been used
previously to design controllers based on worst-case analysis [5].

If the loss functional in Equation (2.13) is used, then the space of strategies I' can
be partitioned into two equivalence classes: those that achieve the goal (resulting in a
worst-case loss of one) and those that may fail to achieve the goal (resulting in a worst-
case loss of zero). Any strategy in the first equivalence class satisfies Equation (2.39),
and directly corresponds to the common approach in the previous manipulation planning
research of selecting a strategy that is guaranteed to achieve the goal. By using another
loss functional, such as Equation (2.14), Equation (2.39) can be used to partition I' into

many more classes; this induces preferences on the set of strategies that achieve the goal.

Imperfect information To obtain the concept of optimality for the imperfect infor-

mation case, the objective is to select v* € I' such that

L(m,~*) = inf L(m1,7) = inf sup L(m,~,7") (2.40)

for all 7, € N;. Equation (2.40) is almost identical to (2.39), except that the state space

is replaced by the information space.

2.6.1.2 Optimality under probabilistic uncertainty

Perfect information Recall that the actions of nature can be partially predicted
through the specification of a pdf, p(f), in which 6 represents the action, 6, of nature at

every stage.

82

Under perfect information and probabilistic control uncertainty, the design task is to

select a strategy v* € I' such that

for all 1 € X. This corresponds to selecting a strategy that minimizes the loss in the

expected sense, as considered in stochastic optimal control theory [105].

Imperfect information Under imperfect information, the state space in (2.41) is re-

placed by the information space to obtain

L(m,v*) = iglﬁi(nl, v) = inf / L(mi,~,0)p(0)do (2.42)

for all n; € N;.

2.6.2 The principle of optimality

Dynamic programming is a powerful tool that underlies many of the solution tech-
niques for dynamic decision-making problems. The key is the principle of optimality [16],
which states that an optimal solution can be recursively decomposed into optimal parts.
In general, this optimization concept has been useful in a variety of contexts, both for
producing analytical solutions and for numerical computation procedures. In this section
we formulate the principle of optimality for each of the four types of uncertainty that
are considered in this chapter. For each type, this principle can be viewed as a useful
constraint that significantly simplifies the amount of computation that is required to

determine an optimal solution.

83

2.6.2.1 The nondeterministic case

Perfect information Suppose that for some k, the optimal strategy is known for each
stage i € {k,...,K}. The optimal worst-case loss obtained by starting from stage k
and implementing the portion of the optimal strategy {~;,...,7k} can be represented

as (recall Equation (2.12)):

L) = s {3 (a0 0) + bt (243

7Per? iz

We use 7;(z;) to represent the simultaneous choice of v} and T'C}. Under the imple-
mentation of a strategy, the state trajectory depends on the actions chosen by nature;
therefore, the expression in the sup depends on nature. The function LZ(mk) is sometimes
referred to as the cost-to-go function in dynamic optimization literature [17].

The principle of optimality [6] states that L}(zx) can be obtained from L, (z441)

by the following recurrence:

Ly(zg) = inf sup {lk(l"k,%(xk)) + LZ+1(f(l'ka Uk, 92))} . (2.44)

M€k gecoe
Recall that f(zg, ug, 0f) represents x1; hence, this defines a recursion. We assume that
termination is implicitly included as a possible choice.

The goal is to determine the optimal action, u, and termination condition, T'C, for
every value of xy, and every stage k € {1,...,K}. We can begin with stage K + 1,
and repeatedly apply (2.44) to obtain the optimal actions. At stage K + 1, we can use
the last term of (2.13) to obtain L (zx+1) = lx+1(Tx+1). The cost-to-go, L, can be
determined from L%, through (2.44). Using the ux € U and T'Cy that minimize (2.44)
at zx, we define vy (xx) = {ug, TCk} for each xx. We then apply (2.44) again, using

L% to obtain L% | and v} ;. These iterations continue until & = 1. Finally, we take

v ={.- 7k}

84

The loss function, L’{, is similar to the concept of a global navigation function in
motion planning [109], [160], as each represents a function on the configuration space
that provides local control of the robot and contains a single minimum, at the goal. The
wavefront expansion method that is described in [109] can be viewed as constructing a
cost-to-go function.

Recall that because of stationarity, the strategy 7, does not depend on the stage index

k for the problems that we consider.

Imperfect information We now describe how the dynamic programming equation is
applied under nondeterministic sensing and control uncertainties. From a given informa-
tion state, we wish to evaluate a partial strategy from stage k to stage K. Previously,
we used the notation L} (z;) to evaluate a part of an optimal strategy from a given state.
Using the information state representation Fy(n), which was defined in Section 2.3.3, we

have

Li(m) = sup Lj(z). (2.45)

2, €F(nk)

We want to consider the effect of selecting 7x(7;) in the information space, 7. This
results in Fjyq(7k+1), as defined in (2.18). We additionally assume that the per-stage
loss does not depend on state, I(z, ug, TCy) = [(ug, TCy), which encompasses the loss
functionals considered thus far (this assumption is not required in general).

The dynamic programming principle states that L (n;) can be obtained from L} ; (7¢41)
by the following recurrence:

Li(n) = _in sup {10v() + Lhay Oesn) § (2.46)
Mk+1 € Fp 11 (k5 uk)
in which Iv/,’;(nk) represents the optimal worst-case loss, obtained by implementing the

optimal strategy v* from stage k to stage K + 1.

85

At stage K + 1, we can use the last term of Equation (2.12) to obtain

L’}(+1(77K+1) = sup Ik 1(Tr41)- (2.47)

Tr4+1€Fky1(NK+1)

2.6.2.2 The probabilistic case

Perfect information We next present the principle of optimality under probabilistic
control uncertainty. The resulting equation can be applied in the same iterative manner
to obtain an optimal solution.

The expected loss obtained by starting from stage £ and implementing the portion of
the optimal strategy {7;,...,7x} can be represented as

K
i) = £ {3 bl (a) + e} (2.49

in which E{} denotes expectation taken over the actions of nature.

The principle of optimality [105] states that Lj(z) can be obtained from L}, (zj1)

by the following recurrence:

Li(aw) = min {b(oe,u) + [Lis(@nes)p(oesslon wdons . (249)

Note that the integral is taken over states that can be reached using the state transition

equation.

Imperfect information We now describe how the dynamic programming equation is
applied under probabilistic sensing and control uncertainties. From a given information
state, we wish to evaluate a partial strategy from stage k£ to stage K. Previously, we
used the notation L} (z;) to represent the expected loss of executing a partial, optimal

strategy from a given state. Using the information state density p(x|n) on X,

Li(m) = /LZ(xk)p(Ika)dka- (2.50)

86

We also consider the one-stage expected loss associated with taking an action, from

a given information state, n:

e, 3e0)) = [Uk, el plan i) da. (2:51)

This is the expected loss that will be incurred if an action uy and T'Cy are taken from
state 7, resulting in some 7,;1. The integrand of (2.51) is determined from (2.12) and
(2.10). Using the previous notation, the dynamic programming principle states that

L; (nx) can be obtained from L, (7x+1) by the following recurrence:

Lim) = in {10 300)) + | Licoaer)pes s 3 |

7 (i
(2.52)
Above, p(nk11|mk, V(M) is determined by replacing g with « in (2.29).
At stage K + 1, we can use the last term of (2.12) to obtain
Lii1(Ncs1) = /lK+1($K+1)P(33K+1|77K+1)d77K+1- (2.53)

2.6.3 Approximating the state space

We determine optimal strategies numerically by successively building approximate
representations of L% (or L}). This offers flexibility in spite of the fact that analytical
solutions are very difficult to obtain. Each dynamic programming iteration can be consid-
ered as the construction of an approximate representation of L;. We decompose the state
space into cells of uniform size; however, it is important to note the differences between
the use of this decomposition in our context and the hierarchical decompositions often
used in geometric motion planning (see, for example, [109]). Our primary interest in
using the decomposition is to construct a good approximation of the continuous function
L; (or L%) over the entire state space (or information space under sensing uncertainty).

This makes the application of a hierarchical decomposition more difficult.

87

° °
° °
° ° ° °
OX, ® ° [

Figure 2.17 Interpolation is performed on the shaded region to obtain a more accurate
value for Ly ;.

We obtain the value for L} (xy) by computing the right side of (2.44) (or the appro-
priate dynamic programming equation) for various values of u; and TCy and using linear
interpolation (see Figure 2.17). Other schemes, such as quadratic interpolation, can be
used to improve numerical accuracy [108].

Note that L% represents the cost of the optimal one-stage strategy from each state z .
More generally, L} _, represents the cost of the optimal (i + 1)-stage strategy from each
state zx_;. For a motion planning problem, we are concerned only with strategies that
require a finite number of stages before terminating in the goal region, and we assume that
stationarity holds, as discussed in Section 2.3.4. We select a positive d =~ 0 and terminate
the dynamic programming iterations when |Lj(z¢) — Lj. 1 (z54+1)| < 6 for all values in the
state space. The resulting strategy is formed from the optimal actions and termination
conditions in the final iteration. Note that no choice of K is necessary. Also, at each
iteration of the dynamic programming algorithm, we retain only the representation of
L;_, while constructing Lj; earlier representations can be discarded.

To execute a strategy, the robot uses the final cost-to-go representation (which we
call L}) in a way similar to the use of a potential field [12], [92], [98], [160]. The optimal

action can be obtained from any real-valued location x € X though the use of (2.44) (or

88

the appropriate dynamic programming equation), interpolation, and the approximate
representation of L¥. A real-valued initial state is given. Thus, the robot is not confined
to move along the quantization grid that is used for determining the cost-to-go functions.
The application of the optimal action will yield a new real-valued configuration for the

robot. This form of iteration continues until 7'C}, = true.

2.6.4 Approximating the information space

With sensing uncertainty, planning occurs in the information space. This space, how-
ever, is considerably more difficult to utilize than the state space. In one representation,
the dimension of the information space is proportional to the number of stages. In an-
other representation, the state space is considered as a function space of pdf’s or a space
of subsets. In this section, we discuss methods that can be used to simplify the informa-
tion space. These methods involve tradeoffs between the computational expense and the
quality of the information space representation. We are presently experimenting with
these alternatives, and many issues exist that may cause one method to be preferable to
another. In the current implemented examples, which are presented in Section 2.6.6, we
limit the history to the past sensor observation. This results in sensor feedback, which is
similar to the approach used in [58]. In [10], an approach was recently proposed that uses
a state aggregation technique to approximate the information space in a mobile-robot
planning problem.

These techniques can be used in combination with interpolation, which was discussed
in Section 2.6.3. Strategies are determined, however, by successively building cost-to-go

functions in the information space, rather than in the state space.

Limiting history As defined in Section 2.3.2, 7 is defined as a subset of the sensing

and action history. One straightforward way to keep the information space dimension

89

fixed is to limit the amount of history that is retained. For instance, we can maintain ¢

stages of history, to obtain:

M = {Uk—it1, Uk—it2s - - » Uk1> Yh—is Yh—it1yr - - - » Yk }- (2.54)

If 7 = 0, then only the last sensor observation can be retained for decision making, which
results in a sensor-feedback strategy. If position sensing is used along with a directional
force sensing, then the information space is reduced to having one more dimension than

is the state space.

Introducing statistics A more general way to reduce the information space complex-
ity is to transform the history into a lower-dimensional space. This technique encompasses
the history limiting approach. An ideal situation exists when an information space can
be transformed using a low-dimensional sufficient statistic [51], [105]. A sufficient statis-
tic implies that the transformation does not cause any loss of “information.” In other
words, any decision that is based on the complete history can equivalently be made by
considering only the statistic. The identity function is trivially a sufficient statistic. A
statistic can be selected that is not sufficient; however, the effects that the projection has
on the information space and decisions must be carefully considered.

In general, a transformation of the form

Nk = Zk(ula cee s Ug—1,Y1 - - 7yk)7 (2-55)

is applied to the history. The information space Ny, as defined in previous sections, can
be replaced by the statistic space Z, for which 2, € Z;. A strategy is then defined as a

mapping on Z, and dynamic programming can again be applied to yield solutions.

Functional approximation with moments One special type of statistic that can

be used to approximate the information spaces is the set of moments. Because that the

90

information space can be considered as a function space. For example, with probabilistic
uncertainty in sensing, the information space can be represented by the space of possible
density functions. We will discuss the moment-based approach with respect to probabilis-
tic uncertainty; however, a similar principle can be applied when using nondeterministic
uncertainty. Because moments summarize information in random variables, we can, in
general, use moment computations to approximate this function space. Recall that con-
tinuous functions can be approximated by coefficients of a Taylor series expansion. As
the dimension of the expansion is increased, the approximations are more accurate. We
can obtain a similar situation when considering the information space. The implication
of using fixed-order moments is that all decisions must be made without being able to
distinguish information states that differ in higher-order moments.

Consider, as an example, a second-order approximation. Recall from Section 2.4.2.2
that from any sensing and action history (i.e., {uy, ug, ..., Uk 1,%1,¥Y2,--- ,Yx}), the pdf
on the state space can be inferred, p(zy|ng). Let p and X represent the mean vector
and covariance matrix, respectively, of p(zx|nx). From any history, we can now obtain
the moments u; and ;. The computation of such moments is similar to the approach
taken in [180]. For some systems, Kalman filtering could be applied to obtain the mean
and covariance estimates [38].

If ng are v (nx) given, a density p(mer1|7k, Y& (nk)) for the next information state will be
obtained. This was used in (2.52) as part of the principle of optimality, which can be used
to compute an optimal strategy. When using moments, we can replace p(nxy1|mk, vk (7))
by p(tks1s Skr1| ks 2ks Ve (i, 2k)) in (2.52). This can be used to determine optimal
strategies from moments (optimal on the approximated information space).

An information-feedback strategy, ~x(nx), is then replaced by a moment-feedback
strategy, vk (ttk, 2x). The hope in using moment approximation is that v;(nx) =~ v (1, k)

for all 7, € Ni. Another way the evaluate the moment-based approach is to determine

91

whether

L(m,7") = L(p, 31, 7). (2.56)

2.6.5 Computational performance

This section briefly discusses the computational performance of the dynamic pro-
gramming computations. To evaluate computational performance, there are two phases
to consider: determination of the optimal strategy, and execution of the optimal strategy.
The iterated dynamic programming computations are performed off-line to determine the
optimal strategy. Let () denote the number of cells per dimension in the representation
of Ctree. Let n denote the dimension of the information space (which becomes the dimen-
sion of the state space in the case of perfect information). Let |U| denote the number
of actions that are considered. Let |©| denote the number of actions that are considered
by nature. The space complexity of the algorithm is O(Q"), which is proportional to
the size of the state space. For each iteration of the dynamic programming, the time
complexity is O(Q"|U| |©|), and the number of iterations is proportional to the robot
velocity and the complexity of the solution strategy. The computation at each cell (in
the application of (2.44)) has time complexity O(|U| |©]), with n fixed.

The number of iterations required is directly proportional to the number of stages
required for sample paths to reach the goal. After k iterations, sample paths that reach
the goal in k or fewer stages have been considered. As k increases, the probability
decreases of existing sample paths that take more than k stages to reach the goal under
the implementation of the optimal strategy. This gradually leads to stabilization in the
cost-to-go function. For the problems that we have considered, the number of iterations

required for convergence ranges from about 50 to 200.

92

The computational cost of dynamic programming increases exponentially in the di-
mension of the state space for perfect information and in the information space for im-
perfect sensing; however, most algorithms that solve the basic motion planning problem
without sensing and control uncertainty have exponential complexity in the dimension
of the configuration space (see [91], [109] for surveys and comparisons). We consider the
current approach to be reasonable for a few dimensions, which includes many interesting
motion planning problems. For more difficult problems some additional computational
techniques would have to be developed.

In our simulation experiments, we have considered problems in which X C R2. We
typically divide the state space into 50 x 50 cells, and 64 quantized actions are used
to approximate translational motion. We have considered similar quantizations of the
information space under sensor feedback. The computation times vary dramatically, de-
pending on the resolutions of the representation. For the examples that we present in
this chapter, the computation times vary from a few minutes to a few hours on a SPARC
10 workstation. Significant improvement of these off-line computations can be obtained
through additional code optimization and parallelization; however, these implementation
issues are beyond the focus of this research. It is important to note that the dynamic
programming equations are highly parallelizable. For example, under probabilistic un-
certainty with perfect state information, the computation of the optimal action at each
location x, depends only on a very local portion of the representation of L} +1(Trs1),
and on no portion of Lj(z;). A parallelized implementation of the algorithm would
significantly improve performance.

The on-line execution of the optimal strategy proceeds very quickly. For each stage, a
single evaluation of the dynamic programming equation is performed to yield the optimal
action. This computation is on the order of a few milliseconds, and is therefore quite

reasonable for practical applications.

93

2.6.6 Computed examples

In this section, we present computed examples of optimal strategies that were de-
termined by the computational methods discussed in this section. For these strategies,
we show forward projections and preimages, which can be compared to the results in
Sections 2.4.3 and 2.5.3.

For the results in this section, we used the loss functional in Equation (2.14) with
l(ug, TCy) = ||v||At and C; = 10000. We have found the loss functional in Equation
(2.13) to not be as useful for determining optimal strategies. For most problems, the
cost-to-go is zero at every state from which it is possible to achieve the goal. Therefore,
there are many strategies that are considered equivalent, while in reality the expected
time (or worst-case time) for some of the strategies to achieve the goal may be arbitrarily
longer. For fixed motion commands, however, Equation (2.13) provided useful informa-
tion because a strategy was chosen that in many possible trajectories did not achieve the
goal.

For the first example, we refer to the peg-in-hole problem introduced in Section 2.4.3.
We assume, as considered previously, that ||v||At = 3 and €y = 48.8°. Figures 2.18(a) and
2.18(b) show computed results that were obtained under probabilistic uncertainty with
perfect state information. Figure 2.18(a) depicts the optimal strategy by showing the
direction of the motion command u; = ~;(x) at different locations in the state space.
Figure 2.18(b) shows isoperformance classes for every 6 units (i.e., there is a contour for
every two expected stages of motion). Figure 2.19 shows a three-dimensional rendering of
the cost-to-go function, along with the preimages. This can be compared to the preimage
results from Section 2.5.3; under the implementation of the optimal strategy, the curves
emanate radially from the goal region. In Figure 2.20 shows the probabilistic forward

projection. Under the optimal strategy, all of the probability mass ends up in the goal

94

region. This can be compared to the forward projection for the fixed motion command

that was shown in Figure 2.11, for which some of the probability mass did not reach the

goal.

1100
80

T60

+a0

T20

+100

180

T60

+40

T20

100

80

60

20

40

0

10

80

60

20

40

>

N

TN NN N NN
NN N N N N NN
S~ NN N N N NN
YN

~ NN v e ww

P A A ard

P R

VAP A AV AV eV v e

A A
PSS A A s
f A
IR

NONNN NN Y

NONNN NN YN

\

NONONON N N Ny

NONON N NN N

VA A g

J s s e -

/

P N
e T T

VA

T

ONONN N N NN
NN N N N N NN
NN N N NN N
N w N N N x

B N

P
PP AN
PP AP v av v aNg

IR Ay
A R

NONON N NN N
ONONON NN NN
N N
NN NN NN

P

e

/

Jow e a—

B S,

lem under probabilistic control uncertainty (shown in (a) and (b)) and nondeterministic

Figure 2.18 Optimal strategies and performance preimages for the peg-in-hole prob-
control uncertainty (shown in (c) and (d)).

95

30+

20+ 100

10+

20

100 0

Figure 2.19 A plot of L* with probabilistic uncertainty and perfect information.

Figures 2.18(c) and 2.18(d) show computed results obtained under nondeterministic
uncertainty with perfect state information. The isoperformance curves are closer together
because worst-case analysis causes the computed loss to be greater.

Figure 2.21 shows several more computed optimal strategies for probabilistic un-
certainty with perfect state information. We assume for each of these examples that
|lv]|[At = 3 and €y = 48.8°. Figure 2.22 shows a three-dimensional rendering of the
cost-to-go function, along with the preimages for the example in Figures 2.21(d) through
2.21(f). Figure 2.23 shows the forward projection for the example in Figures 2.21(g)
through 2.21(i).

Figure 2.24 shows computed optimal strategies for probabilistic uncertainty with im-
perfect state information. We assume for each of these examples that ||v||At = 3 and

€9 = 48.8°. We used the sensing model from Section 2.3.5, and let ¢, = 5 and ¢; = 0.

96

0.4+ 0. 4+
0.3+ 0. 3+
P(x) P(x)
0.2+ 0.2+
0.1+
o
1
00 o5 50
60 ~ 40
40 60
x1 20 80 x2
100

o
0.3+ 0. a4

p(x) p(x)
0.2+ 0. 24
0.1+ 0. 14

o
0.3+ 0. 3+
P(x) P(x)
0.2+ 0. 24
0.1+ 0. 1+
ol ‘ ol
100 =5 >0 100 -~ 50
60 o 40 60 o 40
40 40
x1 20 80 x2 x1 20 80 x2
100 100

k=26 k=35

Figure 2.20 The forward projection for the optimal strategy under perfect state infor-
mation. 97

40 60 80 1?0

2_9

%m G 3 2 G ° %m 2 3 E: 8 %m 3 3 2 8 °

VUJ:::S@/ w\\\j N\ Q\\K\x) M Qx\\i\\H)/w
/ — : (\N/ A\ //f W =
[1> \ — V|~ q\\ 8 K
—Hllz—= S = -

7z & = ﬁf ¥

[| & AL

/

P A

PRI N AN

s
.
s
’

IR

P

.

NNNNN Y s

N IV S S

SN\ j S p ey

N frmw

NN at

istic uncertainty and

2.21 Several examples that were computed under probabl

perfect state information.

igure

F

98

Figure 2.22 A plot of L* under probabilistic uncertainty.

99

0.35 0. 35+
0.3+ \ o. 3] \
0.25+ 0.25+
0.2+ 0.2+
P(x) P(x)
0.15+ 0.15+
0.1+ 0. 1+
0. 05+
o
1
00 80 20 20
60 40 a0
40 60 60
x1 20 80 x2 '80 x2
100 100
0.35 0. 35+
0.3 \ o. 3
0.25+ 0.25+
0.2+ 0.2+
P(x) P(x)
0.15+ 0.15+
0. 14 0. 1+
o. 0. 05+
o
50 100
40
60
80 x2
0.35 0. 35+
0.3+ 0. 3+
0.25+ 0.25+
0.2+ 0.2+
pP(x) P(x)
0.15+ 0.15+
0. 14 0. 1+
0. 05+ 0. 05+
o o
100 =5 >0 100 -~ 5o
60 40 60 a0
40 60 40 60
x1 20 80 x2 x1 20 80 x2

k=32 k=45

Figure 2.23 The forward projection for the optimal strategy under imperfect state
information. 100

Without perfect sensing, the expected time to reach the goal increases, which causes the
isoperformance curves to be closer together. In addition, the sample paths under the
implementation of the optimal strategies involve more variations.

The strategy representation and the isoperformance curves in Figure 2.24 do not
align completely with the obstacles in the workspace because the optimal actions and
isoperformance curves are defined in the information space. For these examples, the
information space is represented by the set of possible sensor values. Sensed force values
are not shown in the figures.

Figure 2.25 shows computed optimal strategies for nondeterministic uncertainty with
imperfect state information. A solution strategy could not be found using the same
uncertainty models as for the probabilistic case. This occurs because worst-case analysis
eliminates the consideration of many reasonable strategies, as mentioned in Section 2.2.
We therefore use ||v]|At =10, g = 0.8, €, = 2.5, and €¢; = 0. The isoperformance curves
are shown for every 30 units of loss. Figure 2.26 shows L* for the example in Figures

2.25(a) and 2.25(Db).

2.7 Discussion

In this section we briefly discuss some aspects of the current approach and future

directions that could be taken with this research.

Incorporation of additional uncertainties In this chapter we have considered con-
trol sensing and control uncertainty; however, in general other forms of uncertainty may
exist. For instance, Donald has considered the development of strategies that are robust

to errors in the model of an obstacle [48]. By parameterizing the uncertainty in the model

101

80

60

40

o
S
=

80
60
40

20

e

SR
TR

=

N

/////

=

80

60

40

0

i

RSN
LI

R N
ANRTRNRNEN

\

\

VA AT A S
A A A A A A e
A A
I A S s
R A N
A A S

A s

NN
NNN NNy
NNN N NN
NN NN N sy

NONN N N N NN

RN S VNN

NTNN R NN NN T NNON N Ly N 2wy

NONN TS NN N NN NN LY N NN
NONN T T SNON NN NN L Y L NN

N

SE SIS SSSNNN VAN
e e R R A

A A A A A
[
Yy s

[A

~

~

NS s
NS
VT
NS
N
NN
NN
NN
NN
NN
Y
N
NN
NN
N
NN
PN~ -

Rt e Y
FEC AT -,
g
IR
PbA A S S S
R

[N

Ve e

+
i
A

'»

+

+

'

'

+

/
NN S

NN N NN/
NNN NNy

AR S

NNNNNNy g

(NN

Al

i

NNNNNN NN/

e

NN N NNN NNy

VSt

NmENNN NN A/
R S SN

RSN NS A

AR NN

AR TR SN

Figure 2.24 Examples that were computed under probablistic uncertainty and imperfect

10n

informat

state

102

100
80
60
t40
20
100

80

t40
20

190

60

40

20

100

T
S
£
7z
AU

t PPN

I

SN N T T e

RN R

SN A

’ Vi R

, ee—- -

s /.\\h“

sy s

EEER ooy

Sy R .

oy vy N st a

Vi A +

EEEE /\\x“n P

ey [T Ea

N~~~y o~ NS ()\\\\\“m AN

T N T g oy

PR -t PN

e /

[o
vy

- s

! e

! -
NN NN

ZON NN NN LAY

1011.

Figure 2.25 Examples that were computed under nondeterministic uncertainty and
fect state informat

imper

103

80 0
100

Figure 2.26 A plot of L* under nondeterministic uncertainty and imperfect state infor-
mation.

and performing worst-case analysis, a motion plan can be determined that overcomes this
form of uncertainty. Recall from Section 1.2.2 that uncertainties in environment sensing
and environment predictability are two other important sources of uncertainty that can
affect a motion plan. These forms of uncertainty can be modeled by augmenting the

state space to include information about the environment; this is the topic of Chapter 3.

Randomized actions In work by Erdmann [57], [58], [63], useful manipulation plan-
ning methods were developed around randomizing the actions of the robot. In game
theory, a randomized strategy is referred to as a mized strategy, as mentioned in Section
1.4.1. It is important to note that in the method presented in this chapter, the robot
strategy is deterministic (or pure), even though the execution of the strategy can be

considered as a random process (under probabilistic uncertainty). Erdmann has argued

104

that two important benefits result from using randomized strategies: (1) robustness with
respect incorrect models can be obtained, and (2) multiple attempts can be made to solve
a task, instead of requiring a guaranteed solution.

By conditioning our strategies on state feedback or information feedback, the robot
is capable of making multiple attempts to solve a task. In a motion planning context,
one can imagine a robot that attempts to execute a motion plan, reports failure, and
then replans to make another attempt; this behavior is exhibited in the error detection
and recovery strategies in [47], [48], [49]. An “attempt” is not as distinct in our ap-
proach, however, because the robot responds dynamically to its information. Rather
than responding by determining a new strategy, the response corresponds to the optimal
behavior that was determined through global analysis of the motion planning problem
and its uncertainties.

Robustness with respect to incorrect modeling represents a useful feature, which has
not been considered by our approach thus far. In the approach that we present, the
assumption is made that the models are correct. Under nondeterministic uncertainty,
the correctness of the model can become critical, because it then becomes impossible to
“guarantee” a particular loss (unless the model truly represents an upper bound on the
uncertainty). Under probabilistic uncertainty, the effect of modeling errors appears to
be less drastic. One difficulty with introducing randomization is that it can arbitrarily
increase the loss require to achieve the goal, even though robustness is strengthened. In
the limiting case, pure Brownian motion can be executed. This achieves the goal while
making essentially no modeling assumptions, but the loss can be extremely high. It
remains to be seen whether randomized actions can be incorporated into our approach
to provide a reasonable tradeoff between the distance of a strategy from optimality and

the potential incorrectness of the models.

105

Displacement sensor measurements In some robotic systems, it may be possible to
obtain sensor readings that estimate a new configuration of the robot with respect to its
old configuration, which may generally be unknown. In this case, the displacement that
occurs during time At is estimated. Sensors of this type have been considered previously
for motion planning under uncertainty in [142]. We briefly describe how this type of
sensor observation can be incorporated.

Assume that a displacement sensor reading, z;, occurs after an action u; has been

executed at stage k. Suppose a displacement observation equation,

2k = g($k+1, T, Uk, eg)a (2-57)

is given in addition to the observation equation (2.5). The information space can be
extended to include displacement observations, {z1, 29, ... , 2K }.

Under nondeterministic uncertainty,
F,;(Zk, mk,uk) = {xk—f—l € X‘Zk = 9($k+1,$k, Uk, 0;:), 0;: € @d} (258)

represents the possible next states after z, has been observed. However, due to partial
predictability in the state transition equation, it is also known that xx 1 € Fyy1 (2, ug),

as given in (2.3). Therefore, we replace Fy1(xk,ux) by
Fk(zk, T, uk) = Flé (Zk, Tk, uk) N Fk—l—l (.’L‘k, Uk) (259)

in such expressions as those in Section 2.4.1.2 to incorporate displacement sensor obser-
vations.

Under probabilistic uncertainty, p(zg|Zgi1, %k, ux) represents a density that is de-
rived from p(¢). However, due to partial predictability in the state transition equation,
p(Tgs1|Tk, ux) was already given. We use Bayes’ rule to combine the displacement ob-

servation with the partial predictability of the state transition. Therefore, we replace

106

p(Tra1|Tk, ug) with

P(2k | Tht1, Tk, Uk)D(Tht1 |2k, Uk)
I (2|21, T, k) P(Tht1 | T, Uk) ATy

(k1 |2k, Ty ug) = (2.60)

to incorporate displacement sensor observations.

Hierarchical strategies In the methods developed in this chapter, the robot executes
a fixed command at each At. In traditional preimage planning, however, a fixed action
is executed until the termination condition is met. If the goal is not yet reached, another
action is executed. In general, a sequence of fixed actions with termination conditions is
executed until the goal is reached.

Recall that the performance preimage can be used to evaluate a particular strategy.
One interesting approach would be to implement preimage backchaining and subgoals
by performance preimages. We can define GG; as a subgoal for a larger problem, and
define a g and T'C' that achieves GG in a satisfactory way. The resulting posterior density
p(rx+1) would be used as the initial information state for the achievement of a second
goal, G3. We can consider abstract actions of the form {G;,~v} that attempt to achieve
some original goal. Backchaining from G under explicit performance measures and a
given set of choices for abstract actions is another form of dynamic programming. The
relationship between standard preimage planning and dynamic programming is discussed
in [58]. The reason for considering abstract actions and subgoals is the hope that a simple
set of abstract actions exists that can be composed to provide quick and efficient solutions

for a wide class of problems (as was the case with backprojection planning [62]).

Determining accurate uncertainty models The flexibility of our approach per-
mits the use of a variety models for sensing and control uncertainty. In many previous
approaches, the results were strongly dependent on the particular model chosen. For ex-

ample, worst-case analysis in the backchaining approach has often used a bounded disk

107

for position uncertainty and bounded angular error for control uncertainty. With our
approach, one important area of future research is to develop models that accurately re-
flect the uncertainty involved in a particular manipulation task. This is particularly true
for the case of probabilistic uncertainty. The densities hold a large amount of expressive
power; however, simple models are often chosen to obtain reasonable results. Within our
approach, different uncertainty models can be substituted, and through simulations or
repeated execution trials, better uncertainty models could be developed for a particular
context. This direction of research was also advocated in [27], to determine valid error

distributions for the computations of appropriate probabilistic backprojections.

Sampling Issues One important issue that has received little attention in manipula-
tion planning literature is the sampling rates available for sensing and control. In the
typical preimage planning formulation, the robot is allowed to issue a new command at
any point in time, implying continuous-time controllability of the robot. The robot com-
mand is only changed, however, during the few occurrences of meeting the termination
condition. In this chapter, we have assumed sampling rates that essentially approximate
continuous-time control and sensing. By allowing the motion command to change at any
discrete stage, we obtain a significant amount of control over the robot in the face of
uncertainty. One useful approach might be to consider a much lower sampling rate. This
models the situation in which fine motions are performed before additional sensing, or
before a new control input can be applied. This seems to appropriately reflect a situation

in which the planning workspace is very small, such as in a part-mating operation.

108

2.8 Conclusion

We presented a flexible approach for manipulation planning under uncertainty in
which motion strategies are selected to optimize a loss functional. We have indicated
through the discussion and simulation experiments that the efficiency of a robot motion
strategy is crucial in planning under uncertainty. We have developed performance preim-
ages as a useful concept for evaluating motion strategies. This work identifies termination
criteria with optimal stopping problems from optimal control theory, and allows the in-
corporation of a termination condition into the optimal strategy. We apply information
space concepts from stochastic control and dynamic game theory to incorporating history
into a motion strategy with uncertainty in sensing. We additionally provide a compu-
tational approach that numerically determines optimal motion strategies under a wide
class of performance functionals by applying the dynamic programming principle to ap-
proximate stationary cost-to-go functions, and illustrate the concepts through computed
examples. One of the most important directions for future research will be to investigate

different methods of approximately representing the information space.

109

CHAPTER 3

MOTION PLANNING UNDER ENVIRONMENT
UNCERTAINTIES

3.1 Introduction

This chapter develops concepts for motion planning in uncertain environments. In
terms of the categorization that was discussed in Section 1.2.2, this chapter primarily em-
phasizes uncertainty in environment predictability, with some additional consideration of
uncertainty in environment sensing. Recall that environment-sensing uncertainty implies
that the robot might not have perfect or complete information about its environment at
a given instant in time, and that environment-predictability uncertainty implies that the
robot might not be able to predict the environment at a future time. Much of the work
described in this chapter has also appeared in [116], [117].

Section 3.2 provides motivation and background for the concepts in this chapter by
discussing example problems and related literature. In particular, a set of problems that
involve a finite number of environments is discussed. Section 3.3 presents the mathe-
matical models used to define the robot and its interactions with the environment. A
stochastic optimal control problem is defined by combining the motions of a robot that

has perfect control and sensing with an environment modeled with a Markov process.

110

Uncertainty is thus represented probabilistically throughout most of this chapter. Sec-
tion 3.4 describes the computational approach for determining optimal strategies, which
is based on dynamic programming. Section 3.5 presents several computed examples.
Section 3.6 presents an extension of the basic methods to a problem in which a robot
must deliver parts from source regions to destination regions, when the delivery requests
are only partially predictable. This could occur, for example, as part of an automoted
assembly or manufacturing system [172]. Several computed examples are presented for
this extension, for both rigid robots and manipulators. Section 3.7 discusses several addi-
tional extensions to the basic method, including the use of nondeterministic uncertainty,

as opposed to probabilistic uncertainty. Section 3.8 presents conclusions.

3.2 Background and Motivation

Uncertainty in environment predictability has received less attention than the other
sources discussed in Section 1.2.2. Related past work is mainly concerned with local
collision avoidance (e.g., [204]) or incorporating unexpected moving objects locally into
the updating of the motion plan. Thus, many of the predictive aspects of the changing
environment are not utilized, and the approach is similar to the incorporation of envi-
ronment sensing uncertainty. For example, in an artificial potential field approach it is
possible to incorporate moving obstacles with unknown trajectories using on-line sensor
data without considering future changes in the environment [11], [156], [165], [181], [182].
In [42], an incremental planning scheme is presented for collision avoidance with unknown
moving obstacles that are restricted to piecewise-linear trajectories.

We next discuss several examples that illustrate some important aspects of uncertainty
in environment predictability. These examples will be referred to again when computed

results are presented in Section 3.5. The first two examples represent problems in which

111

the free configuration space changes over time and is not completely predictable (see
Figure 3.1). First consider the problem in Figure 3.1(a). While the robot is moving,
doors over which the robot has no control could close or open. Suppose that the robot
has bounded velocity and wishes to reach a goal region in a minimal amount of time.
Should the robot always try to move through the lower door? Should it adjust its path
depending on which of the two doors are open? What happens when the robot is moving
toward a door and the door closes? Should it just wait for the door to open or should
it head toward the other door if that door is open? One would like to define a formal
basis for deciding on the best actions to take, given that the robot does not know exactly
when certain changes will occur in the workspace. A similar type of example is shown
in Figure 3.1(b), which contains partially-predictable obstacles that can instantaneously
appear or disappear at future times. Completely predictable obstacles of this type were
considered in [68] and termed transient obstacles. In this chapter, we consider problems
such as these, which involve a changing, partially predictable configuration space. By
introducing probabilistic models of the environment, we can determine a strategy for the
robot that minimizes the expected time to reach the goal.

A problem such as that in Figure 3.1(a) can be described with a state space that is
generated by a discrete set of collision-free configuration spaces. At a given time, the
robot is in one of these spaces; changes in the environment can cause the robot to move
to a different collision-free configuration space. These potential transitions must be taken
into account in a specification of a motion plan. In our approach, a state-feedback motion
strategy is designed, in which motion commands are conditioned on both the environment
and the configuration. Replanning is not required when the environment changes, because
the robot responds appropriately for different regions of the state space during execution.
In addition, a state-feedback controller is advantageous, since it will typically be robust to

small modeling errors that can develop during execution. A motion strategy is selected

112

Transient .
Obstacle 2

Transient .
Obstacle 4 : &

~

Wy Transient
Obstacle 1

Doorway

Transient
Obstacle 3

kllllli'ilrl(\MH\.
*“
i
& == Robor Tronstent
(b)

Figure 3.1 A changing environment in which the workspace changes over time, by: (a)
the opening and closing of “doors,” and (b) appearance and disappearance of “transient”
obstacles.

Goal
Region

Doorway w
.

that optimizes (in an expected sense) a loss functional that can incorporate a variety
items, such as time or distance.

Because the robot cannot completely predict changes that may occur in the envi-
ronment, a model of uncertainty must be expressed. One approach is to consider the
changes as being generated from a stochastic process. The corresponding probabilities
could in practice be estimated by observing many samples of such changes in a particular
workspace. This partial knowledge of the changing environment can then be exploited by
a motion planning strategy to improve the expected performance. For the above motion
planning problem with doors, for example, one suitable means of modeling the opening of
a door could be in terms of a Poisson process with arrival frequency A,, so that the time
until a closed door opens is an exponential random variable with mean A,. Similarly, the

closing of a door, given that it is open, could be modeled as a Poisson process with arrival

113

frequency A.. The Poisson process is a reasonable choice for many problems because it
captures several realistic properties of a changing environment: (1) the probabilities that
a door will open in two nonoverlapping time intervals are independent of each other; (2)
the probability that a door will open in an interval is proportional to the length of the
interval, which implies that events are uniformly distributed in time, and thus do not
favor one epoch of time over another; and (3) the probability that a door will open in an
interval becomes arbitrarily small if the interval is made sufficiently small. These Poisson
processes are special cases of a Markov process, which has much greater expressive power,
as discussed in Sections 3.3 and 3.5.

The problems in Figure 3.1 involve a changing configuration space; however, we can
allow more general ways in which the environment can change. In some situations, it
may be appropriate to not consider many individual moving obstacles in the environment.
Instead, a cost can be assigned that corresponds to the amount of risk for traversing a
region that could have moving obstacles. This leads to a set of problems that we refer to
as hazardous region and shelter problems. The loss could, for example, directly correspond
to the risk involved in traversing a hazardous region. In a similar context, this has been
referred to as a weighted region problem [134], [163]. Assigning a cost associated with the
traversal of a region provides a way of dealing with the complexity of motion planning in
an environment that has several moving obstacles, particularly when their motions are
unknown. Similar treatment of dynamic environments in [170], [171] led to the idea of
shelters (regions that have low cost of traversal) and alarms (events that cause the cost
of traversing a region to change from low to high). The treatment considered in this
dissertation, however, is substantially more general.

As an example of a hazardous region and shelter problem, consider the motion plan-
ning problem (shown in Figure 3.2), for a mobile robot in a factory floor in which there

might be other moving robots, vehicles, or people in the corridors. The robot may receive

114

=— Goal Region

7

Shelter Region

Figure 3.2 A problem that involves safe and hazardous regions in addition to obstacles.

information that other obstacles are in the corridor, and the only safe regions are the
shelters along the sides of the corridor. By proper modeling of hazardous regions and
shelters in the workspace, the need for explicitly considering multiple moving objects (as
in [30], [61], [157], [187]) can be avoided, while implicitly factoring in the effect of moving
obstacles in the determination of motion plans.

The previous problem provided an example that did not involve geometric changes
in the configuration space, and yet represented a useful instance of planning under
environment-predictability uncertainty. We will, therefore, generally consider the en-
vironment to assume different modes. The difference between two modes could, for
example, correspond to the appearance of an obstacle or a hazardous condition. Envi-
ronment modes will be formally defined in Section 3.3.1.

Both the changing configuration space problems and the hazardous region and shelter
problems have one aspect in common: the robot was implicitly assumed to have no control
over the changing environment. In general, however, many interesting problems can be

defined in which the robot can partially control the environment. The robot might, for

115

Service Area 1)

Service Area 2

\m——

Figure 3.3 A problem of processing random service requests in the workspace.

example, be able to change the mode at a particular location in the configuration space
(imagine the robot closing a door while in its proximity). Situations in which the robot
can interact with the partially-predictable environment can be considered as servicing
problems. Using the concept of modes, problems that involve interactions between the
robot and the environment might not involve changing the free configuration space.
Consider the example shown in Figure 3.3, in which there is a mobile robot capable
of performing two different kinds of services, at particular locations in the workspace.
Requests to perform these services might occur at any time and are not completely
predictable. The robot moves at a fixed speed and must satisfy the request by appearing
in the appropriate service area. The goal can be to minimize a combination of the time
to reach a goal region and a penalty for the time that requests are unprocessed. A
problem can also be defined without a goal region, and the robot simply minimizes the
time that requests are outstanding. Section 3.6 presents analysis and computed examples

for a problem that involves a rigid robot or manipulator that moves parts in a workspace

116

from partially-predictable source regions to partially-predictable destination regions; this

represents another type of servicing problem.

3.3 Mathematical Modeling

In this section, we construct a stochastic optimal control formulation that models the
problems discussed in Section 3.2. Section 3.3.1 defines a Markov process that models
the environment and a state space that encodes both robot configurations and the en-
vironment mode. Section 3.3.2 defines how state transitions occur and the concept of a
strategy in this context. Section 3.3.3 introduces the concept of dynamic regions in the
robot’s configuration space. These regions explicitly define the interaction that occurs
between the environment and the robot. The loss functionals in this chapter rely on a

precise characterization of these regions.

3.3.1 The environment process

Recall from Section 1.2.1 that for geometric motion planning problems without un-
certainty, the space of possible situations that can occur is sufficiently characterized by
Ciree (Or by Cyuia, as in Chapter 2). Let E denote a set of environment modes. To
uniquely identify all of the possible situations that can occur in our problem, we define a
state space as the Cartesian product, X = Cfp. X E. Thus, for each environment mode
there will be a new copy of Cfree. This is similar to the view taken in [47], in which the
space for motion planning is a Cartesian product of Cf,.. with a single parameter that
characterizes a hole width for a peg-in-hole task.

As in Chapter 2, we use discrete-time representations by defining a set of stages,
{1,...,K}. The state at stage k is denoted by xj, which simultaneously represents

both a configuration q; and an environment mode, e;. The environment modes form a

117

k_ Cfree

k_ Cfree

k_ Cfree

Figure 3.4 The environment modes can form a partition of X.

partition of the state space, X. Each time the environment mode changes, the robot is
forced into a different layer of X (see Figure 3.4).

The changing of modes over time can be considered as the effect of nature on a state
transition equation. An action, ug, and action space, U, are defined as in Chapter 2. Let
©° represent a set of |E| control actions for nature. Assume that there is no uncertainty
in configuration predictability; therefore, nature affects only the environment mode. The
next state can be expressed as zpi1 = fi(xk, ug, 0%). We use a probabilistic represen-
tation for the uncertainty; hence, P(xyy1|xg, ux) is a state transition distribution over a
set of states that can be obtained. The environment mode transitions can, therefore, be
considered as P(ejy1|Tg, ux) = P(exi1|er, Qr, ux). In this case, the evolution of environ-
ment modes can be considered as a finite-state Markov process. Section 3.7.3 describes
how the nondeterministic representation could alternatively be used.

We now present an example of a four-mode environment process that can model
the problem from Figure 3.1(a). More general models and examples are presented in

Section 3.5. We define the following four environment modes:

118

Mode Interpretation

0 Door 1 open; Door 2 open
1 Door 1 closed; Door 2 open
2 Door 1 open; Door 2 closed

3 Door 1 closed; Door 2 closed

Each door is modeled with Poisson processes. Let A denote a Poisson arrival rate.
The density for the time of the first arrival is p(t,) = Ae~*<. We denote the arrival rate
of a door closing, given that it is open, as A., and the arrival rate of a door opening,
given that it is closed as \,.

Assume for this example that the two doors are governed by independent, identical

Poisson processes. The probability that a closed door will open in time At is
At
Py = / Aot Mladt, = 1 — ¢ oAt (3.1)
0

We use 0 to denote the open condition and 1 to denote the closed condition in Py; (indexed
in the same order as a conditional probability). The probability that it will stay closed
is Py =1 — Py;. For a door that is initially open, we similarly obtain Py = 1 — e *2¢,
and Py =1 — Pyp.

The environment transition probabilities can be generated by taking products of pairs

of Pyo, Po1, Pro, and Pyy:

PO20 POOPIO PIOPOO P120

PoPor PP PioPn PP (3.2)
PPy PonPio PuFPw PiiPo

PO21 P01P11 P11P01 P121

The (i, 7)™ element represents the probability of changing to mode 7, given that the

current mode is j.

119

Figure 3.5 The environment process can be considered as a finite-state Markov process
with state transition probabilities.

The four-mode process is depicted in Figure 3.5, in which we take A\, = A, =
0.10101354 (approximately one expected arrival every ten seconds), and At = 0.2. This
results in Py = Fy; = 0.02 and Py, = P;; = 0.98. Each arc in the graph represents one

element of Equation (3.2).

3.3.2 Defining the robot behavior

We present a state transition distribution that applies to the case in which Cy.., C
%2, and the robot is limited to translational motion. More complicated motions will
be described with the examples in Section 3.5. Dynamic robot constraints could also
be introduced; however, the state space would have to be expanded to include time
derivatives of configuration. We define the action space as U = [0,27) U {0}. If u; €
[0,27), then A attempts to move a distance ||v||At toward a direction in C, in which ||v]|

denotes some fixed speed for A. If u; = (), then the robot remains motionless.

120

Consider the case in which z; € Cje. is at a distance of at least ||v]||At from the
obstacles. If A chooses action uy # 0 from state zj, then'
z[1] + ||v|| At cos(ux)
Tep1 = | zx[2] + ||v]|At sin(ug) | (3.3)
Ch+1
in which the environment mode e, is known to be sampled from P(egy1|xg,uy). We
can thus consider a finite-valued random variable X;,; with corresponding distribution
P(zg11|Tk, ug), which can be inferred from the given model. If uy = 0, then z4[1] =
zpy1[1] and zx[2] = xx1[2]; however, er, 1 is not necessarily equal to e, because the
environment transition equation determines e ;. We prohibit the robot from considering
actions that produce an obstacle collision in this case.

A strategy at stage k is a function v, : X — U, and a strategy, v denotes {1, ...,k }.
Hence, this is a feedback controller with perfect state information. Stationarity is as-
sumed as in Chapter 2. Section 3.7.2 presents a discussion of time-varying strategies, in
which this assumption is relaxed. A loss functional, L(xq, ..., g1, U1, ..., Uk), is defined,
and the goal of the planner is to determine an optimal strategy v* = {7, 73, .-, 7k}

that causes L to be minimized in an expected sense.

3.3.3 Defining loss with dynamic regions

This section discusses the key concepts that are used to model the effect of the en-
vironment on the robot. In particular, costs that appear in a loss functional directly
depend on dynamic regions in the state space. If the robot enters a particular dynamic
region, the amount of loss received might increase or decrease. For example, a dynamic
region might correspond to the robot’s collision with a closed door, which would incur a

very high loss.

'We use the notation zj[i] to refer to the it" element of the vector zj.

121

We will define dynamic regions in the workspace W, and subsequently discuss how
these regions are mapped into the state space X. In addition to static obstacles, let W
contain a set of m dynamic regions, denoted by {D;, ... ,D,}. Each dynamic region is
a subset of W, and pairs of dynamic regions are not necessarily disjoint.

A dynamic region D; in W can map into the region CD; C Cyy.e, which is given by

(see Figure 3.6):
CD; ={q € Cfree| A(q) N D; # 0} (3.4)

We call CDf a contact (dynamic) C-region. This yields configurations in which the robot is
in contact with D;. A contact C-region is useful for such problems as that in Figure 3.1(a),
in which contact with an obstacle must be determined.

In some situations, we will be interested in determining whether the robot is com-
pletely contained in some D;. For instance, in the example in Figure 3.2, the robot is only
considered safe if it is completely inside the shelter region. For this situation, a dynamic

region D; in YV maps into the region CD{ C Cyye, which is given by (see Figure 3.7):
CD; = {q € Cree| A(q) C D;}. (3.5)

We now want to map the dynamic regions into the state space, because the loss
functional depends on the state trajectory (see Figure 3.8). The dynamic regions have
been mapped into Cyre.; therefore, the mapping into X can be considered as lifting
the contact C-region (or enclosure C-region) into different layers of X. We want the
dynamic region to only influence the robot only at certain layers. With the example
in Figure 3.1(a), we want the dynamic region to exist in X only in environment modes
that correspond to the door being closed. In modes for which the door is open, the door
should not interfere with the robot. For each i € {1,...,m}, we select a subset E; of

environment states F; C E.

122

Robot: Q

Contact Dynamic Region Contact Dynamic Region
in Workspace in Configuration Space

s L

Figure 3.6 A contact dynamic region.

We can represent a state z € X by (q,e), in which q € Cf.e and e € E. If D; is a

contact dynamic region, then we define

Xi={(q,e) € X| ¢ € CD; and e € E;}. (3.6)
Alternatively, if D; is an enclosure dynamic region, then we define

X ={(q,e) € X| ¢ € CD; and e € E;}. (3.7)

We call X; the i** dynamic X-region. Fach X; may be formed from either a contact or
enclosure dynamic region.

We now define a goal region as a special kind of dynamic region (in addition to
Di,i € {1,...,m}). We first define a subset G C W as a goal region in the workspace.
We next consider G' as a contact goal region (or enclosure goal region), and apply (3.4)
(or (3.5)) with D; = G to obtain the goal region in configuration space. A subset £, C E
is selected, and we obtain X by applying (3.6) (or (3.7)). The termination condition

for a given motion planning problem will be to bring the system to any state in Xg.

123

Enclosure Dynamic Region Enclosure Dynamic Region
in Workspace in Configuration Space

~ ~
-~ Y
~o s
~ ~d

~.
~
~
~
-~
~

Figure 3.7 An enclosure dynamic region.

We assume that a loss functional is of the additive form, as in Equation (1.7), which
was discussed in Section 2.3.4. For a given set A, let I4 denote its characteristic function:

I (a) =1if a € A, and I4(a) = 0 otherwise. The term I is defined as

,

0 If 2, € Xg

lk(mk,uk) = 9 . (38)
cu +) cidx, (k) + ¢iIxe (k)] Otherwise

\ =1

The constant ¢, > 0 corresponds to the cost for choosing an action.

The constant ¢; > 0 is the penalty added if z;, € X;. The constant ¢, > 0 is the penalty
added if z; ¢ X;. In (3.8), X¢ denotes X \ X;. For the case of a changing configuration
space, for instance, these constants could become ¢; = oo, to indicate that a collision
has occurred, and ¢, = 0 otherwise. The specific loss functionals for applications are
presented in Section 3.5.

The term [y, is defined as

lk+1(Trr1) = cplxg (Tx41), (3.9)

in which X§& denotes X \ Xs. The constant c¢; can be considered as the cost of failure.

We typically consider ¢y = oo, but can also associate a finite cost with failure.

124

State Space

Dynamic Region

y

Figure 3.8 Dynamic regions are lifted into the state space.

3.4 Determining Optimal Strategies

One of the primary advantages of our approach is that a straightforward computation
procedure can be used to determine optimal strategies. In Section 3.4.1, we show how
the principle of optimality can be applied to our problem to obtain solutions through

dynamic programming. Section 3.4.2 briefly discusses computational issues.

3.4.1 Applying the principle of optimality

Suppose that for some k, the optimal strategy is known for each stage i € {k,... , K}.

The expected loss obtained by starting from stage k£ and implementing the portion of the

125

optimal strategy {~;,...,7k} can be represented as a cost-to-go function,
~ K
L) = £ {3 o 0 0) + s o) | (3.10)
i=k
in which F{} denotes expectation, taken over the possible environment sequences, e.
Applying the principle of optimality, L} (z4) can be obtained from L} _(zx41) by the

following recurrence:

I_/,’;(ack) = qut}cn {lk(ack, U,k) + Z LZ+1(Ik+1)P(ZEk+1|Ik,Uk)} . (311)

Tr+1
Note that the sum in (3.11) is taken over a finite number of states, which can be reached

using (3.3).

3.4.2 Computational issues

The computational issues are similar to those discussed in Section 2.6.3. We are de-
signing a feedback controller with perfect information; however, the state space addition-
ally includes environment information. Optimal strategies are determined numerically, by
successively building approximate representations of L}, and using linear interpolation.

For each position in the state space, one of the following occurs after some finite
number of iterations: (1) the state, z, is in the goal region, in which case L}(z;) =
0; (2) the losses Lj(zx) and Lj,,(z441) become equal for z = z441; or (3) the loss
L;(zk) > Lj.q(zk41) for z, = xp41. The second condition occurs when the optimal
strategy from xp,; has already been completely determined, and an additional stage
accomplishes nothing (this additional stage can be considered as transpiring in the goal
region, in which no additional loss is received). The third condition occurs when the
goal cannot be reached from xy;. If we continue to perform the dynamic programming

iterations until one of the three conditions is met for every z, € X, then the optimal

126

strategy from all initial states will be represented. The resulting strategy is formed from
the optimal actions in the final iteration. The optimal strategy is stationary, because
it depends only on the state, as opposed to additionally requiring the stage index. The
optimal action can be obtained from any real-valued location z € X though the use
of (3.11), linear interpolation, and the approximate representation of Li. A real-valued
initial state is given (the final component represents the environment mode, and is an
integer).

We briefly discuss the computational performance of the algorithm. Let |@Q)| denote the
number of cells per dimension in the representation of Cf,... Let n denote the dimension
of Cfree. Let |E| denote the number of environment modes. Let |U| denote the number
of actions that are considered. The space complexity of the algorithm is O(|Q|" |E|),
which is proportional to the size of the state space. For each iteration of the dynamic
programming, the time complexity is O(|Q|" |E|? |U|) and the number of iterations
is proportional to the robot velocity and the complexity of the solution strategy. The
number of iterations required is directly proportional to the number of stages required for
the longest (in terms of stages) optimal strategy that reaches the goal. The computation
at each cell (in the application of (3.11)) has time complexity O(|E| |U|), with n fixed.

In our simulation experiments, we have considered problems in which the dimension
of Cfree is two or three, and we have considered up to 32 environment modes. For
two-dimensional configuration space, we typically divide the space into 50 x 50 x |E|
cells, and use from 16 to 64 quantized actions (excluding) to approximate translational
motion. For three-dimensional configuration space, we typically divide the space into
50 x 50 x 64 x |E| cells. These levels of resolution produce very reasonable results for
most motion planning problems (see the computed examples in Section 3.5).

As in Chapter 2, the computation times vary dramatically, depending on the reso-

lution of the representation, number of environment modes, and dimension of the con-

127

figuration space. For the examples that we present in this chapter, the computation
times vary from about one minute to a few hours, on a SPARC 10 workstation, without
parallelization. Problems that involve a two-dimensional configuration space typically re-
quire a few minutes, while problems that involve a three-dimensional configuration space
typically require a few hours. The on-line execution of the optimal strategy, however,
proceeds very quickly (on the order of milliseconds). This implies that the robot can

quickly respond to changes in the environment when executing the optimal strategy.

3.5 Computed Examples

In this section, we present computed examples that represent the sets of problems that
were discussed in Section 3.2, using the computation method discussed in Section 3.4. The
mathematical models from Section 3.3 are specialized to model specific problem types.
Section 3.5.1 presents computed examples that involve a changing configuration space.
Section 3.5.2 presents examples that involve hazardous regions and shelters. Section 3.5.3

presents examples that involve servicing.

3.5.1 Changing configuration space

Suppose there are m obstacles in the workspace that can appear or disappear and that
are defined by m dynamic regions, D1, ... ,D,,. It is assumed here that the stochastic
processes that govern these regions are independent. In general, we have 2™ environment
modes, which correspond to each possible subset of obstacles that can appear. If the
dynamic-region processes are dependent, several of these subsets of regions might not be
possible, thereby reducing the number of environment modes. Our approach supports

dependent processes by defining the appropriate environment transition probabilities;

128

however, we use independent processes to ease the modeling, through the use of Poisson
processes.

Recall the example process given in Section 3.3.1. The complete specification of the
environment process is given for m = 2 and identical Poisson processes that govern
the doors. A straightforward extension can be made to m dynamic regions, with distinct
Poisson processes. We define two Poisson arrival rates for each dynamic region, D;: A} and
At. Using equations similar to (3.1), probabilities of a region appearing or disappearing
can be derived to yield: Pi,, P, Py, and P};. Recall from (3.2) that environment
transition probabilities could be constructed from products of pairs of the probabilities

P;;. To generalize this, each environment transition probability is given by

P(egraler) =] Pas (3.12)
=1

in which k represents the ** bit in the binary representation of e;;, and [represents the
i" bit in the binary representation of ej. The interpretation of this is that appearing or
disappearing regions correspond to bits changing from 0 to 1, or from 1 to 0 in a binary
integer representation of the environment mode.

We now describe how the loss functional is built, by applying definitions from Sec-
tion 3.3.3. Each D; is considered as a contact dynamic region, from which m dynamic
X-regions are formed. We define the terms in Equation (3.8) as ¢, = At, ¢; = oo, and
¢, = 0. By setting ¢, = At, we obtain time-optimal solutions when the goal is reached
without collision. The constant ¢; provides a penalty for colliding with a dynamic re-

gion that has appeared, which precludes this alternative from the space of reasonable

129

strategies. This results in

0 If z, € X¢

l(zp,ur) =< At Ifz, € X; forall i - (3.13)

| o Otherwise

We also let ¢; = oo in (3.9), which results in lx 41 = 0if 2541 € Xg, otherwise lx41 = 0.

In our current implementation, we do not allow transitions into modes that cause
a collision to occur (i.e., an obstacle may not suddenly appear such that it contacts
the robot). Several computed examples will now be presented. A simple example is first
presented in Figure 3.9 to illustrate many of the concepts. Figure 3.9(a) shows a problem
in which a point robot can translate in 2 using (3.3). A single doorway exists in the
workspace; therefore, there are two environment modes. The outer dimensions of the
workspace for this and all other examples are 100 x 100. For this example, ||v||At = 2,
Py, = P;; = 0.98. The goal region, X, for this problem and other changing configuration
problems exists in all layers of X (i.e., the goal does not depend on the environment
mode).

Figure 3.9(b) depicts 20 sample paths from a fixed initial location to the goal region,
under the implementation of the computed optimal strategy. Initially e; = 0, indicating
that the door is open. Each of the 20 sample paths is obtained by sampling an environ-
ment mode sequence, e, from the Markov process, to obtain one trajectory in X that
terminates in the goal. Figure 3.9(b) illustrates different sample paths that can result
during execution, even though the strategy is fixed. These differences are caused by
variations in e. Some sample paths go through the doorway; others take a longer way to

the goal. In one sample path, the robot begins to go toward the other doorway because

130

the nearer door closed; however, the robot changes its direction and heads toward the
doorway again because the door reopened.

Figures 3.9(c) and 3.9(d) depict the optimal strategy v*. The direction of each arrow
indicates the direction of motion (specified as uy = v*(zx)) for the robot, from that
particular state location. The state space was quantized into 75 x 75 x 2 locations for
determining the optimal strategy; however, for clarity we show actions at fewer locations
in the figures. When e = 0, a sharp division is observed between places in the state space
that lead to the doorway and places that lead to the open corridor. When e = 1, the
robot moves through the open corridor, to the goal region.

Figures 3.9(e) and 3.9(f) show 20 level-set contours of the cost-to-go function, L}(z;).
This function increases as the distance from the goal increases. For translational motion,
the negative gradient of the cost-to-go function represents the direction of motion for
the robot. Hence, the cost-to-go function is similar to a numerical navigation function
[101], [109], [160]; however, in our work, the representation of Lj(z1) is obtained as a
by-product of determining the optimal strategy.

We next show some results for a more complex example, in which there are 18 door-
ways, in Figure 3.10. There is a point robot, for which ||v||At = 3. There are three
different classes of doors, which open and close simultaneously (see Figure 3.10(a)). This
results in three disconnected dynamic regions and eight environment modes. Each class
of doors is governed by the same Poisson parameters as the previous example.

Figure 3.10(b) shows 20 sample paths under the implementation of the optimal strat-
egy, when e; = 0 (all doors are initially open). Many different sample paths are obtained
under the optimal strategy, v*. For this example, there are places in the state space in
which the optimal action is v;(xx) = ux = @ (i.e., the robot waits for some door(s) to
open). Figure 3.11 shows 30 level-set contours of the cost-to-go function, L}(z;). When

some of the doors close, wells form in the cost-to-go function. Figure 3.12 shows two

131

Point Robot

Doorway

Goal Region

VNN N N e —

AV W N N N

0 20 40 60 80 100

T

60

= =

(e) (f)

Figure 3.9 (a) A door problem; (b) 20 sample paths; (c¢) v* at e = 0; (d) v* at e = 1;
(e) isoperformance curves at e = 0; (f) isoperformance curves at e = 1.

N

S}
N
S}

132

portions of Li(x;), which correspond to e = 0 and e = 7. When e = 7, the robot could
be trapped in any of the nine square compartments and must wait for a door to open;

this causes nine wells to appear in the cost-to-go function.

Point Robot

Door Type 1
Door Type 2
Door Type 1

Door Type 2 Door Type 1 Door Type 1
Gz [e

~ ™ ®
2 o @
o g 1
= =
[= 2
<] 5 <]
3 5 8
o a [=}

Door Type 1 Door Type 3 Door Type 1

A I T

Door Type 2
Door Type 2
Door Type 3

Door Type 1 Door Type 3 Door Type 1
| T e

Figure 3.10 (a) A problem that has 18 doors; (b) 20 sample paths.

Figure 3.13 shows results from the problem discussed in Figure 3.1(a). Four sample
paths are shown under the implementation of the optimal strategy, in which the initial
environment mode is e = 1 (the lower door is closed, and the upper door is open). Graphs
of e are also given. For the lower door, we have Py, = P;; = 0.99, and for the upper
door, we have Py, = P;; = 0.98. There is a three-dimensional configuration space, in
which two components represent position, and the final component represents orientation.
The incremental motion model for the robot is constrained rotation with reverse, which

consists of five actions. The first action allows the robot to remain motionless: xy 1 = .

133

I 80
) \/_’\
=

M
7

// [//ZZ%//% Lo

—
Y
= 20
o
0 80

100

K
g:

20 6

Figure 3.11 The isoperformance curves for v*.

134

&

o

0
Moo»

e=0and (b) e=T.

)

a

(

go functions for:

Figure 3.12 Cost-to

135

Figure 3.13 Four sample paths for a changing configuration space problem with two
doors.

136

The robot can either turn clockwise or counterclockwise, in which

.Ik[l]

Thp1 = 7l . (3.14)

(-Tk [3] + GmAt)mod%’

€k+1

Above, 6, represents a fixed angular velocity. The fourth and fifth actions allow the

robot to translate along the orientation xq, yielding

zg[1] £ ||v||At cos(xk[3])

oo — z[2] £ ||v||At sin(xg[3]) ' (3.15)
.T/c[?)]

€r+1

The values ||v||At = 3 and 6,,At = 0.2 were selected.

Four very different sample paths are shown in Figure 3.13. In the first sample, the
lower door opens, and the robot efficiently moves to the goal region. In the second
sample, the lower door remains closed for a long period of time, and the robot chooses
to move through the upper doorway, taking a much longer route. In the third sample,
the robot starts to head for the upper doorway, and then changes its heading when the
lower door opens. In the fourth sample, the lower door opens and then closes again. The
robot waits for the door to open again, instead of taking the longer route.

Figure 3.14 shows results from the problem discussed in Figure 3.1(b). Four sam-
ple paths are shown under the implementation of the optimal strategy. There are five
dynamic regions, each of which corresponds to a transient obstacle. For each transient
obstacle, P}, = P}, = 0.98. Initially, e = 0, which corresponds to the existence of none
of the five transient obstacles. The robot can translate in the workspace through (3.3),
in which ||v||At = 3. Again, we observe many different sample paths as the free configu-

ration space changes in different ways. If a transient obstacle appears at any time during

137

the execution, it is shown in the figure (i.e., it may appear that the robot collides with

the transient obstacle in some of the figures, but the obstacle disappears in time).

Figure 3.14 Four sample paths for a transient obstacle problem.

3.5.2 Hazardous regions and shelters

For this type of problem, we consider only two environment modes: either the envi-

ronment is hazardous, or the environment is safe. Of course, generalizations of this are

138

possible to multiple levels of danger, or to different shelters for different types of hazards.
We have a single dynamic region, D;. Let ¢ = 00, ¢, = At, ¢; = 0, and ¢, > 0. To
construct the loss functional, D, is considered as an enclosure dynamic region, as defined
in Section 3.3.3.

Figure 3.15(a) shows a basic example that illustrates the shelter and hazardous region
concepts. There is a point robot that translates in 2 using (3.3) and four thin horizontal
regions that are designated as shelters. For this example, ||v||At = 2, Py = 0.75 and
P11 = 0.98. The loss function is defined with ¢y = 0 and ¢, = 5. This is a generalization
of a local path optimization problem defined in [170], which involved a single horizontal
shelter region; the problem was analogous to the problem of crossing a one-lane street.
The current problem is analogous to the problem of crossing a multilane street that has
multiple shelters. For the one lane case, an analytical solution was presented in [170],
but the analysis is difficult to generalize to the multiple-lane case.

Figure 3.15(b) shows 20 sample paths under the implementation of the optimal strat-
egy. One can see the use of the shelters during the times when the environment becomes
hazardous (e = 1). When e = 1, the robot seems to head toward the next shelter and
moves along the shelter until the environment mode changes back to 0. This intuitive ob-
servation about the robot’s behavior is further supported by the results shown in Figures
3.15(e) and 3.15(f), which show 20 level-set contours of the cost-to-go function, Lj(z1).
When e = 0, the contours indicate that the robot moves across the street and directly
toward the goal. When e = 1, the robot moves along the shelters.

Figure 3.16 shows results from the problem discussed in Figure 3.2. Four sample
paths are shown under the implementation of the optimal strategy, in which the initial
environment mode is e = 0 (the environment is not hazardous). We have Py = P;; =
0.98. The incremental motion model for the robot is constrained rotation with reverse

(as considered for the example in Figure 3.13), in which |[v||At = 3 and 6,,At = 0.2.

139

Point Robot —

O A

J

Shelter Area

Goal Region

| i g

(c) (d)

Figure 3.15 (a) A hazardous region and shelter problem; (b) 20 sample paths;
isoperformance curves at e = 0; (d) isoperformance curves at e = 1.

140

During execution, very different sample paths, which reflect the responses due to the
environment becoming hazardous, are obtained. In the first sample, the environment
does not become hazardous, and the robot never moves into a shelter (although it travels
close to the shelters). In the remaining sample paths, the robot responds to the hazardous
environment by moving into a shelter. In the final sample path, the environment became
hazardous three times, causing the robot to take shelter each time. After the robot moves
into a shelter, it remains there until the environment mode e switches back to 0. Further,
while it is waiting inside a shelter the robot chooses an orientation that points along the
remaining optimal path for e = 0. We have observed this behavior more clearly through

animations of the robot moving along the sample paths shown in Figure 3.16.

3.5.3 Servicing problems

Suppose there are m different types of services to be performed. For simplicity we
assume that a request for a particular service to be performed arrives with Poisson fre-
quency A.. Each dynamic region, D;, corresponds to a place in which the robot can
respond to a service request. We further assume that the robot can immediately process
a request, which causes the request to be cleared. We assume that any number of ser-
vices can be requested simultaneously and that the governing processes are independent.
These assumptions are not, of course, necessary, but they simplify the development and
presentation of examples.

We now define the environment probability distribution. If z; € X; then P!, = P}, =

0, and P, = P}, = 1; otherwise, P{; =1 and
, At
Plo= [Aeedty =1~ e, (3.16)
0

in which), is the Poisson arrival rate for the i service request. The elements of the

environment transition distribution are obtained by forming products as in (3.12).

141

.

&

&

Figure 3.16 Four sample paths for a hazardous region and shelter problem.

142

We let ¢; = o0, ¢, = At, ¢; =0, and ¢ > 0. To construct the loss functional, D; is
considered as an enclosure or contact dynamic region, as defined in Section 3.3.3.

Figure 3.17(a) shows a basic example in which there is a translating point robot, and
five small regions in which a single type of service can be performed. There is a single
dynamic region, which corresponds to the existence of a service request. The goal region,
Xg, exists for both layers of X. This problem is similar to the one analyzed in [173],
which has points distributed on a plane. For that model, properties of optimal paths were
presented, although the actual optimal solution was not derived. Figure 3.17(b) shows
20 sample paths for our problem under the implementation of the optimal strategy. The
figure shows the deviations that the robot makes to process the service requests. Figures
3.17(c) and 3.17(d) show the computed optimal strategies for the two modes 0 and 1,
respectively. When there is a service request, the robot heads toward a nearby service
area to service the call, except when it is near the goal region. This general behavior is
exhibited in the level-set contours of the cost-to-go function, shown in Figures 3.17(e)
and 3.17(f). When e = 1, the contours form wells that draw the robot toward a nearby
region. This general behavior is supported by the theoretical analysis in [173], in which
by analogy a Delaunay path [153] (a path formed by edges from the Delaunay graph on
the plane) would be formed from the initial to goal position when the environment mode
is 1.

Figure 3.18 shows results from the problem discussed in Figure 3.3. Four sample
paths are shown under the implementation of the optimal strategy, in which the initial
environment mode is e = 2 (there is a request for the second service only). For the first
service type, we have Py = P;; = 0.99, and for the second type, we have Py = P =
0.98. The example uses a nonholonomic incremental motion model. For this case there

are four actions. The first action causes no motion, and the second action causes straight

143

« —— Point Robot

% -— Service Regions

Goal Region

/o4 /N N NN\
V427 NN N N N

(]

\

NN N N N N N N N Ny
NN N NN N N NN Ny
NN N N NN N NN N Ly

N A

NONN N N N NN N N NN

NN NN N N N N N N N A
A T T N A

NONNN NN N NN N N N N L

P LN
PPV

NN

SONN NN N NN N N N N N N

SUONUNON N N NN N N N N N Y

NN N NN N NN NN NN N Y Y
UONNN NN N NN N N NN N Y
UM N N N N N N N N NN Y N Y
e T T N N N T U N O T Y
T T N N N N N N T W N
NN NN NN NS T Y VAN

— == mww NNy

R

i N N N N N T T

e N T T

e NN

R N

R e S VR

P A A
P AT AT AT AV A AN

i e e e e Y

P A AT A A AN

100

80

60

40

20

Y

100

80

60

r40

20

(d) v* at

Y

(c)y*ate=0

formance curves at e = 1.

?

20 sample paths

(f)

(b)

formance curves at e = 0

Y

blem

1cang pro

17 (a) A serv

Figure 3.

isoper

7

(e) isoper

?

e=1

144

motion. The remaining two actions are of the form

x[1] + ||v||At cos(xk[3] £ 0,,At)

zk[2] + ||v||At sin(xg[3] £ OmAl)
Tp+1 — s (317)

(-Tk [3] + gmAt)monﬂ'

| Ch+1 J
which requires the robot to translate while rotating. This incrementally implements a
fixed turning radius constraint that is based on ||v||At and 6,,. For the current example,
the values |[v|]|At = 3 and 6,,At = 0.2 were used. Each service region is an enclosure
dynamic region. In this example, the goal region in the state space, X, exists onlu for
e = 0; this implies that the robot must reach the goal region while there are no requests

for servicing. Very different sample paths are obtained because the robot must process

any request that appears in order to reach Xg.

3.6 An Extension to a Part-Transferring Problem

This section presents a variation on the method presented thus far in this chapter.
The problem involves the delivery of parts from source locations to destination locations
in the workspace. The robot is capable of manipulating and carrying the parts, which
thus involves a gross-motion planning problem. The particular part, the particular source
location, and particular destination location are a prior: unknown, but are modeled with
a stochastic process. Section 3.6.1 provides the mathematical modeling that characterizes
this problem as environment-predictability uncertainty by defining environment modes
that correspond to delivery requests. Section 3.6.2 presents computed examples for both
rigid robots and manipulators. This problem can be considered as a component in a
flexible assembly or manufacturing system (e.g., [34], [77], [102], [192]); the details of this

application are discussed in [172].

145

Figure 3.18 Four sample paths for a servicing problem with a nonholonomic robot.

146

We characterize the problem of gross-motion planning for assembly as follows. A
scheduler issues requests to the robot to grasp a particular part from a specified source
and to deliver the part to a specified destination. A priori, the only information regarding
how these requests will be issued is in the form of a probability distribution on the set of
possible part/source/destination requests. Because a fine-motion plan will often follow
the execution of the gross motion, a source or destination is typically not specified as a
single configuration, but is specified as a subset of the configuration space (which could be
disconnected). The gross-motion planning problem is to derive a set of motion strategies
that will produce optimal throughput of the assembly cell, in an expected sense. We
idealize the object grasping problem (for relevant issues in grasping, see [41], [150]),
and assume that the robot can immediately pick up and carry an object through the

workspace.

3.6.1 Mathematical modeling

In addition to static obstacles, let the workspace, W, contain a set of S source regions,
denoted by {Si,...,Ss}, and D destination regions, denoted by {D;,...,Dp}. Let
{P1,...,Pp} denote a collection of P rigid parts. A request can be issued to the robot
that requires a part, P, be picked up from a source, S, and delivered to a destination,
D. In general there are PSD different requests that can be issued. We also allow the
possibility of having no outstanding requests at a given time. It is assumed that at a
given time, the robot has complete knowledge of its configuration and all parts, sources,
destinations, and requests.

To characterize requests and the status of the robot with respect to requests, we define
a set, F, of environment modes. An environment mode (in this section) is represented

by four components, (p, s,d, C/W). The first three represent the part, source, and desti-

147

nation, respectively. The fourth component is W to represent a mode in which a request
has been given, but the robot has not yet picked up the part, or is C to represent a mode
in which the request has been given and the robot is carrying the part. In addition, we
have a special mode, NR € E, which represents the condition in which no requests are
to be processed. Hence, we have the number of environment modes, |[M| =2PSD + 1.
We next define the free configuration space for different modes. We first define E,, C
E as the set of all modes such that a part is waiting to be picked up, and E. C FE as the

set of of all modes such that the robot is carrying a part. If e = (p, s,d, W) € E,,, then
C;ree = {q € C‘ ‘A(q) N (B U 81 u-. 'szl U Ss+1 vt SS) = 0}, (318)

in which A(q) denotes the robot at configuration q, and B denotes the static obstacle
region (see [109]). In addition to avoiding collision with static obstacles, we also require
that the robot avoid collision with other source regions. For our context this is preferable,
because other parts presumably may arrive at other sources at any time. The collision
detection with source regions could, of course, be removed in some applications.
Suppose e = (p, s, d, C) € E,, which implies that the robot is carrying some part, P,.
We use the notation P(q) to denote the transformed part, when grasped by the robot,
which is at configuration q. As discussed in Section 3.5.1, when a part is being carried
rigidly by the robot, the effect is that of the “new” robot described as A(q) U P,(q).

Thus, the free configuration space becomes

Chree =14 €C| (A(Q) UPy(q)) N (BUSU---8S_1US,11-+-Sg) = 0}
(3.19)

The only remaining environment mode in E' is e = NR, in which we have

Clree =1 €Cl A(Q)N(BUS U---USs) =0}, (3.20)

148

We next describe transitions that occur between environment modes as a discrete-time
finite-state Markov process. A final stage, K, is defined to preclude a special treatment
of infinite stages and, in practice, KAt can be considered as the total time that the
robot is in operation. We have considered the following three types of probabilistic state

transitions (although many others are possible):
1. the probability of receiving a p, s, d request while in mode NR,

2. the probability that the destination will change to a new destination while in a

carrying mode,
3. the probability that the source will change while in a waiting mode.

The first transition type is the most fundamental, and can be generally expressed as
P(exi1lex = NR) > 0 if exy1 € Ey, and P(egt1|ex = NR) = 0 otherwise. The second
transition type can be expressed as P(egi1lex € E.), which is allowed to be nonzero
only if e; and eg,; correspond to the same part and source. Ideally, the destination
remains fixed, and P(exyilex € E.) = 1 if ex11 = e, and 0 otherwise. Similarly, the
third type can be expressed as P(ext1|ex € Ey), which is allowed to be nonzero for any
value of ey € E. Ideally, P(exy1lex € E,) = 1 if exy1 = €, and 0 otherwise. Any of
these transition probabilities can be viewed as being derived from an underlying Poisson
process, as shown in Section 3.3.1.

In addition to the above three types, there are several other key transitions that we
model deterministically; these are the transitions from elements in F,, to elements in FE,,
and from elements in F, to NR. The previous transitions were independent of q; and uy;
however, the following transitions depend directly on the configuration and the action.
Suppose the robot has an action, FMP € U, that represents fine-motion planning.

To grasp or ungrasp a part, the robot can choose this action from state z; (causing

149

fine-motion operation to be performed), and the robot is returned to the gross-motion
planning system in some state xy 1.

We assume that the fine-motion operation can be performed to pick up a part only
when the robot has reached the correct source region, and to deliver a part when the
robot has reached the correct destination region. When the action F'M P is executed, we
assume that the environment mode changes with probability one. At a source region, e, =
(p,s,d, W) changes to exy1 = (p,s,d,C), and at a destination region, e; = (p, s, d,C)
changes to ex.1 = NR. We could extend the model for error-handling by defining failure
modes in case a F'M P is not satisfactorily executed.

Consider the motion model for the case in which C C %2, and the robot is limited
to translational motion. More complicated motions will be considered in Section 3.6.2,
including modeling of a redundant manipulator. The motion of the robot could also
strongly depend on the environment mode; for example, the velocity bound, ||v||, might
depend on the part that the robot is carrying. We define the action space as U =
[0,27)U{0, FMP}. If uy, € [0,27), then A attempts to move a distance ||v||At, in which
||v|| denotes some fixed speed for A. If u, = (§, then the robot remains motionless.

For this problem, there is no goal region in which the robot must terminate. Strategies
are selected that minimize the expected time that parts wait to be delivered. We describe
a general definition for /; that pertains to our motion planning problem for assembly. Let
ts(zr) denote the ezpected time to complete a fine-motion planning task (which results
in a new assembly mode) by choosing the action uy, = FM P from state zx. Figure 3.19
illustrates how the change from gross-motion planning to fine-motion planning affects
the expected time for completing the fine operation. Accounting for this dependence
further optimizes the expected time, especially when the time for fine-motion planning
is significant. Recall that z; simultaneously represents g, p, s, d, and C/W. If my €

M, then t;(z;) represents the expected time to grasp the part. If my € M,, then

150

destination region

subassembly

Figure 3.19 An example of the variation of the cost of the fine motion planning depend-
ing on the contact position with the destination region. Contact at A will give rise to a
smaller expected time for mating compared to B.

ts(zr) represents the expected time for an ungrasp operation for the part (mating with

a subassembly, machining, or some other fine motion). In general

4

0 mg € NR

b(ze,ur) = t;(x) up=FMP . (3.21)

At Otherwise

The loss thus becomes the aggregate of times that parts wait before being delivered.
If there are no requests (i.e., my = NR), then no penalty is received. To reduce the loss
over a long period of time, the robot will prefer actions that bring the assembly mode

back to NR as quickly as possible.

151

3.6.2 Computed examples

In this section, we present computed solutions for six different problems that involve
the transfer of parts in a workspace. The first four problems involve a rigid robot in
the workspace, which could represent the end-effector of a Cartesian robot, or a mobile
robot. The final two problems involve manipulators, for which optimal strategies are
derived directly on the joint space. The results were computed using the algorithm that

was described in Section 3.4.2.

3.6.2.1 Rigid robot simulations

The first example is designed to illustrate many of the basic concepts. It involves
a rigid robot that translates in a planar workspace cluttered with obstacles (see Figure
3.20). Two different parts can be moved from either of two sources to either of two
destinations. There are consequently 17 possible environment modes. The probability
that a request will appear at stage k£ + 1 while e, = NR is given to be 0.05. In addition,
we declare that all p, s, d combinations are equally likely to occur. We assume that once
a p, s,d combination is given to the robot, it will not change or be retracted until part p
is delivered to destination d. The robot moves with ||v||At = 3.0, and the workspace is
100 units in each axis.

Figures 3.21(a) and 3.21(b) depict the level-set contours of the cost-to-go function,
L3 (z,) for environment modes (1,1,1, W) and (1, 1,1, C), respectively. In Figure 3.21(a)
a minimum exists at the first source region, and in Figure 3.21(b) the minimum appears
at the destination region.

Figures 3.21(c) and 3.21(d) depict the optimal strategy +* for environment modes
(1,1,1,W) and (1,1,1,C), respectively. The direction of each arrow indicates the di-

rection of motion (specified as u, = v*(zx)) for the robot, from that particular state

152

Destination 1 Destination 2

Part 1
Robot

Part 2

Source 1 Source 2

Figure 3.20 A translating robot problem in which P =2, S =2, and D = 2.

location. The motion directions are shown at fewer state locations than appear in the
machine implementation to add clarity to the figure. The places in which there are no ar-
rows correspond to configurations in which the robot (or possibly the part) is in collision
with a static obstacle.

Figure 3.22 presents a simulation of the robot in the workspace over a period of time,
under the implementation of v*. A sample run is obtained by sampling an environment
mode sequence, m, from the Markov process, to obtain a trajectory in X. The beginning
of the trajectory is depicted in Figure 3.22(a), and it concludes in Figure 3.22(1). To save
space in the figure, many frames are superimposed, and a new picture is shown each time
the environment mode changes. This illustrates the behavior of the robot as it responds
to a sample from the stochastic process. The first column of Figure 3.22 corresponds to
execution during the NR mode. The second column corresponds to modes in E,,, and

the final column corresponds to modes in E.. In the last two columns, the source and

153

1100

80
160
+40

0

80

60

40

20

190

i

80

60

40

20

190

)

N ANANAANANNNNAAANAAAAANN)

NN N N

R N

A A A A N B A A

A S A G

VNN N N N

I T2 A B U U U N N N N N S O

P A A

P R

Yo e a w - a

VPRV A e

AN
N\
AN
Y
Y
Y
Y
X
A
4
\
4
4
\

PN I P A O A A v A

/
f
t
t
t

[P A R

VP A A A NS
foxoe o A NN N W
VP AV AN VA NANE NN

(b) the
L1, W)

I

).

,1,W

(1,1

) the optimal actions as a vector field for e

Figure 3.21 (a) Level-set contours of the cost-to-go function for e

I

(1

(1,1,1,CY; (c

(d) the optimal actions for e

contours for e

(1,1,1,C).

154

destination regions that correspond to the issued request are shaded. In the final column,
the part that is carried by the robot is shaded in black.

At least two interesting behaviors are found in this solution. When the environment
mode is VR, the robot moves to a location in the lower portion of the workspace. This
behavior naturally occurs through the optimization of the criterion. To reduce the ex-
pected time to deliver a part that might appear, it is best for the robot to wait near
sources while there are no requests. This corresponds to reducing the setup time in a
scheduling system, and is hence a preferred behavior for the robot. Note also how the
changing geometry affects the trajectory of the robot. In Figures 3.22(b) and 3.22(d),
the robot does not carry a part and is able to move through a narrow opening. However,
in Figure 3.22(c), the robot carries a part, and consequently must take a longer route to
reach the destination.

For the remaining problems in this section, we will show figures similar to Figure 3.22
and which indicate the sample path under the implementation of the optimal strategy.
Figure 3.23 involves a translating robot problem in which there are six parts, four sources,
and three destinations. In addition, Destination 1 has two disconnected components;
hence, the robot must choose the best delivery point in terms of loss. For this problem
there are 72 different kinds of requests (which are equally likely to occur), resulting in
145 environment modes. Figure 3.24 shows a sample of the execution under ~*.

Note the behavior of the robot with respect to the disconnected components of Des-
tination 1. At the start of the time period captured in Figure 3.24(h), the robot receives
a request to move Part 6 from Source 3 to Destination 1. The robot picks up the part
from Source 3 and chooses to deliver it to the lower component of the Destination 1 (Fig-
ure 3.24(i)). This behavior was based on the computation of the optimal strategy for that
particular position of the robot in the N R mode. In this example, the robot was allowed

only to translate; this enabled us to study a more complex assembly situation involving

155

V.

Figure 3.22 A simulation result under the implementation of ~*.

156

Part 1 {%]
Part 2 H;] Robot [|

Part 3 D:
Part4 g

Part 5

Part 6

Destination 1

g v
[0} 9]
17} 1)
= =4
=] >
[[
=, =
o o
=] =
N w

Destination 1

Figure 3.23 A translating robot problem in which P = 6, S = 4, and D = 3, with
one of the destinations having two components. The first destination has two connected
components.

a fairly large number of environment modes (145). In the next problem we extend the
model to allow the robot to rotate, resulting in a three-dimensional configuration space.

Figure 3.25 shows the assembly situation in which there is a rotating robot, one part,
two sources, and two destinations. We assume that the robot can rotate in place, or
translate along its axis of orientation.

The constrained rotation motion model that was used for the example in Figure
3.13 was used for this case. Figure 3.26 shows a sample of the execution under ~*.
Because of the obstacle arrangement and because the part that the robot could carry is
large relative to the opening, the optimal position of the robot in the NR mode (Figure
3.26(a)) is important since it can significantly affect the carrying time when the request

arrives. Under the “tight” free configuration space that results for motion planning The

importance of optimizing the expected performance that accounts for the probabilities

157

(8) (h)
))
* ||+
||
(i) (k)

()

Figure 3.24 A simulation result under the implementation of ~*.

158

Source 2

Destination 1

Robot

Destination 2

Source 1

Figure 3.25 A rotating rigid robot problem in which P =1, S =2, and D = 2.

of the different requests can be appreciated. In this problem, there are four possible
requests (p, s, d combinations) and nine environment modes.

In the three problems discussed so far, the stochastic model of the assembly process
was defined in terms of the transition probabilities from the N R mode of the robot. In
the next problem, we discuss an alternative stochastic model that defines the transition
probabilities with respect to the destination regions. The specific feature that this model
induces on the behavior of the robot, is the ability to change destinations while it is
already carrying a part. This is illustrated in results of the specific problem described
next.

Figure 3.27 helps illustrate the assembly situation that involves a translating robot
with two parts, one source, and three destinations. For this problem, the destination is
allowed to change while the robot is carrying a part. The probability that the destination

will change in a given stage is 0.02. The probability for changing to each of the other

159

AQTIITIITI

- Qi

]
(RGO

()

Figure 3.26 A simulation result under the implementation of ~*.

160

two destinations is 0.01. The robot models the changing destination probabilistically
as discussed in Section 3.6.1, and the optimal strategy causes the robot to respond to
the change. Figure 3.28 shows a sample of the execution under v*. Figure 3.28 shows
a sample under the implementation of v. The destination changes during execution, as
depicted in Figure 3.28(c) and in Figure 3.28(g). In both cases, the robot immediately
responds by delivering the part to the new destination. This kind of assembly situation
can arise when there is on-line monitoring of the assembly process and the robot has
access to the current demand at a particular destination at any given time. For example,
suppose the same part is needed by two destination regions D1 and D2 at a given time.
The scheduler schedules the part to be delivered to D1, but an error causes a delay in the
previous operation, and D1 is not ready for that part while the robot is in the process of
carrying it. This would be detected by on-line plan monitoring, and the part would be
rescheduled to arrive at D2. The probabilistic modeling of such an assembly situation

helps in improving the gross-motion planning.

3.6.2.2 Manipulator simulations

In this section, we show how the principles in this chapter also apply to motion plan-
ning for manipulators performing assembly operations. Several additional concerns must
be addressed that pertain to collision detection and the state transition distribution.
Each manipulator is described by a set of links that are connected by rotating joints, and
the final link contains an end-effector that can grasp or ungrasp an object. The config-
uration space is generated by taking the Cartesian product of the real-valued intervals
that correspond to joint angles.

For this context we need to replace only .4(q) in Equations (3.18), (3.19), and (3.20)
with the union of the transformed end-effector and all the links. Hence, we require that

the entire manipulator avoids collision with static obstacles. To define the source and

161

s L]

L] Destination 1 Destination 2 Destination 3

[ERE|

Part 2

Robot A

Source 1

Figure 3.27 A translating robot problem in which P =2, S =1, and D = 3, and the
destination of a request is allowed to change stochastically.

destination regions in the configuration space, we consider only the end-effector as the
robot.

Each joint of the manipulator can be independently controlled. Thus, we define the
motion strategies directly in terms of the joints, instead of considering their representation
in the workspace. The collision detection for the articulated hand in our implementation
is done in terms of the coordinate space of the workspace. To define the action space, at
the ™ joint, we allow one of three possibilities: move clockwise, move counterclockwise, or
remain motionless. For an n-link manipulator, there are 3" +1 actions. A state transition
distribution is straightforward to specify because each of the first n — 1 coordinates
corresponds to a unique joint angle. For the examples that we consider, the planar robot
manipulator has redundant degrees of freedom. This is because that even though the
robot has three degrees of freedom, the goals are positional in terms of the source and

destination regions.

162

(i) (k) ()

Figure 3.28 A simulation result under the implementation of ~*.

163

End Effector

Part 2 5
/ Source 1
Destination 1
Link 3 »
n Destination 2
Source 2

Figure 3.29 A three DOF manipulator with a constrained, rotating end-effector is in a
workspace in which P =2, S =2, and D = 2.

For the first manipulator problem, there are two parts, two sources, and two destina-
tions (see Figure 3.29). There are three links that move in the plane, and an end-effector
that maintains a constant orientation. The figure can be considered as a side view of
a problem in which objects are to be moved from trays that exist at different levels.
Joint limits prevent joints from executing circular motions. Figure 3.30 shows a sample
of the execution under different requests and under some of the 17 possible assembly
modes. The third column shows the part being “carried” to the destination region with
the transition to the fine-motion planning being defined in terms of contact of the end-
effector with the destination region. An enclosure condition could have alternatively been
defined.

For the second manipulator problem, there are one part, two sources, and four desti-
nations (see Figure 3.31). One of the sources has two disconnected components. There

are three links that move in the plane. The figure can be considered as a top view of

164

Figure 3.30 A simulation result under the implementation of ~*.

165

a problem in which objects are to be moved between locations on a planar surface. We
also have fixed limits for each joint. Figure 3.32 shows a sample of the execution. Note
the interesting behavior of the robot induced by the fact that there are two disconnected
components for Source 1. Thus, every time a request arrives involving Source 1, the
strategy of the robot varies depending on its current position and the destination region
that is also the part of the request. For example, in the segment of its execution captured
in Figure 3.32, there were three requests involving Source 1 (this is shown in terms of the
shaded regions of Figure 3.32(e), 3.32(h) and 3.32(k)). For the first such request (second
row), the robot chooses to pick the part from the upper component of Source 1, although
the robot was closer to the lower component of Source 1 when the request arrived. This
was because the corresponding destination was closer to the upper component. In the
other two cases involving Source 1 (see the third and fourth rows of Figure 3.32), the
robot chose the lower component instead. Such behaviors illustrate the utility of consid-
ering motion planning in the context of assembly by an appropriate model of the process

that drives its behavior over time.

3.7 Additional Models and Applications

This section presents several additional models and applications that illustrate the
flexibility and extendibility of our approach. Section 3.7.1 discusses an extension in which
the robot does not receive perfect information about the current environment mode. This
form of uncertainty can be combined with the changing environment to yield strategies
that are conditioned on sensor observations made by the robot. Section 3.7.2 discusses an
extension that incorporates any time-varying, completely predictable aspect of the motion

planning problem into the motion strategy, which results in a nonstationary optimal

166

Source 1

Part 1

Destination 2 Destination 1

Destination 3

Source 2

Destination 4 Source 1

Figure 3.31 A three DOF manipulator is in a workspace in which P =1, S = 2, and
D = 4. The first source has two disconnected components.
strategy. Section 3.7.3 discusses how nondeterministic uncertainty representations can

be used instead of probabilistic representations.

3.7.1 Imperfect environment information: incorporating
uncertainty in environment sensing

It has been assumed so far that at stage k£ the robot knows the environment mode,
ex- In terms of the concepts from Chapter 2 this is equivalent to the case of perfect
state information. In Chapter 2, the state space encoded only configuration information;
however, in this chapter, the state space also includes environment information. The
information space concepts from Chapter 2 can also be applied to the case of imperfect
information about the environment. This leads to a treatment of environment sensing

uncertainty, which is briefly discussed in this section.

167

Figure 3.32 A simulation result under the implementation of ~*.

168

Suppose the robot is equipped with a sensor that produces an observation o4 at each
stage, k € {1,...,K}. We assume that a noise or error model for the sensor can be
specified as P(og|ex). This characterizes the observations that are likely to be made for
a given environment mode. The form P(ox|ex) is typically used in a variety of robotics
applications that involve statistical sensor error [79], [80] and, in general, for stochastic
control theory [105]. Its form is similar to the observation model, p(yx|zx), that was
used in Chapter 2. We could also condition the observations on configuration to obtain
P(oxler, ar) = P(ox|zk).

We begin with a prior probability distribution over E, denoted by P(e;) (which
could, for example be uniform). We next develop an incremental computation method
that determines the posterior probability distribution of e, for each k£ and incorporates
the sensor observations. This method proceeds by induction, using P(e;) as the basis,
and the transition from P(eg|o, ... ,01) to P(exy1|0kys1,-.. ,01) as the inductive step.

If we have P(eg|og, - .. ,01), then before a new observation, the posterior distribution
of exy11 can be determined as

P(exsi1|0gy---,01) = ZEP(ek+1|ek)P(ek\ok,... ,01). (3.22)
[AS]

The new observation, ok, can be incorporated to obtain

P(0gt1/€k+1,0k; - - -, 01) Plegt1|0k, - .-, 01)
P =
(ek-}-l‘ok-f-la 701) P(Ok+1|0ka--- ’01)
(3.23)
in which
P(oky1|ogy---,01) = Z P(oky1|€xs1,0ks--- ,01)P(egs1|0k, ... ,01).
6k+1€E
(3.24)

169

By making appropriate substitutions above, and by reducing conditionals, we obtain

P(ogi1lex+1) D> Plextiler)Plexlog, - - - ,01)
e,€E

Z Z P(ogy1lexs1) Pleyiler) Plexog, ... ,01)
ex€E e 1EE (325)

P(exy1|ortr, .- - ,01)

Equation (3.25) defines P(egt1|0k+1, - - . ,01) in terms of the given probabilities: P(exi1|ex),
P(ek|ok, ... ,01), and P(ogs1]ex+1). Hence, at each stage during the execution of a strat-
egy, a new posterior distribution can be computed.

The next concern is to design an optimal strategy under imperfect environment in-

formation. We could define an information state at stage k as some subset:

Me € {u1, Ug, ..., Uk_1,01,00,... ,0}. (3.26)

Recall from Section 2.3.3 that under probabilistic uncertainty, the information space can
be considered as a function space of probability densities. Let P denote a function space
of all probability distributions over E. Let py € P denote the probability distribution
over E obtained at stage k. The dimension of P is |E| — 1. A new state space for this
problem can be defined as X = Cy,.. x P. Hence, at any given stage, the robot will be
at some known configuration in Cy,.., and we have a probability distribution for F that
belongs to P. This state space has dimension n + |E| — 1, in which n is the dimension
of Cfree. A state transition distribution must be specified to determine z4;; from zy.
The first n coordinates are given by the motion equation of the robot, as specified in
Section 3.3.2. The state transition distribution in Section 3.3.2 required the environment
transition probabilities, P(exy1|ex) and, analogously in this case, we are interested in
P(prs1]pr). We also require the definition of a termination condition, which causes the
robot to halt, because the goal region might depend on the environment mode, which is
generally unknown. Using these components, the dynamic programming equation (3.11)

can be applied to yield solutions.

170

To obtain P(pg.1|px) we first note that p, represents the function P(eg|og,- .. ,01),
and py41 represents the function P(eg41|0k+1,---,01). The probability that pg,, will be
obtained in the next stage is equivalent to the probability that oy, will be observed.

Therefore, we have

P(prs1lpk) = P(ok+1|0k, - .. ,01) (3.27)

which is given by (3.24).

One additional issue in the dynamic programming computations is that P must also
be quantized and approximated. Considering the problem sizes that have already been
computed, we can at least apply the current computation techniques to obtain optimal

strategies for problems in which the dimension of Cy,.. is two and |E| = 2.

3.7.2 Nonstationary motion planning problems

The strategies that have been considered up to this point are stationary in the sense
that the robot actions depend only on the state. The optimal strategy for the robot
does not depend on time, because the model components (such as the state transition
distribution or the environment transition probabilities) do not depend on the particular
stage index, k£ € {1,..., K}. In turns out that with little effort, the model components
can be allowed to vary over time. This affords the opportunity to model many interesting
problems, such as the incorporation of known moving obstacles. The tradeoff, however,
is that more storage is required for representation of the optimal strategy (it is one
dimension larger with the inclusion of time).

Figure 3.33 shows an example problem that results in a nonstationary strategy. In
addition to a doorway that produces two environment modes, there is a moving obstacle

in the workspace. It is assumed that the trajectory of this obstacle is known to the robot.

171

-—— Goal Region

Moving Obstacle

Doorway

!

Figure 3.33 A motion planning problem that involves a doorway and a moving obstacle
that has a known trajectory.

Suppose the objective is to bring the robot to the goal region in minimal time without
colliding with the doorway or the moving obstacle.

We briefly describe the general time-varying components that can be defined to yield
nonstationary solutions. Suppose the workspace contains obstacles B (t),. .. , B,(t) that
may possibly be in motion. This results in a time-varying free configuration space,
Crree(t) [109]. To handle discrete time, at each stage k, we define a stage-dependent free
configuration space

Crreelk] = (1 Cpree(t)- (3.28)

te[(k—1)At,kAt)
In addition, we can have moving dynamic regions D;(t),...,Dp,(t). In configuration
space each of these becomes CD;(t) or CD;(t), and in the state space the dynamic regions
are Xi(t),...,Xn(t). As done in (3.28), we can similarly define X;[k], ..., X;,[k] to be

stage-dependent dynamic X-regions. To obtain the appropriate loss functional, we simply

172

replace (3.8) with

0 If 2, € X¢

lk(xk,uk) =< . (329)

Cu + Z[CiIX,-[k] (xx) + C;IXic[k] ()] Otherwise

x i=1
with the addition of an explicit dependency on k.

Optimal strategies can be computed by slightly modifying the algorithm in Sec-
tion 3.4. These extensions do not increase the state space dimension. After each it-
eration of the dynamic programming, however, we must recall the optimal actions. The
final stage index K + 1 is more significant in this case, because we do not expect the
algorithm to terminate by yielding a stationary strategy; the algorithm terminates when
k = 1. The optimal strategy will be v* : X x {1,... K} — U. The action taken at stage
k is given by ug = 75 (z).

In addition to the time-varying components discussed above, additional components
can vary with time. By allowing the environment transition probabilities to vary, many
more statistical processes can be modeled. For example, it might be known that the
workspace is more likely to become hazardous after some prescribed time, or become
increasingly more likely to be hazardous over time. We can also allow the goal region to
move over time, to obtain Xg[k]. In this case, the robot must intercept the moving goal

as a terminating condition for the strategy (as considered in [120]).

3.7.3 Nondeterministic uncertainty

In this chapter, uncertainties have been represented probabilistically; however, in
many cases, a nondeterministic (or bounded-set) representation may be preferable. Ex-
pected case analysis is then replaced by worst-case analysis. Reasons for using this repre-

sentation include modeling ease and problems that involve an extremely high risk of fail-

173

ure. As discussed in Chapter 2, nondeterministic and probabilistic representations could
be easily interchanged when modeling configuration-predictability and configuration-
sensing uncertainties. With environment-predictability and environment-sensing uncer-
tainties, probabilistic representations can naturally be replaced by nondeterministic rep-
resentations. In this section, we briefly provide a nondeterministic characterization of
planning under environment-predictability uncertainty.

The environment process must first be redefined. Nature in this case is modeled
nondeterministically. Instead of a Markov process with transition probabilities, let
F¢(xg,ur) C E be the set of possible next environment modes, when the system is
at state x; and action wuy is chosen. The state transition distribution is then replaced by
Fy(zy, ug), which represents the set of possible next states.

Using worst-case analysis, the ideal choice for a strategy satisfies

. o7 i]
inf L(z,,7) = inf SelelgL(xl, 7:7") (3.30)

for all z; € X. Due to the nondeterministic uncertainty in prediction, E represents
the set of possible environment mode sequences that could be obtained. This indicates
that from any initial state, the strategy will guarantee the least possible loss given the
worst-case environment mode sequence. The principle of optimality can be applied to

successively compute Lz (xk), yielding an optimal strategy.

3.8 Conclusions

We have presented a method for analyzing and determining optimal robot motion
strategies under a partially predictable, changing environment. This method is general
and flexible for characterizing environment-predictability uncertainty. The concept of

optimal motion strategies under performance criteria provides a useful characterization

174

of the desired behavior for the robot in this context. In addition, we have provided a
computational approach, based on the principle of optimality, that determines optimal
solutions to many interesting motion planning problems under environment-predictability
uncertainty. The variety of computed examples that were presented in Sections 3.5 and
3.6.2 helps substantiate these conclusions. Section 5.3 will discuss how environment-
predictability uncertainty can be combined with the other sources of uncertainty, in a

unified approach.

175

CHAPTER 4

MOTION PLANNING FOR MULTIPLE ROBOTS

4.1 Introduction

This chapter describes two contributions to geometric motion planning for multiple
robots: (1) motion plans are determined that simultaneously optimize an independent
performance criterion for each robot; and (2) a general spectrum is defined between
decoupled and centralized planning, along which we introduce the concept of coordina-
tion along independent roadmaps. By considering independent performance criteria, we
introduce a form of optimality that is consistent with concepts from multiobjective opti-
mization and game theory research. Previous multiple-robot motion planning approaches
that consider optimality combine several individual criteria into a single criterion. As a
result, these methods can fail to find many potentially useful motion plans. We present
implemented, multiple-robot motion planning algorithms that are derived from the prin-
ciple of optimality, for three problem classes along the spectrum between centralized and
decoupled planning: (1) coordination along fixed, independent paths; (2) coordination
along independent roadmaps; and (3) general, unconstrained motion planning. Several
computed examples are presented for all three problem classes to illustrate the concepts

and algorithms. This chapter does not consider aspects of uncertainty and is, therefore,

176

complementary to the material in Chapters 2 and 3. Section 5.3 discusses issues that
result from the combination of multiple robots with aspects of uncertainty. Portions of
the work in this chapter were also presented in [114].

The direct consideration of independent performance criteria differs from previous
approaches to multiple-robot motion planning. Typically, if optimality is considered,
performance measures for the individual robots are combined into a single scalar objec-
tive. For example, in [19], [177] the objective is to minimize the time taken by the last
robot to reach the goal. In [193], the performance measures are aggregated to yield a
single objective. When individual objectives are combined, certain information about
potential solutions and alternatives is lost (for general discussions, see [85], [164], [205]).
For example, the amount of sacrifice that each robot makes individually to accomplish
its goals is not usually taken into account. It might be that one robot’s goal is nearby,
while the other robot has a distant goal. Combining the objectives by scalarization might
produce a good plan for the robot that has the distant goal; however, the execution cost
for the other robot would hardly be considered.

Consider the motion planning problem in Figure 4.1 as an illustrative example. As-
sume that both robots are capable of translating at the same fixed speed and can stop
or start instantaneously, and that we want to minimize the time to achieve goals while
avoiding collisions. If, for the moment Robot 2 is ignored, then Robot 1 has two choices
that produce equivalent cost: using the lower corridor or the upper corridor. From the
perspective of Robot 1, both paths seem equivalent, but choosing the upper corridor is
clearly worse for Robot 2. Robot 2 has only a short distance to travel, but must wait if
Robot 1 enters the upper corridor (assuming for the moment that Robot 1 has priority).
If we consider minimizing the time required for the last robot to reach the goal, we are
still left with two choices that may seem equivalent; however, one choice is much more

costly for Robot 2. Aggregating the total times for the two robots would provide a cri-

177

Robot 2—/

Goal for
Robot 2

\

Goal for
Robot 1

Robot 1

Figure 4.1 An illustrative example of potential difficulty in defining a combined objec-
tive.

terion that prefers Robot 1 taking the lower corridor, which is the natural preference.
However, if we vary the initial position of Robot 1 slightly, so that the path through
the upper corridor is shorter, then Robot 1 prefers to take the upper corridor, which
suddenly conflicts with the preference of Robot 2. For a problem in which there is no
natural priority, there seem to be two viable solutions. For these types of problems, the
methods that we propose characterize the solution alternatives, by generating a small
set of motion plans that are better than or equivalent to all others. An approach that
minimizes a single, scalar objective will not determine these alternatives.

More formally, given a vector of independent objective functionals, we show that there
exists a natural partial ordering on the space of motion plans, yielding a search for the
set of minimal motion plans. For any other motion plan that can be considered, there
will exist at least one minimal plan that is clearly better or equivalent, and the set of all
minimal motion plans is typically small. Hence, our approach filters out all of the motion
plans that are not worth considering, and presents a small set of reasonable alternatives.
Within this framework, additional criteria, such as priority or the amount of sacrifice

one robot makes, can be applied to automatically select a particular motion plan. If the

178

same tasks are repeated and priorities change, then a different minimal plan would be
selected, as opposed to re-exploring the space of motion plans.

As further justification of this form of optimality, we show that the minimal strategies
are consistent with certain optimality concepts from multiobjective optimization (e.g.,
[85], [164], [205]) and dynamic game theory (e.g., [6], [141]) literature. Within these
subjects, considerable effort has yielded many solution concepts that pertain to optimal
decision making when confronted with multiple objectives. Such issues as the number of
decision makers, the degree of cooperation between decision makers, and prioritization,
become important for determining which type of optimality concept is appropriate. These
issues are relevant for a robotics context, and it is important to justify whether a solution
concept is appropriate under the modeling assumptions.

We now present an overview of related previous work in motion planning for multiple
robots. Approaches are often categorized as centralized or decoupled. A centralized ap-
proach typically constructs a path in a composite configuration space, which is formed by
combining the configuration spaces of the individual robots. A decoupled approach typ-
ically generates paths for each robot independently, and then considers the interactions
between the robots. The suitability of one approach over the other is usually determined
by the tradeoff between computational complexity associated with a given problem and
the amount of completeness that is lost.

With a centralized approach, a multiple-robot planning problem is viewed as a single-
robot planning problem by considering the Cartesian product of the individual config-
uration spaces of the robots. As an example, the problem of planning the motion of
N disks in the plane was solved in [167] by performing a critical curve analysis on the
configuration spaces of the disks and planning a collision-free path through free cells
in the composite configuration space. Collision-free motion control is generated for two

specific, constrained manipulators by modeling the problem as a noncooperative game in

179

[3]. Randomized search is combined with a potential field in [11], [12], to centrally plan
the motion of several translating objects in the plane.

A variety of decoupled planning approaches exist. Prioritized planning has been
proposed, in which plans are generated sequentially for robots of decreasing priority,
given the plans of the higher-priority robots [60]. In [194], prioritization is combined
with a potential field that is defined on a time-varying configuration space. Issues for
selecting priorities that improve performance are discussed in [29].

Several decoupled approaches involve the construction of a coordination diagram,
which represents places along the robot paths in which a collision might occur. A collision-
free path is determined in the diagram, which leads to a successful motion plan. In [137]
robot paths are independently determined, and a coordination diagram is used to plan
a collision-free trajectory along the paths. The coordination space for two manipulators
is analyzed in [19], [33]. Scheduling issues are studied through the use of coordination
diagrams in [119], and additional multiple-robot scheduling issues are presented in [103].

In addition to introducing multiple-objective optimality to the multiple-robot geo-
metric motion planning, we expand the traditional view of centralized and decoupled
planning by considering these two approaches as opposite ends of a spectrum. An ap-
proach that weakly constrains the robot motions before considering interactions between
robots could be considered to lie somewhere in the middle of the spectrum. By utilizing
this view, we show that many useful solutions can be obtained by constraining the robots
to lie on independent, configuration space roadmaps. A roadmap is a one-dimensional
network of curves, which can be constructed by one of many methods. The wvisibility
graph approach generates a roadmap by connecting certain vertices of the boundary of
the free configuration space, Cye, and is primarily suitable for two-dimensional polygo-
nal C-space planning problems [109]. The topological retraction operation has been used

in a roadmap generation approach that continuously retracts Cy., onto its Voronoi dia-

180

Decoupled Centralized
Planning Planning
d ° ° ° AN

Section 3 Section 4 Section 5

Figure 4.2 Differing degrees of centralization.

gram [138]. Other roadmap methods are described in [23], [31], [36]. A special form of
coordination on a common network of paths has been suggested in [174].

Section 4.2 provides a general problem description, the models that are used, and
the general concepts associated with multiple-robot optimality. Each of Sections 4.3
through 4.5 provides a method for multiple-robot motion planning, with increasing levels
of centralization (see Figure 4.2). Section 4.3 presents a method that computes the
minimal solutions, assuming that the robots are confined to move along fixed paths.
Section 4.4 presents a method for determining minimal solutions, when each robot is
allowed to traverse an independent, configuration-space roadmap. Section 4.5 presents
a method for determining motion plans without imposing additional constraints on the
motions of the robots; however, the computational cost is increased. Sections 4.3 through
4.5 each conclude by showing computed examples that illustrate the concepts. Finally,
Section 4.6 summarizes the contributions of this work and presents some directions for

future research.

4.2 Background and Motivation

In this section, we define a general multiple-robot motion planning problem in con-
tinuous time, under general, independent performance criteria. This can be considered
as an extension to multiple decision makers of the optimal control encoding of the basic

motion planning problem from Section 1.3. This continuous-time representation is used

181

to precisely characterize concepts of optimality in this general context. The methods
presented in Sections 4.3, 4.4, and 4.5 can be considered as special versions of this gen-
eral problem. Section 4.2.1 introduces the basic concepts and models that characterize
our problem. Section 4.2.2 introduces our proposed optimality concept. Section 4.2.3
provides motivation for this concept by establishing relationships to solution concepts

from multiobjective optimization and game theory literature.

4.2.1 Basic definitions

We use some of the configuration-space concepts that were described in Section 1.2.1.
Let each robot, A*, be a rigid object, capable of moving in a workspace that is a bounded
subset of R? or N3. The position and orientation of the robot in the workspace are
specified parametrically, by a point in an n-dimensional configuration space, Ct. Static
obstacles in the workspace (compact subsets of %2 or ®%) prohibit certain configurations
of the robot. The open subset of C* that corresponds to configurations in which .A* does
not intersect any obstacles is referred to as the free configuration space, and is denoted
by C}Tee. If the robot is permitted to “touch” obstacles when executing a motion plan,

i

v atigs Which is the closure of Cjc,’.ee.

we alternatively use the walid configuration space, C
We use C¢;;, in this work because optimality is more straightforward to consider. This
distinction is primarily technical, because solutions that exist in C¢ ., can be considered
as limit points for solutions in C%,,,. We assume that each robot has complete knowledge
of C! .., along with perfect configuration sensing and control.

A state space, X, is defined that simultaneously represents the configurations of all

of the robots. Because collisions with obstacles are prohibited, a natural choice for the

state space is

X = Cialid X Cfgalid X e X Chy (4.1)

valid>

182

in which x denotes the Cartesian product. In this chapter, we also consider two additional
definitions of the state space that are more restrictive. Section 4.3 will consider motions
of the robots that are restricted to fixed paths. The corresponding state space will be
referred to as X =8 = 8! x 82 x - - x SV, Section 4.4 will consider a more general case
in which the robots are constrained to move along independent roadmaps. This yields a
state space that we refer to as X = R = R xR? x---x RY. The state space used in this
context differs from its typical use in robotics and control theory for modeling dynamics
[183]; we do not incorporate dynamics because our primary concern is the geometric
aspect of motion planning.

The concepts introduced in the remainder of this section apply to any of the above

state space definitions. For this reason we generally refer to the state space as
X=X"xX%x..-x XV (4.2)

Each subspace, X?, of the state space yields the configuration of A*. We use the notation
At(x?) to refer to the transformed robot, A%, at x°.

In multiple robot motion planning problems, we are concerned not only about collision
with obstacles, but also about collisions that occur between robots. Let .4 denote the
interior of A® (i.e., the open set corresponding to the exclusion of the boundary of A?).

We define (see Figure 4.3) as
Xoon = {z € X | A®(a") N A" (27) # 0}, (4-3)

which represents the set of states in which the two robots collide. The implication of
using the interior of A’ is that we allow the robots to “touch.” The collision subset,

Xeon C X is represented as the open set,

Xeon = |J X (4.4)
1%

183

J

X coll

X i

Figure 4.3 The set X 1 , and its cylindrical structure on X.

col

Hence, a state is in the collision subset if the interior of two or more robots intersect. We
define X, 44 as the closed set, X — X ...

Note the cylindrical structure of X, (depicted in Figure 4.3). Computationally,
a representation of Xcif;” can be constructed by considering only robot-pair collisions,
and cylindrically lifting the result into all of X. The collision subset is then formed as
the union of the XZZ”. This property is exploited by our algorithms when building a
representation of the state space, allowing the number of collision detections to grow
quadratically with N, as opposed to growing exponentially.

The basic task is to bring each robot from some initial state z¢_,, € X* to some goal
state z},,, € X'. While achieving this task, each robot is not permitted to collide with
obstacles or other robots (i.e., the state must remain within X,4;4). In addition, explicit
objectives must be taken into consideration when achieving this task.

We consider a state trajectory as a continuous mapping z : [0,7] — X. A trajectory

for an individual robot is represented as z* : [0, 7] — X*. An explicit choice for the final

time, 7', is usually not needed in practice. For some problems, a final time may naturally

184

exist, by which the robots must accomplish the basic task. Usually, however, we do not
require a specific termination time, and can consider T' = co.
The motion of an individual robot, A?, is specified through the state transition equa-

tion,
i'(t) = f(a'(t),u'(t)) for each i € {1,...,N}, (4.5)

in which u’(t) represents a control function for A*, which is chosen from a set of allowable
controls.

Because we focus on the geometric aspect of a motion planning problem, we assume
that a robot is capable of switching between a fixed, maximum speed, ||v*||, and remaining
motionless (this represents a typical assumption in geometric motion planning [11], [60],
[96], [137]). If, for example, a robot is allowed to translate and rotate, then finite bounds
might be given that limit the translational and angular speeds. The particular form that
(4.5) will take is made more explicit in Sections 4.3 through 4.5.

We next express the performance criteria for the robots. For each robot, A*, we define
a loss functional of the form

E sty) = [g (0,040t + 3 () + 0 (T)),

J#i
(4.6)

which maps to the extended reals, and

0 ifz(t) € Xyaa for all ¢
M (z(-) = (4.7)
oo otherwise

and

0 if 2/(T) =zl

¢'(«*(T)) = : (4.8)
oo otherwise

185

The function ¢ represents a continuous cost function, which is a standard form that

is used in optimal control theory. We additionally require, however, that

g'(t, 2 (t),u'(t) =0 ifz'(t) =2 (4.9)

goal
This implies that no additional cost is received while robot A’ “waits” at 7, until time
T.
The middle term in (4.6), ¢”(z(+)) penalizes collisions between the robots. This has
the effect of preventing any robots from considering strategies that lead to collision.
The function ¢*(z*(T)) in (4.6) represents the goal in terms of performance. If a robot,

i

A, fails to achieve its goal z?,,,

then it receives infinite loss. We could alternatively

associate a finite loss with failure to achieve a goal.

4.2.2 A proposed solution concept

Suppose that a coordination problem has been posed in which the state space, X, is
defined, along with initial and goal states, Zj,;x and Zg40,. The goal of each robot is to

i

choose some control function u* that achieves the goal z},,

, while considering the loss
functional in Equation (4.6). We will use the notation ' to refer to a robot strategy
for A*, which represents a possible choice of a control function that incorporates state
feedback, represented as u’(t) = 7*(z,t). In terms of control laws, this is equivalent to a
closed-loop controller. In principle, extensions that incorporate incomplete or imperfect
information feedback can be made (see, e.g., [6], [113], [117], [116]). The distinction
between using 7* and u’ will become more important in the coming sections. We refer to
v =142 ... ,¥N} as a strategy. Let I' denote the set of all allowable strategies.

A stationary strategy is a special form of strategy that depends only on state, and

not on a particular time. This concept has been used in both Chapters 2 and 3. For the

motion planning problems that we consider in this chapter, the solutions are naturally

186

stationary. If f* and ¢' are time invariant, then the resulting solution strategies will be
stationary. This is true because both the objectives expressed in Equation (4.6) and the
effects of the control u(t) on the system remain invariant through the passage of time.
The algorithms that we present in Sections 4.3 through 4.5 can be extended to handle
time-varying strategy solutions, but we present no examples of this type.

For a given z;,; and strategy -y, the entire trajectory, x(t¢), can be determined. If we
assume that ;,;; and x4, are given, then Li(fy) can be written, instead of using the form
L (Zinits Tgoat, v, - - . ,u). Unless otherwise stated, we assume in the remainder of the
chapter that L'(vy) refers to the loss associated with implementing v, to bring the robot
from some fixed Zini+ t0 T40q- Hence, we can consider the loss functional as a function
on I

In general, there will be many strategies in I' that produce equivalent losses. There-
fore, we define an equivalence relation, ~, on all pairs of strategies in I'. We say that
v ~r « if and only if L'(y) = L(y") Vi (i.e., v and 4/ are equivalent). The equivalence
relation, ~;, induces a partition of I' into classes that represent equivalent losses. We
denote the quotient strategy space by I'/~, whose elements are the induced equivalence
classes. An element of I'/~ will be termed a quotient strategy and will be denoted as [v]r,
indicating the equivalence class that contains .

For the special case in which there is only one robot, the goal would be to select
a strategy that minimizes the loss in Equation (4.6). For multiple robots, however, a
total ordering on the space of strategies does not, in general, exist. Consider a strategy,
7, which produces L'(y) = 1 and L?(y) = 2, and another strategy, 7', which produces
L'(7') = 2 and L?(y") = 1. From a global perspective, it is not clear which strategy
would be preferable. Robot A! would prefer v, while .A? would prefer 4'. Both robots

would, however, prefer either strategy to a third alternative that produced L!'(y") = 5

and L?(y") = 5. These comparisons suggest that there exists a natural partial ordering

187

Minimal Strategies
[617]

[15 3] [333]
[]

[438] [54¢€] [794]
0.\f/.o
° [11 13 41] *

[] []

[] []

[L]

Figure 4.4 We are interested in obtaining strategies that are minimal with respect to
the partial ordering that exists on I'/~.
on the space of strategies (see Figure 4.4). Our interest is in finding the set of strategies
that are minimal with respect to this partial ordering; these comprise all of the useful
strategies, because any other strategies would not be preferred by any of the robots.
We define a partial ordering, <, on the space [/~. The minimal elements with
respect to I/~ will be considered as the solutions to our problem. For a pair of elements
YL, [Y]e € T/~ we declare that [y]y =[]z if L'(y) < L(v') for each 4. If it further
holds that L7(y) < L’(v') for some j, we say that [y];, is better than [y'];. Two quotient
strategies, [y]z and [y']z, are incomparableif there exists some 1, j such that L(y) < L(')
and L/(y) > L/(y). Hence, we can consider [y];, to be either better than, worse than,
equivalent to, or incomparable to [y'];,. We can also apply the terms worse and better to
representative strategies of different quotient strategies; for example we could say that
« is better than +' if [y]p < [y].. We say that [y*]; is a minimal strategy if, for all

(7] # [7v*]r such that [v]; and [y*];, are not incomparable, we have [v*|;, < [v]z-

4.2.3 Relationships to established forms of optimality

In this section, we show how the minimal strategies relate to optimality concepts

from multiobjective optimization and dynamic game theory. These concerns are relevant

188

because assumptions that form the basis of these decision-making contexts can also arise
in a robotics context. Multiobjective optimization applies to a single decision maker
which is confronted with a vector of objectives. In a motion planning context, this could
correspond to providing a centralized controller for all of the robots. By applying a
game-theoretic view to the multiple-robot planning problem, one could assume that the
robots independently and autonomously implement motion plans. This situation can
become more complex, because such issues as communication and cooperation become
important to ensure that such problems such as deadlock do not arise. Such issues have
been considered for multiple robots in [152], [179].

If the robots are working to accomplish a single task, then it seems natural to model
cooperation. In fact, it may be possible to convert the vector of objectives into a single
criterion; this form of combination leads to team theory [86], [99], which has been applied
to multisensor planning in [53], [79]. In some situations, however, the robots could
be working to achieve independent tasks. Suppose, for example, that several robots
transport materials in a warehouse or factory floor, for independent processing. The
formulation of a single criterion for this type of problem may be difficult, or have little
significance. These issues could be further complicated if communication is limited or
nonexistent.

In multiobjective decision making, the usual approach is to determine a small set of
alternatives to present to the decision maker. A partial ordering is defined on the space
of strategies that indicates pairwise preferences between strategies (if the ordering were
linear, standard optimization could be applied). Using the partial ordering, any strategy
that is nondominated [205] is considered as a solution. This usually results in the set
of strategies that are minimal with respect to the partial ordering. Under the partial

ordering in Section 4.2.2, our proposed solutions are the nondominated strategies in I'/~.

189

One popular optimality concept that is considered in cooperative game theory is
Pareto optimality. This concept assumes that a high degree of cooperation is available
among the decision makers (other models that involve partial cooperation, or the forming
and competition of coalitions, could be defined [141]). A robot strategy, v*, is considered
Pareto optimal, if for any other strategy v € I', no robot can improve its loss with-
out directly causing the loss to increase for another robot. As shown in [184], Pareto
optimal solutions are equivalent to nondominated solutions in a multiobjective context.
Therefore, our minimal solutions can also be considered as Pareto optimal.

In noncooperative game theory, however, it could be the case that for a given v*, robot
A® can further reduce its loss by selecting a different 4, given the 7* chosen by the other
robots, even though [y*];, is minimal. In other words, robot A’ might not be satisfied with
the outcome, given the actions taken by the other robots. This implies that if we treat
the robots as individual agents with independent objectives, a minimal quotient strategy
might not be a fair solution, or might not represent an appropriate concept of optimality.
We will show, however, that the minimal quotient strategies share an additional property
that represents a widely used optimality concept in noncooperative game theory [6]: the
Nash equilibrium condition.

1x

A given strategy v* = {y'*...7N*}, is termed a Nash equilibrium if the following

holds for each i and each ¢ € I':

L'(y™, o™, AN < L™, .,). (4.10)

If in addition, there is no better strategy that is also a Nash equilibrium, then +* is an
admissible Nash equilibrium.
The following proposition establishes that for our context, minimal quotient strategies

are equivalent to admissible Nash equilibria.

190

Proposition 1 A minimal quotient strategy, [v*]L, is an admissible Nash equilibrium if

and only if [v*]L is minimal in T/~.

Proof: Suppose that [y*]; is a minimal strategy, but not a Nash equilibrium. To
violate the Nash condition of Equation (4.10), for some i there must exist a strategy
v € T, such that v = {y"*, ...,y 44 T o0 4N} and Li(y) < LY(y*). If [y]p <
[v*]z, then a contradiction would be reached. Since L*(y) < L(v*), then we would have
(Yo < 7] if L7 () = Lj(y*) for all j # i. We will establish that this is indeed true by
analyzing the loss functional definition in (4.6), (4.7), and (4.8). Consider any j # i. We
argue that each of the three additive terms in (4.6) remains fixed when v* is replaced by
7. The function ¢’ (¢,27(t),u’(t)) depends only on the robot strategy 4’*, and not on the
other robot strategies. Since 7/* remains the same in v and v*, ¢/(t, 27 (t), v/ (t)) remains
constant. We must have ¢/ (z(-)) = 0 under the implementation of -; otherwise, we would
have L*(y) = oo, which implies that A’ and A7 collide. The trajectories z7(-) of the other
robots do not change, which implies that ¢’ (27(7")) remains unchanged. Hence, we must
have L/(y) = L/(y*) for all j # i (i.e., (4.6) remains constant). This implies, however,
that [y], < [v*], which is a contradiction to the minimality assumption. Since [y*],,
is both minimal and a Nash equilibrium, there does not exist another Nash equilibrium
that is better; therefore. [y*];, is an admissible Nash equilibrium.

Suppose that [y*];, is an admissible Nash equilibrium, but not minimal in I/~. Then
there exists a minimal quotient strategy [y], € '/~ such that [y]; < [v*]z, and [y]p #
[v*]L. Since [y]z is minimal in I/~ it must be an admissible Nash equilibrium by the
first part of this proof. This contradicts the assumption that [y*|, is an admissible Nash
equilibrium. [

We can also consider the relationship between our minimal strategies and scalar op-

timization. Formal treatment of this relationship has been considered in multiobjective

191

optimization literature and is referred to as scalarization [164]. The goal of scalarization
is to determine a mapping that projects the losses to a scalar value, while guarantee-
ing that optimizing the scalar loss produces a minimal strategy. This is advantageous
because standard optimization techniques can then be applied to produce a minimal
strategy. The tradeoff, however, is that the scalarizing function selects only a single
minimal strategy. This makes the particular choice of a scalarizing function crucial, and
information about the solution alternatives is lost.

We present a linear scalarizing function, and then show that optimizing the scalar
objective yields a minimal strategy. This function is used in Section 4.5, in an algorithm

that determines minimal solutions. Consider a set of positive, real-valued constants,

ﬁ = {ﬁlaﬁ% .. aﬁN}a such that

iﬂi = 1. (4.11)

=1

We can scalarize the objectives by performing a linear projection,

H(y,) =3 B:L'(3)- (4.12)

By taking a linear combination of the robot objectives, we can consider the scalarizing
function as giving weighted importance to different robots. If we take 3; = % for all 7 €
{1,..., N}, then the scalarizing function produces the average loss among the robots. In
principle, this scalarizing function could be considered as a flexible form of prioritization.

The scalarizing function in (4.12) produces a minimal strategy, which is stated in the

following proposition:

Proposition 2 For a fized 3, if v* is a strategy that minimizes H (v, 3), then the quotient

strategy [v*|L is minimal.

Proof: Suppose to the contrary that [y*], is not minimal. Then there exists some

7, such that v < ~*. This implies that L*(y) < L*(y*) for each i € {1,...,N}, and

192

there exists some 4 for which this inequality is strict. By comparing the terms in (4.12),
we determine that H(y,) < H(y*,3). This contradicts the fact that the choice of ~*
minimizes H, which establishes the proposition. [

This implies that H (7, #) can be optimized to determine a minimal quotient strategy;
however, in addition, we can apply H to the set of all minimal quotient strategies (which
can be obtained by our algorithms) to select a single strategy. Once the minimal strategies
have been obtained, different values of # can be used, which only requires a different
selection from the small set of minimal quotient strategies, as opposed to re-exploring
I'. This would be useful if the robots were to repeatedly perform the same tasks, with

preferences or priorities that change over time.

4.3 Motion Planning Along Fixed Paths

In this section, we consider the problem of coordinating the motions of multiple robots,
when each robot is independently constrained to traverse a fixed path. As discussed in
Section 4.1, many variations of this problem have previously been considered in motion
planning research. The method developed in this section is perhaps most related to
[137], because both approaches construct an approximate cellular representation of a
coordination space.

This section describes some new contributions to the problem of coordinating multiple
robots along fixed paths. First, we generalize the coordination space to more than two
robots by exploiting the cylindrical structure of X.,;. The principle of optimality is then
applied to the problem of determining all minimal quotient strategies. Using homotopy
we first show that few minimal quotient strategies will typically exist. We then develop
an algorithm that determines the minimal quotient strategies and that can be considered

as a form of dynamic programming on a partially-ordered space of strategies. For a

193

scalarized objective, we describe how both dynamic programming and A* search [198]
can be applied to the coordination space representation to obtain single solutions in
a straightforward manner. To conclude the section, computed minimal strategies are

presented.

4.3.1 Concepts and definitions

We assume that each robot A’ is given a path, 7%, which is a continuous mapping
[0,1] — C%,4- Without loss of generality [139], assume that the parameterization of 7
is of constant speed. Let S = [0, 1] denote the set of parameter values that place the
robot along the path 7°. We define a path coordination space as S = S' x §2 x -+ x SV,

A strategy, v € T', must be provided in which s;,;; = (0,0,...,0) and Sgou =
(1,1,...,1), and the robots do not collide. This corresponds to moving each robot
from 7%(0) to 7'(1). We assume that a robot, .A°, monotonically moves toward 7¢(1);
waiting at a particular 7%(s) for some s* € [0,1] is also allowed. It is assumed that the
robots do not collide with static obstacles, implying that each given path 7° is a solution
to the basic motion planning problem for A* (with the other robots removed).

We perform a discrete-time analysis of this problem. The development of continuous-
time, analytical solutions would require detailed analysis for specific models and geomet-
ric representations; however, with discrete time, we can readily compute approximate
solutions to a variety of motion planning problems. This choice is often made in motion
planning research (e.g., [11], [137]). We assume that we can send an action (or motion
command) to each robot every At seconds. The selection At could be governed in prac-
tice by one of two constraints: (1) a limiting sampling rate for a robotic system; or (2)

the computational resources needed to determine the minimal strategies.

194

With the discretization of time, we partition [0,7] into stages, denoted by k €
{1,...,K}. Stage k refers to time (k — 1)At. Discretized time allows S to be rep-
resented by a discrete set of locations, which corresponds to the set of possible positions
along the paths at time kAt for some k. For each robot, say A', we partition the interval
S§' = [0,1] into values that are indexed by ' € {0,1,...,4. ..}, in which 4’ is given
by |length(r!)/||v}||At]. Each indexed value yields 7' (i*||v'||At/length(t')). We denote
the discrete-time version of the path coordination space as S=8"x82x---xSN. Each
S’ represents a finite set of points in [0,1]. This yields a restricted space of strategies
[C I'. In Section 4.4, the notation I will also be used to reprepresent a restricted
strategy space that is due to discretization on R.

The points in S can be used to delineate rectangular cells in S (Figure 4.5 shows an
example that depicts this relationship). We can thus define 360” and Smh-d as continu-
ous subsets of S that represent cellular approximations of S.,; and S,uis. We assume
that a point is in S~coll if any point within its corresponding continuous cell is in Sy,
which corresponds to a conservative approximation. The set S'wlid is then defined as the
complement of Scoll.

During the time interval [(k — 1)At, kAt|, each robot can decide to either remain
motionless, or to move a distance ||v?||At along the path. The choice taken by a robot,
A?, is referred to as an action, which is denoted at stage k as u}. The set of actions for
the robots at a given stage is denoted by u, = {ut,... ,ul }. The choices for u can be
represented as 0 for no motion, and 1 to move forward. The next state from 7°(s}), with
action ul = 1, is given by 7¢(st + ||v*||At/length(T?)).

We can approximate (4.6), in discrete time as

M =

Li(y) = {li(»ffc, up) + C?;j(l‘(-))} +¢' (2% 41), (4.13)

k j#i

1

195

in which
Izt ut i (1))d 4.14
A A 7 — Zt 1_[; 1t t .
M) = [a0, 0 0) (4.14)
and

3 0 ifx S vt e [(k—1)At kA
G (z() = (t) & Seou Vt € [(k—1)At t]' (4.15)

oo otherwise

The I and ¢* terms of (4.13) comprise the standard terms that appear in a discrete-
time dynamic optimization context [6]. The middle term, ¢} represents the interaction
between the robots, by penalizing collision. As will be seen shortly, ¢ will typically be

considered as a constant, which measures time, for example.

Before discussing the algorithm in Section 4.3.2, we will provide a proposition that
characterizes the quantity of minimal quotient strategies that can exist in f/N for the
fixed-path coordination problem. Numerous minimal quotient strategies might seem to
exist, even for only two robots. Suppose there were strategies that produced losses L! = i
and L? = 10000—: for each i € {1,...,10000}. No pair of these strategies is comparable
and, hence, all strategies could be minimal. In multiobjective optimization, the existence
or numerous, or even an infinite number of solutions, often causes difficulty [205]. We
show that at least for the case in which time-optimality is of interest (i.e., [t (z%, u}) = At
for all 4, k), there are very few minimal quotient strategies because each must be obtained
from a distinct path class in ‘i,alid.

We formally consider path classes in Syqig. A given strategy, v € [, yields a trajectory
a1 [0,T] = Syaua through the coordination space. A different strategy, v/ € T, yields
a trajectory o,,. The two paths a, and a’7 are homotopic in Spaid (with endpoints
fixed) if there exists a continuous map A : [0,T] x [0,1] — S,aia with A(t,0) = a,(t)

and h(t,1) = ay(t) for all ¢ € [0,77], and h(0,s) = h(0,0) and h(1,s) = h(1,0) for all

196

s € [0,1]. This homotopy determines an equivalence relation, ~, on the trajectories and,
hence, on the space of strategies, I. We will use [ay]n to denote the equivalence class
that contains a.,. Because o, is monotone, the path classes defined here do not represent
the fundamental group from homotopy theory [87]; there are far fewer path classes in this
context. Note that ~y, is distinct from ~p, which induces equivalence classes by losses.

Using these path classes we have the following proposition:

Proposition 3 If I} (z%,ul) = At for alli € {1,... ,N} and k € {1,... , K}, then there

exists at most one minimal quotient strategy per path class in S'Wlid.

The proof of this proposition relies on the algorithm in Figure 4.6, and is given in Ap-
pendix A. One implication of this proposition is that the number of solutions is quite

restricted (in practice there typically are only a few minimal quotient strategies).

4.3.2 Algorithm presentation

In this section, we present an algorithm that determines all of the minimal quotient
strategies in f‘/N We apply the principle of optimality, but in this context there is
only a partial ordering on the space of strategies; therefore, the principle of optimality
is replaced by a principle of minimality with respect to the partial ordering. In other
words, any portion of a minimal strategy is itself minimal. Because multiple minimal
strategies will be maintained, the computational issues will become more complex than
for the standard dynamic programming that results from the principle of optimality.

We represent both S,.; and S using N-dimensional arrays. A strategy v € I must
ensure that the robots do not collide during the transitions from zj, to xx 1 (i-e., z(t) does
not produce a collision V¢ € [(k — 1)At, kAt]). In practice, this computation depends
on the type of curve 7%, the geometry of A’, and the type of transformation that is

performed to obtain A*(z%). In our current implementation, we have detected collisions

197

@ D @
q » 6] D o o (6] (6] @ D o o
® o o () ® o o
D o D
9 » @ o @ o} o
& @ © @

(a) (b) (c)

Figure 4.5 Part (a) shows an illustrative example of the coordination space representa-
tion. Parts (b) and (c) depict two minimal strategies.
only at the endpoints of the cells. The structure of this representation for N = 2 is shown
in Figure 4.5(a). Each shaded square represents a rectangular subset of S in which a
collision might occur (i.e., a subset of Swll). The points in Figure 4.5(a) indicate the
values of S, and the arrows indicate the possible values for uj. There are at most three
possibilities for the N = 2 case: (1) uj, =1 and v} = 1; (2) up = 1 and u2 = 0; or (3)
ut = 0 and u} = 1. In general, there are 2 — 1 possibilities (assuming that we do not
allow situations in which all of the robots remain motionless). For this simple example,
two distinct minimal strategies are shown in Figures 4.5(b) and 4.5(c), for minimum-time
objectives.

We construct a data structure that maintains the complete set of minimal quotient

N) in

strategies from each discretized value 5§ € S. Each position § = (s',8%... s
the coordination space S will contain a list of minimal strategies M (5), which reach
(1,1,...,1) from §. In M (S), we have only one representative strategy for each class in

f/w. Equivalent strategies could in theory be maintained, however, the storage required

would be computationally infeasible. Each element m € M (3) is of the form:

m={uy, [L"* L* --- L], j). (4.16)

198

Above, u; denotes the vector of actions that are to be taken by the robots, in the first step
of the strategy represented by m. Each L™ represents the loss that the robot A’ receives
under the implementation of the minimal strategy that m represents. The actions u; will
bring the system to some §'. At this state location, a set of strategies will be represented,
M (§'), and j in (4.16) indicates which element in M (§’) will continue the strategy.

For a given state, s, it will be useful to represent the set of all states that can be
reached by trying the various combinations of robot actions that do not yield a collision
(one can easily check the array representation of §). Define N'(3) C S as the neighborhood
of the state §, which corresponds to these immediately reachable states. Formally, we

have
N(Gr) = {3 = w(5,uz) | ux € U and w(3, ug) € Spatia} (4.17)

in which w represents the next state that is obtained for the vector of robot actions uy,
and U denotes the space of possible action vectors.

Consider the algorithm in Figure 4.6. Only a single iteration is required over the
coordination space. This algorithm does not require a specification of K, and it can be
effectively assumed that K = oco. In Step 1, all states are initially empty, expect for the
goal state. Lines 5 through 8 are iterated over the entire coordination space, starting
at the goal state, and terminating at the initial state. At each element, 5, the minimal
strategies are determined by extending the minimal strategies at each neighborhood
element.

Consider the extension of some m € M (') in which § € N (5). Let uy be the action

such that & = f(5,u). Suppose that m is the i’ element in M (&'). The loss for the

199

1 Let M(5g0a) = {(0,[0,0,...,0],0)}, and all other M(5) be
2 For each i' from i}, down to 0 do
3 For each i* from i2,,, down to 0 do
4 For each i" from ¢ = down to 0 do
5 Let 5 = (i',42,... i)
6 Let M, be a set of strategies that is the union of M (&)
for each §' € N (3)
7 Construct a set M, by extending the strategies in M,
8 Let M(3) consist of all unique-loss minimal elements of A},
9 Return M(5;,t)

Figure 4.6 For a stationary problem, this algorithm finds all of the minimal quotient
strategies in S x 82 x -+ x SN,

extended strategy is given by
0 if 5 =
L = : (4.18)
LY + 1} (8", u}) otherwise
for each i € {1,..., N}. Suppose that m is the j element in M (5'). The third element
of m (recall (4.16)) represents an index, j, which selects a strategy in M(§').

We now discuss how to execute a strategy represented as m € M (§). If the action uy
is implemented, then a new state §' will be obtained. The index parameter j is used to
select the j element of M ('), which represents the continuation of the minimal strategy.
From the j element of M ('), another action is executed, and a coordination state 5"

is obtained. This iteration continues until the goal state (1,1,...,1) is reached.

The following proposition establishes the correctness of the algorithm.

Proposition 4 For a stationary problem, the algorithm presented in Figure 4.6 deter-
mines the complete set of minimal quotient strategies in f’/N for X =8 = 8 x §2 x

.x SN,

200

Proof: For any strategy that begins in a state (s!,s?, ... ,s"), the trajectory in S
will lie in the region bounded by s” > s’ since the robots can only move forward along
the path. Since the strategies depend only on state, it is argued inductively that the
minimal strategies are maintained. At each inductive step, the extended strategies are
functions of states for which minimal strategies have already been obtained (i.e., in the
upper right portion of the coordination space). This type of induction forms the basis of
Dijkstra’s algorithm, for example, for single-source shortest paths [40]. [J

The algorithm in Figure 4.6 can be specialized in a straightforward manner to provide
a single strategy by minimizing the scalarized loss, which is shown in Equation (4.12).
In this case, the problem has been reduced to the application of standard dynamic pro-
gramming on a finite graph (the vertices are the discrete states, and the edges are the
action combinations uy), which is equivalent to Dijkstra’s algorithm [40]. It is well known
that A* search can be performed on a problem of this type to potentially reduce by a
substantial amount the number of vertices that are considered [149]. The only require-
ment is that an admissible heuristic is used, that is, it provides an underestimate of the
remaining loss required to reach the initial vertex from a certain vertex. One reasonable
choice for a heuristic would be to determine the remaining loss for each robot by neglect-
ing the presence of the other robots (this is guaranteed to be an underestimate). If time
optimality is considered, then the remaining loss is simply proportional to the remaining

path length.

4.3.3 Computed examples

In this section, we present examples that illustrate the fixed-path coordination con-
cepts and the algorithm from Figure 4.6. In our simulation experiments, we have con-

sidered problems in which there are from two to four robots. Many two-robot problems

201

Robot 3

(a)

Figure 4.7 Part (a) shows a three-robot fixed-path problem, and part (b) shows the
corresponding coordination space.

can be solved in a few seconds on a SPARC 10 workstation. Three-robot problems can
take minutes or hours of computation, depending on both the resolution chosen to repre-
sent the coordination space and the number of minimal quotient strategies. We typically
divide each axis of the coordination space into 25 to 100 cells.

Figure 4.7(a) shows an example that has three robots. The initial positions are
indicated in Figure 4.7(a): A! is black, A% is white, and A% is gray. Figure 4.7(b)
shows the computed representation of S. The axes show distances along the paths. The
cylindrical structure in S~'w” can be clearly observed in this example. The two vertical
columns correspond to the two collisions that can occur between A! and .A%. Each of the
two horizontal columns represents collisions of A% with A! or A2. There are two minimal
quotient strategies for this problem, for which representative strategies are depicted as
paths in the coordination space.

Figure 4.8 shows a three-robot example in which two robots move along “S”-curves,
and the third robot moves horizontally. There are four minimal quotient strategies for

this problem:

202

Strategy Loss 1 Loss 2 Loss 3

i 81 75 30
i 79 73 82
7 83 73 41
Vi 73 80 30

Each integer represents the number of stages required to reach $§0al. In the lower portion
of Figure 4.6, we show four sets of timing diagrams, each of which corresponds to a rep-

resentative minimal quotient strategy that was computed. Each graph indicates whether

a robot is moving or waiting, as a function of time.

4.4 Motion Planning Along Independent Roadmaps

In this section we present a method that determines minimal strategies for the case
in which the robots are restricted to independent roadmaps. This allows many more
strategies to be considered than for fixed path coordination, while causing only a modest
increase in computation. Many of the general concepts are similar to those from the
last section; however, the complicated topological structure of a Cartesian product of
roadmaps makes this problem more complex. At the end of the section, several computed

minimal strategies are shown.

4.4.1 Concepts and definitions

We consider a roadmap for A* to be a collection of curves, 7°, such that for each
€ T', 7} : [0,1] = Chuig- We assume (without loss of generality [139]) that each
parametrization is of constant speed. The endpoints of some paths coincide in C?,, = X*

to form a network.

203

Robot 1 Robot 2 Robot 3

4

Robot 1 ‘ |

Robot 2 [| |
t

Robot 3 ‘

Robot 1 ‘

t

Robot 2 ‘

Robot 3 [|

Robot 1 [| |

4

Robot 2 ‘ |

Robot 3 [

Robot 1

T
o | |
4

Robot 3 ‘

Figure 4.8 An example that yields four minimal quotient strategies.

204

In the Section 4.3 we considered robot coordination on the Cartesian product of unit
intervals, which represented the domains of the paths. For the roadmap coordination
problem, we will coordinate the robots on the domain of the functions in 7¢. We let R*
denote a set that represents the union of transformed domains of the paths in 7¢. Using
the R"s, we can describe a roadmap coordination space, R = R' x R? x -+ x RYN. We

can specify a position 7 € R by r = (n',7%,... 7V;s!,s%,...,sV)

. Each 7 specifies
the path in R’ that A’ has chosen, while each s* specifies the position of the robot along
that path.

A problem is specified by providing an initial configuration, r¢ . € R’ and a goal
configuration, rf,,, € R’ for each robot A’. As a minor extension, we could also consider
initial and goal configurations in C}ree; however, a roadmap can usually be extended
in a straightforward manner to include the particular initial and goal states of a given
problem [109].

During the time interval [(k — 1)At, kAt] each robot can decide to either remain

motionless or to move a distance ||v?||At in either direction along a path. If the robot

moves into a roadmap junction, then a new path must be chosen.

4.4.2 Algorithm presentation

In this section we present an algorithm that determines all of the minimal quotient
strategies that arise from a Cartesian product of discretized roadmaps, R. We consider
the case in which [%(z%,ut) = At for all 4,k. This means that the only performance
concern is the time that the robots take to complete their tasks. Variations and extensions
of this algorithm are mentioned.

We construct the discrete representations 7~3wll and 7~€, which are similar to S’coll and

S. We build one array for each combination of path choices for the robots, each of which

205

can be constructed in the same manner as for Scoll and S. This representation can be
intuitively be thought of as a network of coordination spaces that exists in V. Let f‘/N
denote the quotient strategy space that results from the discretization of R, in that same
manner in which I/~ was defined for S.

There are two primary differences between the roadmap coordination problem and
the fixed path coordination problem in terms of the algorithm development. The first
difference is that robots on R are allowed to move in either direction. For fixed paths, we
assumed that the robots could only move forward along a path. Allowing the robots to
move in either direction, provides 3" — 1 choices for uy, as opposed to 2 — 1 (there are
additional choices when one or more robots moves into a junction, because a new path
must be selected). This leads to more complicated strategies; for example, if I} (z%, u}) =
At, then, in general, minimal strategies will exist in I' that cause one or more robots to
oscillate on a path. The second major difference is the complicated topology of R, as
opposed to S, which is a unit cube.

Both of these differences increase the difficulty of defining the neighborhood of a
state. For an example of a neighborhood in the roadmap coordination problem in which
N = 2, consider Figures 4.9 and 4.10. For this example, the second robot is approaching
a junction, while the first robot is in the middle of a path. The white circles in Figure 4.9
indicate the positions of the robots at state 7, and the black circles indicate possible
locations of the robots at the next state, 7. One representation of this situation in R is
illustrated in Figure 4.10. For this problem, there are 11 possible choices for 7. For each
representation of some m € M (7) (here M represents minimal strategies on the roadmap
coordination space), in addition to the components in Equation (4.16), we store an index
when necessary that indicates which new paths are chosen by the robots.

We now describe the algorithm in Figure 4.11. A set of roadmap coordination states,

termed a wavefront VW; is maintained in each iteration. During an iteration, the complete

206

Robot 1 Robot 2

Figure 4.9 A two-robot example in which one of the robots can make a decision about
which path to continue along. The white circles indicate current locations, and the black
circles indicate potential next locations.

Figure 4.10 The corresponding path branch in the representation of R.

set of minimal strategies is determined for each element of ;. The initial wavefront, W,
contains only the goal state. Each new wavefront W is defined as the set of all states that:
(1) can be reached in one stage from an element in Wj; and (2) are not included in any
of Wi_1,... ,Wy. The algorithm terminates when all states have been considered. This
algorithm could be viewed as a multiple-objective extension of the wavefront algorithm
that is used in [14].

The following proposition establishes the correctness of the algorithm:

207

1 Initialize R
2 Let WO = {szt}
3 1=0
4 Until W; =0 do
5) For each 7 € W, do
6 Let M, be a set of strategies that is the union of M (7)
for each 7 € N (7)
7 Construct a set M) by extending the strategies in M,
8 Let M (7) consist of all unique-loss minimal elements of M,

9 Leti=17+1
10 Let W; be set of all neighbors of W,_; that have not yet been processed
11 Return M (Fii)

Figure 4.11 Suppose that I} (z},u}) = At for all k € {1,... ,K} and i € {1,... ,N}.
This algorithm finds all of the minimal quotient strategies in R! x R? x --- x RYN.
Proposition 5 The algorithm presented in Figure 4.11 determines the complete set of

minimal quotient strategies in T/~, when X = R =R' x R? x --- x RV.

Proof: We use an inductive argument that is based on the principle of minimality.
After the 3" iteration of the algorithm, all minimal strategies that complete in time
less than At are represented. After the iteration for Y, all of the single-stage minimal
strategies are determined (corresponding to all of the elements of W,), forming the basis of
the induction. Consider the wavefront W; under the assumption that minimal strategies
have been determined for all elements in the wavefronts W;_1,... ,W,. Any minimal
strategy for a state 7 € W, must require exactly i stages to reach the goal. If it were
possible to achieve the goal in fewer stages, then 7 would have appeared in an earlier
wavefront. By the principle of minimality over time, any minimal strategy that requires
1 stages must be an extension of some substrategy that required 7 — 1 stages, which has
already been considered in a previous wavefront. Hence, the extension constructs the
minimal strategies in VV;, which completes the inductive step. [J

The algorithm in Figure 4.11 can be scalarized in the same manner as discussed

in Section 4.3.2. In addition, A* search can be performed to obtain a single minimal

208

solution. We have successfully implemented an algorithm that performs A* search on the
roadmap coordination space. An extension can also be considered to include general loss

functions and nonstationary strategies.

4.4.3 Computed examples

In this section, we present some computed examples that were obtained with the
algorithm in Figure 4.11. In our simulation experiments for roadmap coordination, we
have considered problems in which there are either two or three robots. Computation
times range from a few minutes to several hours on a SPARC 10 workstation. The amount
of computation time required depends on the resolution of the representation and the
number of minimal strategies.

Figure 4.12 shows the two unique-loss minimal strategies side by side, for an “H”-
shaped roadmap coordination problem in which two robots attempt to reach opposite
corners. Intuitively, for this problem, we would expect two symmetric possibilities to
exist: either A must wait, or 4?2 must wait. These two situations are precisely what are
obtained in the two minimal quotient strategies.

Figures 4.13 and 4.14 present one minimal strategy in a roadmap coordination prob-
lem that involves three robots in 33, with different roadmaps for each robot.

Figure 4.15 presents an example in which there are two robots in the plane that move
along independent roadmaps. The configuration spaces of the individual robots is three
dimensional in this case because the robots can rotate while moving along the roadmap.
There are five minimal quotient strategies for this problem, and the two that are shown
do not require either robot to wait. Quite distinct routes, however, are taken by the

robots in the different strategies.

209

o2 I 3 .
I L

Figure 4.12 There are two symmetric minimal quotient strategies. The black and white
discs represent A! and A2, respectively. The black and white triangles indicate the goal
configurations.

We briefly provide some statistics for the entire representation of R for this problem.
This provides an indication of how few minimal quotient strategies exist in the state
space. The collision region comprises only 9.89%:; 83.0% of R corresponds to states in
which there is only one minimal strategy. Also, 6.52% holds two solutions; 0.602% holds
three solutions; 0.0265% holds four solutions; and 0.00212% holds five strategies, which
is the maximum for this problem.

Figure 4.16 presents an example in which there are three rotating robots in the plane
that move along independent roadmaps.

Figure 4.17 shows another “H”-shaped roadmap coordination problem; however, in
this case there are three robots, and they rotate along the roadmaps. This problem is
perhaps one of the most complex in terms of solution alternatives; one minimal quotient

strategy out of 16 is represented in the figure.

210

(c) (d)

Figure 4.13 Parts (a), (b), and (c) show the independent roadmaps for A!, A2, and A3,
respectively. Part (d) shows the initial positions on the roadmaps.

4.5 Unconstrained Motion Planning

Sections 4.3 and 4.4 have provided methods for coordinating multiple robots when
the robots are restricted to fixed paths or independent roadmaps. These restrictions
were motivated by savings from the complexity of the complete composite configuration
space. In some applications, however, it may be desirable to analyze the complete state
space. In this section, we present an algorithm that determines one discrete-time minimal
strategy on the unconstrained state space, X = CL,;;q X C2iq X =+ X CN,... We present

some computed examples for the case in which there are two translating robots in $2.

211

Figure 4.14 A representative of one of four minimal quotient strategies.

212

Figure 4.15 Two of five minimal quotient strategies for a two-robot problem with rota-
tion.

4.5.1 Concepts and definitions

We first choose a vector, 3, such that a linear scalarizing function, H, is defined using
Equation (4.12). We consider discrete time, as in Sections 4.3 and 4.4, which results
in stages. As opposed to a point goal in X, we allow each robot goal to be a subset,
Xi C X'

For each A’ a discrete-time state transition equation is used:

. Tt [1] + ||v*]| At cos(ug)
wh,, = . (4.19)

Tt [2] + ||| At sin(ug)

213

Robot 1 Robot 3

{ { T
Robot 1| | [| Robot 1 | | Robot 1

T o S—
T

Robot 2[[| Robot zT [| Robot 2

Robot 3[Robot 3T Robot 3 ﬂ

Figure 4.16 An example that has three minimal quotient strategies.

This is equivalent to the motion model in Section 3.3.2, and in this context, U* = [0, 27)U
0, and |[v?|| represents the speed.

Suppose that at some stage k, the optimal strategy is known for each stage i €
{k,...,K}. The loss obtained by starting from stage k, and implementing the portion
of the optimal strategy {7;,...,75k}, can be represented as

K ..
Ly (z) =) {lfcf (zhs i) + D i (m(-))} +¢' (2%). (4.20)
k'=k i
The function Lj(zy) represents the cost-to-go. For this context, we modify the definition
of ¢*(z%,) in (4.8), by replacing z*(T') = x},,, with z*(T") € X¢,.
We can convert the cost-to-go functions into a scalar function by applying H (v, 3) to

obtain

N
Hy =" 6Ly (z). (4.21)
1=1

Above, H} represents a single cost-to-go function, which implicitly assumes that 3 is

given.

214

)
)

[=N \

(
)

) \

[mnN
- [mnN
[mnN
- [mnN

(
)
4

(
)
=

=N
<

(
A}

(

O

LN

<

(

'.ﬂ!.

(¢
)

'.n!.

(
)

[mnN
JG- G' - =

(
)

(
)

(
)

L

(
)

(
b}

..

(
)

6 .
()
= — I v .

N
)

‘D

L]

e}
[mnN [mnN

~ -
[mnN [mnN

<0 .
[mnN [mnN

N =
[mnN [mnN

Figure 4.17 One solution out of 16 is shown for three rotating robots.

0 -
[N [N

The principle of optimality [105] implies that Hj can be obtained from Hj,, by

selecting an optimal value for wuy.

optimality for our context:

For each choice of uy, rx;; is obtained by applying fi for each 7 € {1,...

boundary condition for this recurrence is given by

Hi(zy) = IIllIl {

HK+1 Ti1)

Zﬁzlk Tk, Uk +ZZ:61

=1 j#i

Z 5zq $K+1

215

() + Hk+1 (xk+1)}

The following recurrence represents the principle of

—~~

4.22)

N}. The

(4.23)

4.5.2 Algorithm presentation

The computational issues are similar to those discussed in Sections 2.6.3 and 3.4.2.
Optimal strategies are determined numerically, by successively building approximate rep-
resentations of H;, and by using linear interpolation. We begin with stage K + 1,
and repeatedly apply (4.22) to obtain the optimal actions. Due to stationarity, v* =
{7},... 7%} after some number of iterations. The conditions of stabilization of Hj are
similar to those for L}, which are given in Section 3.4.2. To execute a strategy, the robots
use (4.22) and the final cost-to-go representation, which we call Hy.

The complexity analysis is straightforward. Let |Q| denote the number of cells per
dimension in the representation of X. Let n denote the dimension of X. Let |U| de-
note the number of actions per robot that are considered. The space complexity of the
algorithm is O(|Q|"), and the time complexity of each iteration is O(|Q|™ |U|¥). The
number of iterations required is directly proportional to the number of stages required

for the longest (in terms of stages) optimal strategy that reaches the goal.

4.5.3 Computed examples

In this section, we present two computed examples that were obtained with the algo-
rithm described in this section. Because the algorithm is similar to that used in Chapter
2, the computational performance issues in Section 2.6.5 are relevant in this section. In
this context, however, the dimension of the state space increases linearly with the number
of robots, leading to poor computational performance (which provides motivation for us-
ing roadmap coordination or fixed-path coordination). For the computational examples
that we have considered, the state space is four-dimensional, and each axis is divided

into 20 cells.

216

Both examples involve motion planning for two robots, which are allowed to indepen-
dently translate in ®? (without restriction to a path or roadmap). For the problem in
Figure 4.18, (4.12) was used with §; = (2 = % In the solution, neither robot is required
to wait; they move around each other. Figure 4.19 concludes the computed examples of
this chapter by returning to the example from Section 4.1. The top solution is found
when 3, = (B, = %, which is equivalent to minimizing the total aggregate time. The lower
example shows the solution when 3; = % and 3y = %. For this case A' (which is initially
the rightmost robot) receives a greater priority, and is allowed to execute its time-optimal
solution, while A2 is forced to wait. These represent the solution possibilities that were

discussed in Section 4.1.

Figure 4.18 One representative minimal quotient strategy is given for two robots, al-
lowed to translate in %2

4.6 Discussion and Conclusions

We have presented a general method for multiple-robot motion planning that is cen-
tered on a concept of optimality with respect to independent objectives. Strategies are

determined that simultaneously optimize an independent performance criterion for each

217

Figure 4.19 Two alternative solutions are presented for the example problem from
Section 4.1.

218

robot. In addition, a general spectrum is defined between decoupled and centralized
planning, in which we introduce optimal coordination along independent roadmaps.

It might now be questioned whether there could be multiple-robot motion planning
methods that are between roadmap coordination and unconstrained motion planning,
along the spectrum discussed in Section 4.1. To describe this middle ground, we borrow
some concepts from algebraic topology [162]. A path can be considered as a 1-simplex,
and each roadmap can be considered as a one-dimensional (singular) complex. The sim-
plexes in this complex are connected by combinations of their boundaries, which are the
endpoints of the paths. The coordination space is formed by planning on the Carte-
sian product of 1-complexes, which results in a N-complex for N robots. One natural
generalization would be to replace each roadmap by an m-dimensional complex, which
represents a connected structure in the configuration of each robot. For example, instead
of a network of curves, we could consider a 2-complex of 2-manifolds, in which combi-
nations of boundaries are connected. The resulting coordination space is of dimension
Nm (assuming all complexes are of the same dimension). The principles presented in
this chapter could then be applied by treating the complex as a state space; however,
the larger challenge for this problem would be to construct these higher-dimensional
complexes in the configuration space.

We next discuss several points that could provide a basis for future research. One
useful benefit of the algorithms presented in this chapter is that the minimal quotient
strategies from all initial states are represented (for a fixed goal). This could be useful
if we are interested in repeatedly returning the robots to some goal positions without
colliding, if the initial locations vary. We could alternatively exchange the initial state
and goal states in the algorithms. This would produce a representation of minimal
quotient strategies to all possible goals, from a fixed initial state. This initial state can be

interpreted as a “home” position for each of the robots. After running the algorithm, the

219

robots can repreatedly solve different goals and return to the home position by reversing
the strategy.

Coordination on roadmaps provides enough maneuverability for most problems; how-
ever, in general, completeness with respect to the original problem is lost when restricted
to roadmaps. Roadmaps have traditionally been determined for motion planning of a
single robot, and some additional issues can be considered when constructing roadmaps
for the purpose of coordination. For example, if each roadmap contains at least one
configuration that is reachable by the robot, and the robot avoids collisions with the
other robots, regardless of their configurations, then completeness should be maintained
(with the possible exception of some pathological cases). For example, we could give each

’ in which other robots are

robot an initial configuration in a home position or “garage,’
not allowed to enter. In [60], prioritization is introduced, and successive motion plans
are constructed to prevent collision with robots of higher priority. One could extend
prioritized path planning to prioritized roadmap construction. Consider, for example,
the greater amount of coordination flexibility that arises in multiple-lane streets for au-
tomobiles, as opposed to one-lane streets. A similar principle could be applied to the
construction of roadmaps for multiple robots.

To reduce the computational cost at the expense of losing completeness, traditional
prioritization can be generalized within our framework. Suppose that we wish to coor-
dinate nine robots along fixed paths. Rather than directly prioritizing the motions or
building a nine-dimensional coordination space, consider dividing the robots into three
groups of three. For each group, the algorithm in Figure 4.6 (or a variation of it) can be
applied to determine a strategy that coordinates the three robots. These three strategies
could be constructed successively, by interpreting the higher-priority robots as moving

obstacles, and providing nonstationary strategies. A better approach might be to con-

sider each of the strategies as a single path that simultaneously moves three robots (which

220

are then considered as a single robot). The algorithm in Figure 4.6 could then be di-
rectly applied to coordinate each of the three strategies, considered as fixed paths. Such
issues such as the choice of groupings, and choices between prioritizing and coordinating,
must be addressed. The analog of prioritization in noncooperative game theory is the
Stackelberg equilibrium [6], which assumes a hierarchical structure of leaders in which
higher-level decision makers can make decisions before others. This solution concept
could also be relevant for some multiple-robot motion planning problems.

We next discuss a possible improvement to the computational performance of the
algorithms. Hierarchical decomposition is often used for motion planning problems, to
reduce the computations by varying the sizes of collision-free cells. The same principle
might be applicable to representations of a coordination space, or state space. Because
we are concerned with optimality, special concern must be given to ensure that the hi-
erarchical representation yields a solution that is approximately optimal. For example,
H} from Section 4.5.2 may or may not be successively well-approximated by linear in-
terpolation and a hierarchical representation. It remains to be seen whether nonuniform
decompositions can be exploited.

In Section 4.2.3, we argued the equivalence of minimal quotient strategies to other
established forms of optimality. However, we can change the general loss functional of
Equation (4.6), to yield criteria for which some of the equivalence disappears. For exam-
ple, the equivalence between admissible Nash equilibria and minimal quotient strategies
has occurred because of the minimal form of interaction that occurs between the robots,
through c¥. If a robot received a penalty that is inversely proportional to its distance to
other robots, then the two solution concepts become distinct. Fortunately, the principle
of optimality can be applied to obtain solutions to this and other forms of optimality [6].

We have presented a general method for multiple-robot motion planning that is cen-

tered on a concept of optimality with respect to independent objectives. Strategies are

221

determined that simultaneously optimize an independent performance criterion for each
robot. In addition, a general spectrum is defined between decoupled and centralized

planning, in which we introduce optimal coordination along independent roadmaps.

222

CHAPTER 5

TOWARD BROADER MOTION PLANNING
CONCEPTS

5.1 Introduction

Each of the previous three chapters presented analysis and computation methods for a
particular class of motion planning problems. Specific contributions were indicated with
respect to previous research for each class. This chapter shows how the game-theoretic
concepts can be used to generalize and unify the analysis and computation methods
across different classes of motion planning problems. The emphasis here is on defining
models and formulating concepts, as opposed to presenting computed examples. The
discussion in this chapter provides a basis for future research, under the direction taken
in this dissertation.

Section 5.2 presents the most general discrete-stage game structure that is defined in
this dissertation. Section 5.3 defines a game that incorporates all of the essential concepts
from Chapters 2 through 4. Section 5.4 presents several game formulations that char-
acterize additional robotics problems. Section 5.5 concludes this chapter by discussing
issues that result from generalizing and comparing new motion planning problems within

a game-theoretic framework.

223

5.2 Principle Modeling Components

This section provides a generic game formulation that can apply to a wide variety of
robotics problems. This formulation is a variation of that presented in a dynamic non-
cooperative game context [6], and in a robotics context [112]. Continuous-time versions
exist, some of which are discussed in [6].

The components in this formulation will be enumerated, and a description of the
components will follow. Most of this structure has been utilized in the previous chapters

in this dissertation. Consider the following:
1. An index set, N ={1,2,..., N}, of N decision makers
2. An index set, K ={1,2,..., K}, that denotes the stages of the game

3. A set, X, called the state space. The state of the game, z;, at stage k, belongs to
X.

4. A set, Ui, defined for each k € K and 7 € N, which is called the action set of the

i decision maker at stage k. The action, ul, at stage k, belongs to U}.

5. A set, Of, defined for each k € K, which is called the control action set for nature

at stage k. The control action for nature, 6%, at stage k, belongs to ©%.
6. A function, fr : X x Ul x ... x UN x ©% — X, defined for each k € K so that
Try1 = fr(Tp, g, ..., up, 09), (5.1)
is a state transition equation.

7. A set, Y}, defined for each k € K and i € N, and called the sensor space of the i

decision maker at stage k, to which the sensed observation y belongs at stage k.

224

8. A set, @,‘Z’i, defined for each 2 € bf N and k € K, which is called the sensing action
set for nature at stage k. The sensing action for nature, 0,‘2”, at stage k, belongs to

o5,
9. A function, ht, defined for each k € K and ¢ € N, so that
yi = hi(x, 01, (52)

which is the instantaneous observation equation of the i** decision maker concerning

the value of zy.

10. A finite set, 7, defined for each k£ € K and 7 € N as a subset of all actions and ob-

servations made by decision makers at any previous stage, {ul,... ,ul,yl,... ,y~ }.

11. A set of all possible values for 7, denoted by N}, which is called the information

space for the i decision maker at stage k.

12. A set, I}, of mappings v : Ni — U}, which are the strategies available to the
i decision maker at stage k. The combined mapping ' = {v},1%,... 7%} is
a strategy for the i decision maker, and the set I'* of all such mappings 7' is
the strategy space of the i*" decision maker. A game strategy, 7y, represents a
simultaneous specification of the strategy for each decision maker, and the space of

game strategies is denoted by ' = T't x - - x 'V,

13. An extended real-valued functional L' : (X x Ul x ... x UN) x (X x Uj x ... x
UN) X ... x (X xUkx...xUF)x O — R, defined for each i € N, and called the
loss functional of the i** decision maker. The Cartesian product of all of nature’s

actions spaces is represented here as ©.

Item 1 enumerates the decision makers in the game. For the problems considered in

the previous chapters, each robot has been considered as a decision maker (nature can

225

also be considered as a decision maker, but we define nature in separate items). If several
robots are controlled in unison, then we might consider the system of robots as a single,
combined decision maker. In general, any agent that is capable of making decisions and
interfering with the other decision makers should be considered as a decision maker.

Item 2 defines stages that correspond to times at which decisions are made during
the play of the game. For the problems in the previous chapters, decisions were made at
each At time increment. In general, decision making at regular intervals is not required.
Suppose for instance that the decisions correspond to very high-level operations, that
may have unpredictable completion times. This was implicitly assumed when fine-motion
planning was taken into account with the part-carrying problem presented in Section 3.6.
A continuum of stages can be considered, which results in a continuous-time differential
game (e.g., [94]). In this case, the action spaces are replaced by a control input that is a
function of time.

The state space is defined in Item 3. Configuration spaces have been embedded in
all of the state space definitions presented thus far in this dissertation. It is well known
in the literature (e.g., [109], [123]) that configuration space concepts provide a compact
and useful characterization of motion planning problems. In general, however, the state
space could incorporate additional information, such as environment modes, or could
encode completely different information that is relevant to a particular robotic task.
Some of the examples in Section 5.4 will define state spaces that do not explicitly encode
a configuration space.

Items 4 through 6 define how changes in state can occur. Each decision maker has
a set of actions available at every stage. The i** decision maker has influence over the
state zj, by applying the action u%. The precise characterization of this influence is

given in Item 6, the state transition equation. By choosing a control action 6§ from

226

Pl ayer i

Action |
State Transition State
Cont rol Equat|0n P|ayer | . Cbservation
Acti on Sensor Mapping
Nature Strategy |[sensing T
Action Initial State

Figure 5.1 The effect of nature on the game.

the set ©f, nature can also influence the state transitions, either nondeterministically or
probabilistically.

Definitions that are used for handling imperfect state information are presented in
Items 7 through 11. Each decision maker at each stage has a sensor space, Y} (or
observation space), which encodes information regarding the state that is observed during
stage k. In addition to a projection from the state space to the sensor space, this
information is potentially corrupted by a sensing action, GZ’i, of nature, which is chosen
from @ZZ Figure 5.1 depicts how nature can affect the decision-making problem through
both control actions and sensing actions. Differential sensor observations have been
considered in [142], and depend on the state at different times. Sensors of this type can
be included in the formulation by replacing hi(zx, ;") with hi(z1,... ,zx, 65").

Item 12 defines a strategy for each decision maker. Each decision maker conditions
its actions on its information state at the given stage. This represents a deterministic (or
pure) strategy; however, we can alternatively define randomized (or mixed) strategies.
In this case a pdf of the form p(uf|nt) is specified as the strategy. During each execution,
the action u is chosen by sampling. With probabilistic representations, nature can be
imagined as a decision maker that implements a randomized strategy.

Item 13 defines a loss functional for each of the decision makers, which guides the
selection of strategies. The loss can generally be based on actions taken by any decision

maker at any stage, and on the state trajectory. In this general form, the loss functionals

227

can also depend on nature. Recall that the sensing models are functions of state and
nature. Because the information space is generated by a set of sensor observation and
actions, the inclusion of nature in the definition of loss allows loss functionals that depend
on information states. In some applications, it may be practical to express the desired
performance in terms of information space. Suppose that a problem involves probabilistic
uncertainty in configuration sensing; the task might simply be to minimize the variance
of p(xk|nk), which is a statistic (or function) of the information state. Examples of loss
functionals that depend on nature are given in Section 5.4.

It has been assumed thus far that each decision maker knows all game components,
including the loss functionals, of other decision makers. Another item could be intro-
duced that reflects imperfect information that each decision maker has about the game
itself. Problems of this type are quite realistic, yet are very difficult to model [73], [83].
The information of each decision maker could be represented, for example, as a proba-
bility density over a set of possible games. To make appropriate decisions, each decision
maker must speculate about the knowledge that other decision makers have regarding
the game. This type of second-guessing can progress for an infinite number of layers,
which leads to a formidable modeling task. One approach to problems of this type is
the Recursive Modeling Method, which finds strategies that are optimal in the expected

sense by averaging over a finite number of layers [73].

5.3 Unifying the Concepts from Chapters 2-4

This section specializes the structure from Section 5.2 to minimally encompass the es-
sential concepts from Chapters 2 through 4. A multiple-robot motion planning problem
is defined in which each robot experiences uncertainty in configuration predictability,

configuration sensing, environment predictability, and environment sensing. This pro-

228

vides an illustration of the generalization capabilities that arise from the mathematical

framework presented in this dissertation.

5.3.1 Defining the game components

Suppose there are N robots, {A', ..., AV}, that operate in a common workspace, W.
Each robot A° might be a rigid robot (such as a mobile robot) or an articulated robot
(such as a manipulator). Each robot is characterized by its n;-dimensional configuration
space, C'. There are static obstacles in the common workspace, and a free configuration
space, Cf,., can be defined for each robot.

It will be assumed that for each robot, all four sources of uncertainty described in
Section 1.2.2 are present. The combined effects of all these uncertainties on all robots
can be considered as actions of a single nature player. However, to make the presentation
more precise, we will define four nature players for each robot, each of which corresponds
to a distinct source of uncertainty. The nature actions for the i robot will be represented
as 0" 9" 9P and 65°

The state space will be defined next. Recall that in Chapter 3, the set E of environ-
ment modes was assumed to be finite. In this section, suppose that the set of environment
modes is F = R™ for some m. The state space is formed by taking the Cartesian product
of the configuration spaces of the robots and the set of environment modes. This results

in a state vector representation of the form
ve=[all] - ailn] o @l - allna] enll] el2] - elm]]
(5.3)

There are many locations in the state space in which two or more robots intersect in the
workspace. The state space is therefore restricted to X,q;4, which is obtained after the

removal of all pairwise collision regions, as constructed in Chapter 4.

229

The state transition equation for robot 7 can be defined as
Thyr = [h(@e, uj, 07, 077, (5.4)

in which f{ depends on zj, not 2. Thus, one robot is generally allowed to influence
another robot’s motions, or any robot can influence the environment mode.

The observation equation for robot i is yi = hi(zx, 05", 65>"). This equation can
model sensing of both configurations and environments. For example, suppose p(o%|ex)
describes a sensing model that contains information about the environment, and p(z%|qs)
is a sensing model that contains information about the current configuration. If these
models are independent, then y¢ = [2{ 0] simultaneously represents both sensing models

and
p(ilzk) = P2, okl i, ex) = p(z;|dk)p(oklex), (5.5)

which is specified in terms of the individual sensing models.

An information state can be constructed as

n,i C (U {ul, ... ,uz_l,yi,... ,y,i})) (5.6)

With this definition, each robot might have access to the actions and sensor observations
that were made by the other robots.

Once the information space has been fixed, the definition of a strategy for each robot
is simply the set of mappings 7% : Ni — U} for each k. A termination condition, T'C},

for the it robot at each stage is defined as a binary-valued mapping,
TC} : Ni — {true, false}. (5.7)

We require that if TC}, = true, then TCj,, = true. The game terminates when TC}, =
true for every robot. Let TC denote the set of termination conditions for all of the

decision makers.

230

The next step is to define the loss functionals,

Lixy, . Tri1, Ul ey Ubey ooyl ul TC) =
K
ez, g, oo u), TC) + L1 (Trcsn)- (5.8)
k=1

Let £ represent a vector of N loss values, in which the i** element corresponds to the

loss for the it* robot.

5.3.2 Generalizing planning concepts

This section provides generalizations of some of the planning concepts that were

introduced in Chapters 2 through 4.

Forward Projections The forward projection concepts from Section 2.4 can be gen-
eralized to the current context. Suppose there is perfect state information and nondeter-

ministic uncertainty. The single-step forward projection is

Fro(zp,up, - osun) = {fi(@n, uy, ... ,upy,0F,0F) € X|0F € OF, 07 € ©F},
(5.9)

which is an extension of Equation (2.3). By using the state transition equation, the next
state can be represented by a pdf, p(zgi1|Tg, us, ... ,ud).
Next consider the case of imperfect information. Let A}, denote the Cartesian product

of information spaces
Ne=N. x N2 x---x N}, (5.10)

Let mg denote {ni,... ,nY}, in which ng € N;.
The (information) forward projection Fj 1 (n, u, ... ,ud) can be defined as the set
of all Mgi1 € Njy1 such that if yi., € ni,, then yi |, = hi(z4s1, 055, 657") for some

es,i es,i

Thr1 € Fi(@p, ug, -5 uy), 031 € O)F1, 0451 € 7%, and 2y € Fig(mg). The term Fy(m)

231

is a vector version of (2.7). For this case, Fy(ny) represents a subset of the Cartesian
product of N state spaces.

Next consider a probabilistic version of the forward projection. Let X represent the
Cartesian product of N copies of X. The information state can be described as a density

on X of the form p(xy|nk). At stage k, the density on X after starting at 7, is given by

P(Xk|771,7) =

/p(Xk|77k—1, Ye—1(Me—1))P(Me—1|Me—2, Te—2(M—2)) - - - D(M2 |11, 71 (M1)) dNie—1 - - - dM2,

(5.11)
in which 7;(n) specifies the actions {u},...,ul} at stage k. The i"* subspace of the
first term in the integrand can be determined using

p(xk+1|77]iga ullca s 7uI]cV) = /p(mk+1|rk‘7 ’U‘I%:: s a“kN)P(iUch)dIk; (512)

which depends on the state transition equation and the density representation of the
information state 7.
Each of the remaining terms of (5.11) can be reduced to
P(Me+1]m, Ve (18)) =
POYL - YR UL -5 U YTy Uk ULy UE) = Pkt - Yk [l ks -5 Uy)-
(5.13)
This reduction occurs because most of the sensing and action history appears on both

sides of the density expression. With the assumption that the robots receive independent

sensor observations, the right side of (5.13) becomes

p(yl}:-pla s ’yllc\{|-1|nka U’llca s a’u’;cv) = H p(yIZc—Fl'nka ullca B ’ui:V)’ (514)
€N

in which each term can be further reduced to

PYhst [0 s - - - up) = /P(yzi+1|$k+1)P(fEk+1\77/iaUllca co g)y =
[[Pllanip@naloe, uh, .. p(orln) daidren, (5.15)

232

and all three terms in the final integrand are known. The density p(y},,|zs41) is in-
ferred from the sensing model; p(zgy1|Tk, U, - - . ,up) is inferred from the control model;
p(zg|nt) is the density representation of the current information state.

These expressions have provided generalizations of the forward projection concepts

from Section 2.4 by applying the game-theoretic framework.

Performance Preimages The performance preimage concepts from Section 2.5 can
also be generalized. Suppose there is perfect information and the nondeterministic rep-
resentation is considered. Under the implementation of a strategy, the following vector

value can be obtained:

[:(-Tl,’)/) = | Sup Ll(xlafya’ye) *++ sup LN($177776) . (516)
,-YGGI‘G ’)’OEFG

The i*» component of £(zy,) corresponds to the worst-case loss for the i** robot. Note
that since the sup is applied to each component individually, there might not exist a
single nature strategy 7% that produces £(z1,7) as a vector of losses. The vector £(z1,)
represents the individual worst-case losses, from the independent perspectives of each
decision maker.

Let V denote a subset of Y. A performance preimage can be defined on the state

space as
(7, V) = {1 € X|L(z1,7) € V}. (5.17)

With the probabilistic representation of uncertainty and perfect state information, the

following can be defined:

‘Tla /E Ilaf}/a de— [/Ll I17770 p(g)da /LN('TlafY; 9)p(0)d9 :
(5.18)

233

For a choice of V C RV, a performance preimage can be defined as
To(7, V) = {21 € X|L(21,7) € V}. (5.19)

The performance preimage can be specialized to evaluate a strategy with respect to
the loss of a single robot. Let R C [0,00). Suppose that V is chosen as that set of
all elements in RV such that the i** coordinate lies in R. The performance preimage
in this case yields the maximal subset of the state space from which the (expected or
worst-case) loss of the i robot lies in R. The interactions between two or more robots
can be evaluated in a similar way.

Next suppose that there is imperfect information, but the information spaces for
different robots are identical. Hence, there is a common information space, which can be

denoted as N;. With a nondeterministic representation, the i** component of Z(m,) is

sup L'(n1,7,7"), (5.20)
7‘9€F‘9
and
#(v,V) = {nt € Ni|L(m,7) € V}, (5.21)

for some V' C V. With a probabilistic representation, the i» component of £(n;,7) is

/ Li(my, 7, 0)p(6)do, (5.22)
and
7(v,V) ={m € Ni|L(m,7) € V} (5.23)

for some V C RV.
The most complex case is now considered, in which there is imperfect information

and independent information spaces. These preimages will be defined as subsets of V.

234

Each L can be expressed as Li(n1,7,7%), and the vector losses can be expressed as

5(771; Y, 70)

With a nondeterministic representation, the i component of ﬁ(nl,’y) can be ex-

pressed as
sup L'(ni, 7,0y, 1, 70), (5.24)
7961"9
and
(v, V)={m € Nl\/j(nlﬁ) eV} (5.25)

for some V' C RY. Finally, with a probabilistic representation, the i component of

L(n1,7) is

[£, 0)p(0)de. (5.26)

and
(7, V) ={m € Mi[L(m,7) €V} (5.27)

for some V C RN
These expressions indicate that the performance preimage concept can be used in

very general contexts.

5.3.3 Determining solutions

Several different types of optimality concepts have been considered in this disserta-
tion. Because the mathematical structure in this section encompasses the motion plan-
ning problems considered in the previous chapters, many of same concepts are relevant.
For a single robot that faces all four sources of uncertainty with a probabilistic repre-

sentation, a suitable strategy is one that minimizes the loss in the expected sense. With

235

the nondeterministic representation, a strategy that provides the least worst-case loss is
most desirable. With multiple robots that face uncertainties, the situation becomes more
complicated. With a probabilistic representation, the situation is mathematically equiv-
alent to a Markov game [147]. One possible solution in this context is to define a partial
ordering on strategies by comparing vectors of expected losses, and to take the minimal
elements with respect to the partial ordering. For problems of this type, a computational
approach can still be developed that utilizes the principle of optimality. Straightforward
application of the computational techniques in this dissertation, however, would proba-
bly lead to prohibitive computational expense for many interesting problems. Hence, the
development of improved computational techniques remains an important direction for

future research.

5.4 Additional Problem Formulations

This section indicates different types of robot planning problems that can be char-
acterized with the general formulation from Section 5.2. These are provided to indicate
the expressive power of the formulation and potential uses of it in future research. These
characterizations, therefore, do not represent proposed solutions to problems, and it is
generally expected that additional issues and more detailed analysis would have to be

considered in each case.

A meta-level motion planning problem Suppose a robot is confronted with the
task of selecting a computation method (or methods) that will lead to the solution of a
basic motion planning problem, and is given statistical information about the likelihood
that a method will succeed and its expected computational cost. The goal is to produce

a solution (e.g., find a collision-free path) in a minimal amount of time. One motivation

236

is that there are simple ways to attack a given problem that often provide a solution. For
example, consider connecting initial and goal configurations with a straight line. This
method requires little computation time and may solve a significant number of problems.
It seems nearly useless as a general motion planning approach; however, as one method
among many to choose from, it can be quite powerful when used appropriately. This low
execution cost was the motivation behind the randomized construction of configuration-
space graphs in [97]. The view presented here is inspired by the case-based approach
taken in [143] and is related to the decision-making approaches in [7], [55].

Let M denote a space of basic motion planning problems, which can be generated
by considering combinations of possible free configuration spaces (environments), initial
configurations, and goal configurations. In practice, this set need not be enumerated. A
state space, X, is defined as M x {0,1}. Let 1 represent the condition that the problem
has not been solved; otherwise, it has been solved. Initially, the system is in some state,
xz1 = (m, 1), which implies that a motion planning problem, m € M, has been chosen,
and it is not yet solved. The action set U corresponds to a collection of algorithms that
might solve the motion planning problem. The control action set for nature is binary,

¢ ={0,1}. If 6% = 0, then nature allows the problem to be solved; otherwise, nature
chooses 6} = 1, and the problem remains unsolved. Hence, the state transition equation
is
(m,0) ifdr=0
fzg, ug, 0) = . (5.28)
(m,1) otherwise
Nature represents a form of uncertainty, which is modeled probabilistically. Hence, the
state transitions can be considered as P(zg.1|zk, uk)-

Assume that the final component of the state space can be directly observed, and a

sensing model is used on M. The sensor space Y has the same interpretation as a feature

space in statistical pattern recognition [46], [51]. Rather than making decisions directly

237

from M, a projection is formed into a feature space with h. The information space, N,
is generated by the sensor space Y and the set of previous actions.

A loss functional can be defined as

k
L= Zl L (ug), (5.29)
in which I (uy) represents the time required to apply u.

Successfully using this approach requires that several issues still be addressed. A
sensor space must be defined for which h(m) can be efficiently computed and for which
appropriate, informed decisions can be made. The extraction of useful features for a mo-
tion planning problem is challenging, and some features were obtained in [143]. Note that
p(0k|zk, ug) must be determined. This could, for example, be determined by construct-
ing a cellular partition of Y, and using the statistical average of successes versus total
trials in each cell. We generally allow any motion planning method, uy, to be attempted
multiple times. Complete methods, such as cylindrical algebraic decomposition [4], [39],
will always successfully terminate; however, the cost is usually extremely high. For de-
terministic motion planning methods, we know that the probability of success is zero in
subsequent stages if it has failed once. Randomized methods, such as pure Brownian

motion, might produce nearly stage-independent probabilities.

Pursuit and evasion Problems of pursuit and evasion have been considered through-
out game theoretic literature [81], [94], [199], [200], [201] and have particular relevance
in some robotic applications. These problems involve interactions between two decision
makers, a pursuer and an evader, that have opposing interests. The pursuer views the
evader as a moving goal that must be intercepted, which is similar to tracking [64], [126],
[146] or target acquisition [15], [43], [L00]. Game-theoretic concepts have recently been

used to analyze and determine solutions to a class of linear tracking problems [168].

238

From the point of view of the evader, the situation becomes a type of collision avoidance
problem.

A brief description of a pursuit-evasion problem is given. Suppose that the pursuer
and evader are robots that are capable of translating in the plane. Let X represent the
four-dimensional composite configuration space. If there are no static obstacles, the state
space can be reduced to two dimensions by viewing the evader with respect to a moving
coordinate system that is attached to the pursuer [94]. A state transition equation can be
defined by combining independent local motion models for each of the robots. Suppose,
for example, that the pursuer has control over the first two coordinates in X, and the
evader has control over the final two coordinates in X. The loss functional for the pursuer
can be defined in terms of the distance to the evader, or a cost can be applied at the
final stage if the robot has not captured the evader. Incremental costs can also be added
to induce a preference for faster captures. The loss functional of the evader can be the
negation of the pursuer’s loss functional. The pursuit-evasion scenario can thus be viewed

as a zero-sum game [6].

Motion planning with vision feedback It has been recognized in the literature that
a vision system can provide useful information for planning [64], [66], [84]. We briefly
indicate how information space concepts can be applied to formulate this type of problem,
by characterizing the imaging system with a sensor model.

Let X be the configuration space of a multiple-link manipulator, such as the one in-
dicated in Figure 5.2. Suppose that the task is to move the end effector to some specified
subset of the workspace. This workspace subset could be mapped into the configuration
space, as done for the problems in Section 3.6; however, in many applications it is prefer-

able to avoid calibrations of the end effector in the workspace. One way to avoid this

239

End Effector

Manipulator
Image Plane

Figure 5.2 Motion planning with vision feedback.

is to directly monitor the accomplishment of the task by tracking image features that
depend on the location of the end effector.

Let Y represent the feature space. A mapping can be constructed from the joint space
directly into the feature space. This mapping results from a composition of the mappings
that includes the projection model for the camera. This mapping can be expressed as
e = f(zk,0%). In general this mapping can be quite complicated, even without the
consideration of a sensing action for nature that interferes with the observation. The
mapping f typically has many singularities that directly affect the relationship between
transitions in the state space and transitions in the feature space [84].

A goal region could be defined in the state space; however, it may be preferable to
define the goal region directly in the feature space. The information space for this problem
is generated by the set of action and sensing history. The approximation techniques
discussed in Section 2.6.4 could be applied to successfully plan on the information space.
For example, the information space could be approximated with moments, or limited

memory could be used, as for the computed examples in Section 2.6.6.

Multiple exploring robots This problem involves multiple decision makers that have

imperfect information about the game, and is adapted from [73]. Suppose there are two

240

robots, A! and A2, that are both dedicated to gathering information about unknown
terrain. This type of problem is conceptually similar to reducing environment-sensing
uncertainty by making observations about the environment.

Suppose the initial configurations of the robots are as depicted in Figure 5.3. Re-
gion 1 and Region 2 designate possible vantage points from which the robots can make
observations about the environment. A single-stage decision problem will be defined.
Suppose that A' has three possible actions: (1) move to Region 1; (2) move to Region

2; or (3) do nothing. Suppose that L' is represented as

4 0 4
1 3 3]|- (5.30)
315

The columns of (5.30) represent the three possible actions available to A!, and rows
represent the same possible choices for A2, Each entry represents the loss for the com-
bination of actions, which takes into account both the distance traveled and the value
of the information obtained. Region 2 represents a better vantage point, and at that
location, a lower loss is received.

The primary difficulty with choosing the best action for A! is that it has imperfect
information about 42’s decision-making process. The shaded area in Figure 5.3 indicates
an obstruction that may potentially block A%’s view of Region 2. Robot A! does not

know whether A% knows about Region 2. Suppose that A! believes that L? is

5 1 5
02 2 (5.31)
315

241

Region 1 Region 2

Robot 1 Robot 2

Figure 5.3 A two-robot terrain exploration problem.

with probability 0.1, which assumes that A% knows about Region 2, and A! believes that

L? is

(5.32)

with probability 0.9, in which the third row and column have been removed, indicating
that A2 is not aware of that possible action.

Robot A! could additionally speculate about how .42 models .A'’s loss. The presented
example is fairly simple, yet there can generally be an infinite recursion of modeling to
fully handle this form of imperfect information. In [73], solutions were computed by
assuming after some number of layers that the other decision maker has a mixed strat-
egy. The implications are that many multiple-robot planning problems quickly become

difficult when there are limitations in communication and information.

Part orienting This problem formulation is inspired by the approach considered in

[74], [75], [76]. Suppose that planar parts appear on a conveyor belt at unknown orienta-

242

Parallel Gripper
g o ¢ O O

Oriented Parts

Conveyor Belt

Figure 5.4 A parallel gripper that squeezes parts for alignment.

tions (see Figure 5.4). The task is to use a parallel gripper to perform squeeze operations
that force the parts into a prescribed orientation. Let X C S, which corresponds to
possible planar orientations of a known part. Let U = S!, which corresponds to an angle
at which a parallel robot gripper can squeeze. Let T'Cy be a termination condition, as
defined in Chapter 2. Suppose that there is probabilistic configuration-predictability un-
certainty; hence, zy11 = f(zg, U, 0F), and P(0%|rk, ug) is given. This is consistent with
the modeling assumptions in [74], in which experimental methods were used to determine
P03z, ux) (although it was not represented in this way).

Suppose that there are no sensor observations that can be utilized by the planner.
Initially a uniform distribution is assumed on the space of possible orientations. An
information state is represented as nm = {uy,...,ux}. The information space can also
be considered as the set of all probability densities on X. Hence, an information state is
characterized by P(xg|uy,... ,ug).

Designate a subset, GG, of X as the goal region. The task is to place the part in an

orientation that is in G. A loss functional can be defined as

K+1
L(ul, e ’LLK) = Z l(uk,TCk) + lK—|—1($K+1); (533)

k=1
in which [k, represents a cost of failure. Hence, I 1(zx11) = 0 if 21 € G. Let

l(ug, TCy) = 0 of TCy = true, and l(ux,TCy) = 1, otherwise. The task can now

be specified as determining the strategy that optimizes (5.33) in the expected sense.

243

The termination condition becomes important because of uncertainty in configuration
sensing. If some of the probability mass from P(xg|uy,... ,ux) lies outside of G, then
Ik 1 influences the stage at which the termination condition is applied.

Several extensions to the basic formulation can also be readily made. Sensor mea-
surements can be defined that estimate the distance between the sides of the gripper.
One might also consider a problem in which there are multiple parts to be both sorted
and grasped, which additionally involves planning under uncertainty in environment pre-

dictability.

5.5 Utilizing Formulations

This section defines some concepts for evaluating and comparing game formulations.
These concepts capture a few intuitive notions about how a general formulation can be
utilized to relate problems and methods. A game space will be defined in which each
point corresponds to a completely represented problem. A subset of the game space can
be considered as a generic formulation that can be specialized to a particular problem;
Section 5.3 presented one such subset.

Let all combinations of actions of nature be represented as
O=0%x--x0% x O x ... x O x O x ... x OLN, (5.34)

A particular game, g, can be defined as

g= {NK,X,UL,....,UN, 0, fi,... fx,Yi, ..., YN Bl ... R,

NY,... NN.T,L',... LN T} (5.35)

which corresponds to choices of functions and spaces that are defined in Section 5.2.

Here I" could represent a space of pure (deterministic) or mixed (randomized) strategies.

244

For the final component, T' = 0 if nature is modeled nondeterministically, and 7" =1 if
nature is modeled probabilistically.

Let G denote a game space, which is generated by elements of the form of Equation
(5.35). The generation of this space technically requires spaces to be defined for each
component of (5.35). For instance, N can range over the set of positive integers. Each
loss functional, L*, generally belongs to some suitably chosen space of functionals. It will
be assumed that spaces are defined for each component that are sufficiently general for
the discussion. Technical considerations beyond this level of detail are not necessary for
the treatment provided here.

Each of the formulations presented in Chapters 2 through 4 can be considered as sub-
sets of G. Let G represent a set of single-robot problems that involve uncertainty in con-
figuration predictability and configuration sensing, which were the subject of Chapter 2.
One subset of GG, represents the case of perfect information; another subset represents
nondeterministic uncertainty. The formulation in Section 5.3 represents a subset of GG
that contains the formulations from Chapters 2-4.

Imperfect information about the game itself could be considered by defining a space
of probability densities on G, with appropriate measurability conditions are assumed.
Each element in this space could, for example, represent the uncertainty that one deci-
sion maker has about another decision maker’s models, which occurs in the exploration

problem of Section 5.4.

Specializations Suppose a certain problem type has been encoded as a set of games,
(31, and analysis and computation methods are known for a set of games G5 with G; C G,.
This implies that the same techniques apply to the problems in GG;; however, it might
be the case that improvements could be made to the techniques due to the additional

restrictiveness of GG;. For example, let G5 represent the set of basic motion planning prob-

245

lems that can be described with algebraic constraints, and that have 0-1 loss functionals.
Let G represent the subset of G5 that corresponds to problems in which Cy,.. can be
described with piecewise-linear constraints, and in which Cy,.. is two-dimensional. The
numerical dynamic programming method from Chapter 2 can in principle be applied to
the problems in GG5. However, utilizing the additional information that the configuration
space is two-dimensional with piecewise-linear constraints permits the visibility graph

method (e.g., [125]) to quickly provide an exact solution.

Generalizations Suppose that analysis and reasonable computation methods are known
for some set of games, GG;. One hope is that the same or similar methods apply for some
larger set, G, such that G; C G’. One example of this type of generalization was
the inclusion of nondeterministic uncertainty in Chapter 3; analysis and a computation
method were presented for a particular game formulation that involved probabilistic rep-
resentations of uncertainty. It can be expected that problems that alternatively use
nondeterministic uncertainty can be attacked with a similar approach, which leads to
larger set of games that can be solved, because the dependency on 7' is not critical.
Suppose that another set of games, GG, has been analyzed and that computational
methods are known. One natural question is whether the same concepts or a combination
of the concepts can be applied to solve problems in some larger set G5 for which G;UG, C

(5. This type of reasoning led to the game formulation and discussion in Section 5.3.

Similarities In many cases, it may be important to consider equivalence relations on
(G. Many points in the game space might lead to identical or nearly identical problems.
Some situations are obvious: in any formulation that has multiple decision makers, all of
the components for any pair of decision makers can be interchanged. This operation does

little to change the problem, because it only causes the decision makers to be re-indexed.

246

More generally, it can be important to identify similarities between problems. Sup-
pose, for example that three sets of games differ only by the state transition equation.
One definition might include a class of nonholonomic motion models, another might
include unconstrained motions, and a third might include models appropriate for inde-
pendent control of manipulator joints. Each of these problems is very similar, because all
other game components remain fixed. In this case, the computation approach may vary
only slightly from one game set to another. This occurred for the problems in Chapter
3, in which results were obtained for these types of motion models, while the computa-
tional considerations were nearly unchanged. As another example, suppose that a set of
games is partitioned into subsets by the dimension of the state space. We can expect
that a computation method in one of these classes can most likely be applied to another.

Computational expense, however, might drive the search for alternative approaches.

Conclusion The concepts provided in this chapter indicate a general approach for
obtaining new insights and solution methods for various types of robotics problems.
The unified mathematical structure assists in understanding the relationships between
problems, which leads to a greater potential for progress. Relationships between certain
robotics problems and game-theoretic and control-theoretic literature can also be utilized.
Problems that consider state space constraints that are equivalent to those obtained in
a motion planning problem are, however, uncommon in game-theoretic literature. (As
an exception, [82] considers geometric constraints on the state space.) For this reason
many formulations from the literature may have to be modified and adapted to apply to

a particular robotics problem.

247

CHAPTER 6

CONCLUSIONS

This final chapter summarizes the contributions made in this dissertation and provides

a concluding perspective.

6.1 Summary of Contributions

The general purpose throughout this dissertation has been to provide a unified and
systematic way to analyze motion planning problems through the use of a dynamic game-
theoretic mathematical structure. Many benefits are obtained by encoding types of mo-
tion planning problems in this structure. The concepts have provided a useful, compact
characterization of several extended motion planning problems. For example, a gen-
eral probabilistic characterization of motion planning under uncertainty in sensing and
control had not been previously obtained; however, applying the general formulation al-
lowed a clear objective to be defined: to select an expected optimal information-feedback
strategy. Such formulations are useful, even in situations for which a practical solution
cannot be directly obtained. For example, cylindrical algebraic decomposition techniques
[4], [39] provided a means for solving the basic motion planning problem in a very general

form, although the computational complexity made obtaining solutions to most problems

248

prohibitive. The tradeoffs offered by more efficient computational approaches can be an-
alyzed by using the general solution as a basis for comparison, as done in [109]. In a
similar manner, the information-space formulation of optimal strategies in Chapter 2
characterized solutions to the problem of motion planning under sensing and control un-
certainties, and this led to a computational approach that approximates the information
space.

The mathematical structure also offers flexibility when varying the modeling assump-
tions or generalizing concepts. The unifying nature of configuration space concepts has
offered similar benefits, as rigid and articulated robots are analyzed with the same ge-
ometric concepts [109]. To illustrate the ease in varying modeling assumptions, Chap-
ter 3 presented examples for a nonholonomic car-like robot, a constrained rotating robot,
translating robots, and three-link manipulators, with little variation in the approach.
The forward projection and performance preimage concepts provided an example of how
the structure can be used to obtain generalizations; their traditional formulations were
substantially generalized both in Chapters 2 and 5.

Another benefit is that similarities between different problems can easily be identified
once the problems are embedded in the mathematical structure. This can provide useful
insights for the development of computational approaches. For example, the principle of
optimality holds true for a very general formulation, and formed the basis for all of the
computation methods in this thesis. Similarities between the concepts in Chapters 2 and
3 led to similar computation methods.

Chapters 2 through 4 each provided modeling, analysis, algorithms, and computed
examples for a distinct class of motion planning problems. The reason for these three
separate investigations is twofold. First, each chapter independently made contributions
to a class of problems that were motivated by previous research interests and limitations

of existing approaches. Second, the work reported in these chapters supports the con-

249

clusion that a wide class of problems can be formulated and analyzed within the unified
framework. The remainder of this section summarizes the independent contributions that
were made in Chapters 2 through 4.

The treatment of uncertainties has been one of the primary concerns in advancing
the state of the art of robot motion planning. In Section 1.2.2 four major sources of
motion planning uncertainty were defined: (1) configuration sensing, (2) configuration
predictability, (3) environment sensing, and (4) environment predictability. Chapter 2 ad-
dressed uncertainty in configuration sensing and configuration predictability. Chapter 3
addressed uncertainty in environment predictability, with some additional consideration
of environment-sensing uncertainty. It was shown in Section 5.3 that all four sources of

uncertainty can be treated in a single system using the concepts in this dissertation.

Uncertainty in sensing and control Chapter 2 introduced a characterization of mo-
tion planning under uncertainty in configuration sensing and predictability in which the
goal is to select an information-feedback strategy that optimizes a loss functional. Non-
deterministic representations could be used, which led to worst-case analysis, or proba-
bilistic representations could be used, which led to ezpected-case analysis. The discussion
and simulation experiments demonstrated that the efficiency of a robot motion strategy
is crucial in planning under uncertainty, which emphasizes the importance of defining a
loss functional. General forward projections and performance preimages were introduced
to evaluate strategies. The termination condition concept was observed to be equivalent
to the concept of optimal stopping from stochastic control theory. The information space
concepts provided a useful and formal means to capture the relationship between history
and the strategy of the robot. The specification of strategies in terms of information

provided a novel formulation of optimality in the context of motion planning under un-

250

certainty. Finally, a computational approach was presented, and computed examples of

forward projections, performance preimages, and optimal strategies were shown.

Environment uncertainties Chapter 3 introduced a characterization of motion plan-
ning under uncertainty in environment sensing and predictability. Many similarities can
be drawn between this problem and the one in Chapter 2; therefore, many of the contri-
butions are similar. Most of the chapter focused on determining optimal strategies under
environment-predictability uncertainty with probabilistic representations, and extensions
that include environment-sensing uncertainty and nondeterministic uncertainty were pre-
sented. One unique contribution of this research is the integration of motion planning
with a separate process that models the changing environment. A general formulation
of environment-predictability uncertainty had not previously existed in the motion plan-
ning literature. An extension to the basic concepts was presented in which the robot
carries parts, and the optimal strategy minimized the expected time that parts wait to
be delivered between partially-predictable sources and destinations. Several computed

examples were presented for problems that involved environment uncertainties.

Multiple Robots Chapter 4 made two general contributions to motion planning for
multiple robots: (1) motion plans were determined that simultaneously optimize an in-
dependent performance criterion for each robot by considering minimality with respect
to the partial ordering of strategies; and (2) a general spectrum was defined between de-
coupled and centralized planning. Previous multiple-robot motion planning approaches
that consider optimality combined several individual criteria into a single criterion. It
was shown that these methods can fail to find many potentially useful motion plans. The
minimal strategies characterize a small set of strategies that are better than or equivalent

to all others. It was shown that this solution concept is equivalent to Nash equilibria,

251

Pareto optimality, and multiobjective optimality in this context; therefore, the reason-
able strategies have been represented, regardless of some additional assumptions about
cooperation and communication. A spectrum was defined between decoupled and central-
ized planning that amounted to varying the degree in which the individual configuration
spaces of the robots were constrained. The optimality concepts could then be applied
to both fixed-path coordination and centralized coordination. Coordination along inde-
pendent roadmaps was introduced as a useful tradeoff between the completeness lost by
constraining the state space and the computational cost of a coordination space with
increased dimension. Algorithms were developed by applying the principle of optimality
on a space of partial orderings. Computed examples were given for coordination on fixed

paths, fixed roadmaps, and unconstrained planning.

6.2 Perspective

Many advances have been made in robotics research in the past few decades. As the
field continues to mature, fundamental issues and problems are identified that are inherent
in many robotic systems. This has led to a greater understanding of such fundamental
issues as planning, control, sensing, manipulation, and grasping. Due to the complexity
of engineering problems in the field of robotics, much effort is expended to improve a
single aspect of the general problem. Motion planning represents one such aspect that has
evolved greatly in the past decade or two. It is expected that such efforts will ultimately
lead to a synergism of different ideas and issues, and to a coherent approach to robotics
problems in general. One hope is that the material in this dissertation can assist in such
a synthesis by providing a coherent and unifying mathematical characterization of the

motion planning aspect.

252

APPENDIX A

PROOF OF PROPOSITION 3

The following proposition was stated in Section 4.3:
Proposition 3 If li (2%, ul) = At foralli € {1,... ,N} and k € {1,... , K}, then there
erists at most one minimal quotient strategy per path class in Syatid-

Proof: First, consider the case in which N = 2. Let a denote the path that is
obtained in the coordination space from a minimal strategy . Suppose to the contrary
that there exists some o' € [a], (with strategy «') such that [y], and [y'], are distinct
and minimal. The goal of this portion of the proof is to construct another path, o* € [a],
such that both [v*], < [v]r and [v*]r =X [V, and [v*]r # [v]r and [v*]r # [¥']z. This
will contradict the hypothesis, implying that the proposition holds for N = 2.

The images of a and o in S,q;q intersect in at least two places (including (0, 0) and
(1,1)). Let V be the points of intersection in Spatia- If the paths coincide from some
stage k until stage k' > k, then we add only two intersection points to V', corresponding
to when the paths initially coincide at stage k£, and when the coincidence terminates at
stage k'. This yields a finite set, V = {vq, v, ... , v} of intersection points. These points
are ordered according to the occurrence of the intersection along the paths. Note that

we always have v; = (0,0) and v,, = (1,1).

253

The path o that we will construct will intersect o and o' at every point in V. Let o j,
for i < j, denote the portion of the path « that lies between v; and v;. For 1 <7 <m—1,
compare the lengths in Smlid of o ;11 and agyi +1- A shorter path length will always cause
the robots to reach v;,; from v; in less time. Because the passage of time produces the
same loss for all robots, any strategy that reaches v;;; from v; in less time is better
than or equal to a strategy that takes more time. For this reason, we let o], ; = ;41

whenever «; ;. is shorter than o;;,; otherwise, o, ;1 = aj ;-

*

If we were to complete the construction of o* by taking ay,_;

— * —
- am_lam or am—l,m -

!

am—l,m:

then the resulting strategy v* would be better than or equivalent to either ~y or
~'. To contradict the hypothesis, however, we are required to construct a v* that is better
than or equivalent to both v and +'.

For this final piece of a*, consider Figure A.1. The lower left corner represents the
intersection point vy, 1, and the upper right corner is the goal v,, = (1,1). There are two
thick black lines that connect v,,_; to v, and represent some o,_1,, and a;n_l’m. We
will determine the final piece of a* without leaving the region formed by the two paths
(hence the exterior is shaded in the figure). Both strategies are in the same path class;
therefore, it is known that this region is free of collisions.

We will use the principle of minimality to construct the final path segment. The algo-

rithm that was presented in Figure 4.6 produces the complete set of minimal strategies,

and is sufficient to show that the algorithm produces only one minimal strategy at v,,.

The

The path that corresponds to this minimal strategy will be designated as ag,_; ,.

algorithm begins in the upper right corner and progresses from right to left, and top-
down. Along the upper and rightmost boundaries, there are unique minimal strategies.
These serve as initial conditions, and it will be argued inductively that each M () will
contain only one element. At each iteration, there are at most three minimal strategies

that can be constructed, which correspond to the three possible choices for uy. If, from a

254

Figure A.1 See the proof of Proposition 3.

given state, the actions v}, = 1 and u7 = 1 do not produce a collision, then the resulting
extended strategy will always be better than the other two choices. If these actions do
produce a collision, then there is only one allowable action set (either uj = 0 and uj = 1,
or uj = 1 and u? = 0) that does not produce a collision and, hence, there will be only one
minimal strategy. If there were two possible action sets, then, due to the monotonicity
of o*, the two choices would lead to two different path classes, which contradicts the ini-
tial hypothesis. At the final iteration, M (v,,_1) will contain only one minimal strategy.
The path corresponding to the minimal strategy is used to complete a*, resulting in the
contradicting strategy.

We now consider the case in which N > 2. Suppose again that there exists some
o' € [a]p, such that [y], and [y], are distinct and minimal. This implies that for
some pair of indices 4,j, we have Li(y) < Li(') and L;(y) > Lj(y'). Consider 87,
as the coordination space generated by considering only 7¢ and 7/. The path a¥ on
S .. that corresponds to the implementation of {7%,7/} is obtained by the projection
of the path o down to S:;ilz‘d- This is true, because f%, as given in (4.5), depends only

!

on the configuration and control of A%, The same is true for the path o’ under the

implementation of {7¥,+"'}. Hence, robots other than A’ and A’ do not interfere with

the projected path in 8%

valid*

255

From the previous part of the proof (for N = 2), it follows that projected paths o'’

and o' are in distinct path classes in S, We consider lifting this projected space S,

back up to Syaig. We note that S22, (two-dimensional) and S —S8,, (N-dimensional) are

homeomorphic, due to the cylindrical property of S

;- Because homeomorphic spaces

are homotopically equivalent [87], the paths a and o are in distinct path classes in
S — 33;”. Because Syqig C S — S~ijll, and the image of the paths « and o’ lie in Spatids

co

they consequently belong to distinct path classes in 5’mlid.]

256

REFERENCES

[1] R. Alami, T. Siméon, and J. P. Laumond. A geometrical approach to planning
manipulation tasks. In th Int. Symp. Robot. Res., pages 113-119, 1989.

[2] B. D. Anderson and J. B. Moore. Optimal Control: Linear-Quadratic Methods.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

[3] M. D. Ardema and J. M. Skowronski. Dynamic game applied to coordination
control of two arm robotic system. In R. P. Himaldinen and H. K. Ehtamo, editors,
Differential Games - Developments in Modelling and Computation, pages 118-130.
Springer-Verlag, Berlin, 1991.

[4] D.S. Arnon. Geometric reasoning with logic and algebra. Artif. Intell., 37(1-3):37-
60, 1988.

[6] T. Basar and P. R. Kumar. On worst case design strategies. Comput. Math. Applic.,
13(1-3):239-245, 1987.

[6] T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic
Press, London, 1982.

[7] M. Barbehenn, P. C. Chen, and S. Hutchinson. An efficient hybrid planner in
changing environments. In IEEE Int. Conf. Robot. & Autom., pages 2755-2760,
1994.

[8] M. Barbehenn and S. Hutchinson. Efficient search and hierarchical motion planning
by dynamically maintaining single-source shortest paths trees. IEEE Trans. Robot.
€ Autom., 11(2):198-214, April 1995.

[9] J. Barraquand and P. Ferbach. A penalty function method for constrained motion
planning. In IEEFE Int. Conf. Robot. & Autom., pages 1235-1242, 1994.

[10] J. Barraquand and P. Ferbach. Motion planning with uncertainty: The information
space approach. In IEEFE Int. Conf. Robot. & Autom., pages 1341-1348, 1995.

[11] J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field tech-
niques for robot path planning. IEEE Trans. Syst., Man, Cybern., 22(2):224-241,
1992.

[12] J. Barraquand and J.-C. Latombe. A Monte-Carlo algorithm for path planning with
many degrees of freedom. In IEEE Int. Conf. Robot. & Autom., pages 1712-1717,
1990.

257

[13] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots: Con-
trollability and motion planning in the presence of obstacles. In IEEFE Int. Conf.
Robot. € Autom., pages 2328-2335, 1991.

[14] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed repre-
sentation approach. Int. J. Robot. Res., 10(6):628-649, December 1991.

[15] K. Basye, T. Dean, J. Kirman, and M. Lejter. A decision-theoretic approach to
planning, perception, and control. IEEE Expert, 7(4):58-65, August 1992.

[16] R. E. Bellman and S. E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, Princeton, NJ, 1962.

[17] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Englewood Cliffs, NJ, 1987.

[18] W. F. Bialas. Cooperative n-person Stackelberg games. In IEEE Conf. Decision
& Control, pages 2439-2444, Tampa, FL, December 1989.

[19] Z. Bien and J. Lee. A minimum-time trajectory planning method for two robots.
IEEE Trans. Robot. & Autom., 8(3):414-418, June 1992.

[20] D. Blackwell and M. A. Girshik. Theory of Games and Statistical Decisions. Dover
Publications, New York, NY, 1979.

[21] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control of robotic
manipulators along specified paths. Int. J. Robot. Res., 4(3):3-17, 1985.

[22] A. Briggs. An efficient algorithm for one-step compliant motion planning with
uncertainty. In 5th ACM Symp. Comp. Geom., 1989.

[23] R. A. Brooks. Solving the find-path problem by good representation of free space.
IEEE Trans. Syst., Man, Cybern., 13(3):190-197, 1983.

[24] R. C. Brost. Automatic grasp planning in the presence of uncertainty. Int. J.
Robot. Res., 7(1):3-17, 1988.

[25] R. C. Brost. Analysis and Planning of Planar Manipulation Tasks. Ph.D. thesis,
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA,
1991.

[26] R. C. Brost and A. D. Christiansen. Probabilistic analysis of manipulation tasks:
A research agenda. In IEEFE Int. Conf. Robot. €& Autom., volume 3, pages 549-556,
1993.

[27] R. C. Brost and A. D. Christiansen. Probabilistic analysis of manipulation tasks:
A computational framework. Technical Report SAND92-2033, Sandia National
Laboratories, Albuquerque, NM, January 1994.

[28] A. E. Bryson and Y.-C. Ho. Applied Optimal Control. Hemisphere Publishing
Corp., New York, NY, 1975.

258

[29] S. J. Buckley. Fast motion planning for multiple moving robots. In IEEE Int. Conf.
Robot. € Autom., pages 322-326, 1989.

[30] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. In Proc. IEEE Conf. on Foundations of Computer Science, pages 49-60,
1987.

[31] J. F. Canny. The Complezity of Robot Motion Planning. MIT Press, Cambridge,
MA, 1988.

[32] J. F. Canny. On computability of fine motion plans. In IEEE Int. Conf. Robot. &
Autom., pages 177-182, 1989.

[33] C. Chang, M. J. Chung, and B. H. Lee. Collision avoidance of two robot manipu-
lators by minimum delay time. IEEE Trans. Syst., Man, Cybern., 24(3):517-522,
1994.

[34] S.-C. Chang and D.-T. Liao. Scheduling flexible flow shops with no setup effects.
IEEE Trans. Robot. & Autom., 10(2):99-111, 1994.

[35] F. L. Chernousko, N. N. Bolotnik, and V. G. Gradetsky. Manipulation Robots.
CRC Press, Ann Arbor, MI, 1994.

[36] H. Choset and J. Burdick. Sensor based planning, part I: The generalized Voronoi
graph. In IEEFE Int. Conf. Robot. & Autom., pages 1649-1655, 1995.

[37] K.-C. Chu. Team decision theory and information structures in optimal control
problems-part II. IEEE Trans. Autom. Control, 17(1):22-28, February 1972.

[38] C. K. Chui and G. Chen. Kalman Filtering. Springer-Verlag, Berlin, 1991.
[39] G. E. Collins. Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1975.

[40] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. An Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

[41] M. R. Cutkosky. Robotic Grasping and Fine Manipulation. Kluwer Academic
Publishers, Boston, MA, 1985.

[42] J. Gil de Lamadrid and J. Zimmerman. Avoidance of obstacles with unknown
trajectories: locally optimal paths and path complexity, part I. Robotica, 11:299—
308, 1993.

[43] T. Dean, K. Kanazawa, and J. Shewchuk. Prediction, observation, and estimation
in planning and control. In IEEE Symp. on Intelligent Control, pages 645650,
1990.

[44] T. L. Dean and M. P. Wellman. Planning and Control. Morgan Kaufman, San
Mateo, CA, 1991.

[45] M. H. DeGroot. Optimal Statistical Decisions. McGraw Hill, New York, NY, 1970.

259

[46]

[47]

[48]
[49]

[50]

[51]
[52]
[53]
[54]

[55]

[56]
[57]
[58]
[59]
[60]
[61]

[62]

P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-
Hall Publications, Englewood Cliffs, NJ, 1982.

B. R. Donald. Error Detection and Recovery for Robot Motion Planning with
Uncertainty. Ph.D. thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA, 1987.

B. R. Donald. A geometric approach to error detection and recovery for robot
motion planning with uncertainty. Artif. Intell., 37:223-271, 1988.

B. R. Donald. Planning multi-step error detection and recovery strategies. Int. J.
Robot. Res., 9(1):3-60, 1990.

B. R. Donald and J. Jennings. Sensor interpretation and task-directed planning
using perceptual equivalence classes. In IEEFE Int. Conf. Robot. & Autom., pages
190-197, Sacramento, CA, April 1991.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley, New
York, NY, 1973.

H. F. Durrant-Whyte. Integration, Coordination and Control of Multi-Sensor Plan-
ning Systems. Kluwer Academic Publishers, Boston, MA, 1988.

H. F. Durrant-Whyte. Uncertain geometry in robotics. IEEE Trans. Robot. &
Autom., 4(1):23-31, February 1988.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin,
1987.

D. Einav and M. R. Fehling. Computationally-optimal real-resource strategies for
independent, uninterruptible methods. In Uncertainty in Artificial Intelligence 6,
pages 145-158. North-Holland, Amsterdam, 1991.

A. Elfes. Using occupancy grids for mobile robot perception and navigation. IEEE
Computer, 22(6):46-57, June 1989.

M. Erdmann. Randomization in robot tasks. Int. J. Robot. Res., 11(5):399-436,
October 1992.

M. Erdmann. Randomization for robot tasks: Using dynamic programming in the
space of knowledge states. Algorithmica, 10:248-291, 1993.

M. Erdmann. On a representation of friction in configuration space. Int. J. Robot.
Res., 13(3):240-271, 1994.

M. Erdmann and T. Lozano-Perez. On multiple moving objects. In IEEE Int.
Conf. Robot. & Autom., pages 1419-1424, 1986.

M. Erdmann and T. Lozano-Pérez. On multiple moving objects. Algorithmica,
2:477-521, 1987.

M. A. Erdmann. On motion planning with uncertainty. Master’s thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, August 1984.

260

[63] M. A. Erdmann. On Probabilistic Strategies for Robot Tasks. Ph.D. thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, 1992.

[64] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servoing in
robotics. IEEE Trans. Robot. & Autom., 8(3):313-326, June 1992.

[65] J. T. Feddema and O. R. Mitchell. Vision-guided servoing with feature-based
trajectory generation. IEEE Trans. Robot. & Autom., 5(5):691-700, October 1989.

[66] A. Fox and S. Hutchinson. Exploiting visual constraints in the synthesis of
uncertainty-tolerant motion plans. IEEE Trans. Robot. & Autom., 1(11):56-71,
February 1995.

[67] Th. Fraichard and A. Scheuer. Car-like robots and moving obstacles. In IEEFE Int.
Conf. Robot. & Autom., pages 64—69, 1994.

[68] K. Fujimura. On motion planning amidst transient obstacles. In IEEE Int. Conf.
Robot. € Autom., pages 1488-1493, 1992.

[69] K. Fujimura and H. Samet. Planning a time-minimal motion among moving ob-
stacles. Algorithmica, 10:41-63, 1993.

[70] S. Geman. Experiments in Bayesian image analysis. Bayesian Statistics, 3:159-172,
1988.

[71] S. K. Ghosh and D. M. Mount. An output sensitive algorithm for computing
visibility graphs. In Proc. IEEE Symp. on Foundations of Computer Science, pages
11-19, 1987.

[72] E. G. Gilbert and D. W. Johnson. Distance functions and their application to

robot path planning in the presence of obstacles. IEEE Trans. Robot. & Autom.,
1(1):21-30, March 1985.

[73] P. J. Gmytrasiewicz, E. H. Durfee, and D. K. Wehe. A decision-theoretic approach
to coordinating multi-agent interations. In Proc. Int. Joint Conf. on Artif. Intell.,
pages 6268, 1991.

[74] K. Y. Goldberg. Stochastic Plans for Robotic Manipulation. Ph.D. thesis, Depart-
ment of Computer Science, Carnegie Mellon University, Pittsburgh, PA, August
1990.

[75] K. Y. Goldberg. Orienting polygonal parts without sensors. Algorithmica, 10:201-
225, 1993.

[76] K. Y. Goldberg and M. T. Mason. Bayesian grasping. In IEEE Int. Conf. Robot.
& Autom., 1990.

[77] S. Gottschlich, C. Ramos, and D. Lyons. Assembly and task planning: A taxonomy.
IEEFE Robotics and Automation Magazine, 1(3):4-12, 1994.

261

[78] S. N. Gottschlich and A. C. Kak. AMP-CAD: Automatic assembly motion planning
using CAD models of parts. Robotics and Autonomous Systems, 13:245-289, 1994.

[79] G. Hager and H. G. Durrant-Whyte. Information and multi-sensor coordination.
In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in Artificial Intelligence,
pages 381-393. Elsevier, New York, NY, 1988.

[80] G. D. Hager. Task-Directed Sensor Fusion and Planning. Kluwer Academic Pub-
lishers, Boston, MA, 1990.

[81] O. Héjek. Pursuit Games. Academic Press, New York, 1975.

[82] K. Haji-Ghassemi. On differential games of fixed duration with phase coordinate
restrictions on one player. SIAM J. Control & Optimization, 28(3):624-652, May
1990.

[83] J. C. Harsanyi. Games with incomplete information played by Bayesian players.
Management Science, 14(3):159-182, November 1967.

[84] J. Hervé, P. Cucka, and R. Sharma. Qualitative visual control of a robot manipu-
lator. In Proc. of the DARPA Workshop on Image Understanding, pages 895908,
1991.

[85] K. W. Hipel, K. J. Radford, and L. Fang. Multiple participant-multiple criteria
decision making. IEEE Trans. Syst., Man, Cybern., 23(4):1184-1189, 1993.

[86] Y.-C. Ho and K.-C. Chu. Team decision theory and information structures in
optimal control problems-part I. In IEEE Trans. Autom. Control, pages 15-22,
1972.

[87] J. G. Hocking and G. S. Young. Topology. Dover Publications, New York, NY,
1988.

[88] H. Hu and M. Brady. A Bayesian approach to real-time obstacle avoidance for a
mobile robot. Autonomous Robots, 1(1):69-92, 1994.

[89] H. Hu, M. Brady, and P. Probert. Coping with uncertainty in control and planning
for a mobile robot. In IEEE/RSJ Int. Workshop on Intelligent Robots and Systems,
pages 1025-1030, Osaka, Japan, November 1991.

[90] Y.-R. Hu and A. A. Goldenberg. Dynamic control of multiple coordinated redun-
dant robots. IEEE Trans. Syst., Man, Cybern., 22(3):568-574, May/June 1992.

91] Y. K. Hwang and N. Ahuja. Gross motion planning-A survey. ACM Computing
Surveys, 24(3):219-291, September 1992.

[92] Y. K. Hwang and N. Ahuja. A potential field approach to path planning. IEFEE
Trans. Robot. & Autom., 8(1):23-32, February 1992.

93] K. Ikeuchi and T. Kanade. Modeling sensors: Toward automatic generation of
object recognition program. Comp. Vision, Graphics, and Image Process., 48:50—
79, 1989.

262

[94] R. Isaacs. Differential Games. Wiley, New York, NY, 1965.

[95] M. E. Kahn and B. E. Roth. The near minimum-time control of open-loop artic-
ulated kinematic chains. Trans. ASME J. Dyn. Sys., Meas., & Contr., 93(3):164-
172, 1971.

[96] K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-velocity
decomposition. Int. J. Robot. Res., 5(3):72-89, 1986.

[97] L. E. Kavraki. Random Networks in Configuration Space for Fast Path Planning.
Ph.D. thesis, Department of Computer Science, Stanford University, 1994.

[98] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. Int.

J. Robot. Res., 5(1):90-98, 1986.

99] K. H. Kim and F. W. Roush. Team Theory. Ellis Horwood Limited, Chichester,
England, 1987.

[100] J. Kirman, K. Basye, and T. Dean. Sensor abstraction for control of navigation.
In IEEFE Int. Conf. Robot. & Autom., pages 2812-2817, 1991.

[101] D. Koditschek. Robot planning and control via potential functions. In O. Khatib,
J. J. Craig, and T. Lozano-Pérez, editors, The Robotics Review 1. MIT Press,
Cambridge, MA, 1989.

[102] V. S. Kouikoglou and Y. A. Phillis. Discrete event modeling and optimization of
unreliable production lines with random rates. IEEE Trans. Robot. & Autom.,
10(2):153-159, 1994.

[103] V. G. Kountouris and H. E. Stephanou. Dynamic modularization and synchroniza-
tion for intelligent robot coordination: The concept of functional time-dependency.
In IEEE Int. Conf. Robot. & Autom., pages 508-513, Sacramento, CA, April 1991.

[104] N. V. Krylov. Controlled diffusion processes. Springer-Verlag, Berlin, 1980.

[105] P. R. Kumar and P. Varaiya. Stochastic Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1986.

[106] H. Kwakernaak and R. Sivan. Linear Optimal Control Systems. Wiley, New York,
NY, 1972,

[107] R. E. Larson. State Increment Dynamic Prgramming. Elsevier, New York, NY,
1968.

[108] R. E. Larson and J. L. Casti. Principles of Dynamic Programming, Part II. Dekker,
New York, NY, 1982.

[109] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,
1991.

[110] J.-C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning with uncer-
tainty in control and sensing. Artif. Intell., 52:1-47, 1991.

263

[111] J.-P. Laumond. Singularities and topological aspects in nonholonomic motion plan-
ning. In Z. Li and J. F. Canny, editors, Nonholonomic Motion Planning, pages
149-200. Kluwer Academic Publishers, Boston, MA, 1993.

[112] S. M. LaValle and S. A. Hutchinson. Game theory as a unifying structure for a
variety of robot tasks. In Proc. IEEE Int’l Symp. on Intelligent Control, pages
429-434, August 1993.

[113] S. M. LaValle and S. A. Hutchinson. An objective-based stochastic framework for
manipulation planning. In Proc. IEEE/RSJ/GI Int’l Conf. on Intelligent Robots
and Systems, pages 1772-1779, September 1994.

[114] S. M. LaValle and S. A. Hutchinson. Path selection and coordination of multiple
robots via Nash equilibria. In Proc. 1994 IEEE Int’l Conf. Robot. & and Autom.,
pages 1847-1852, May 1994.

[115] S. M. LaValle and S. A. Hutchinson. A framework for constructing probability
distributions on the space of segmentations. Computer Vision and Image Under-
standing, 61(2):203-230, March 1995.

[116] S. M. LaValle and R. Sharma. Motion planning in stochastic environments: Appli-
cations and computational issues. In IEEFE Int’l Conf. on Robotics and Automation,
pages 3063-3068, 1995.

[117] S. M. LaValle and R. Sharma. Motion planning in stochastic environments: Theory
and modeling issues. In IEEFE Int’l Conf. on Robotics and Automation, pages 3057
3062, 1995.

[118] Z. Li and J. F. Canny. Nonholonomic Motion Planning. Kluwer Academic Pub-
lishers, Boston, MA, 1993.

[119] C.-F. Lin and W.-H. Tsai. Motion planning for multiple robots with multi-mode
operations via disjunctive graphs. Robotica, 9:393—408, 1990.

[120] Z. Lin, V. Zeman, and R. V. Patel. On-line robot trajectory planning for catching
a moving object. In IEEE Int. Conf. Robot. & Autom., pages 17261731, 1989.

[121] J.-S. Liu, L.-S. Wang, and L.-S. Tsai. A nonlinear programming approach to
nonholonomic motion planning with obstacle avoidance. In IEEE Int. Conf. Robot.
& Autom., pages 70-75, 1994.

[122] T. Lozano-Pérez. Automatic planning of manipulator transfer movements. IEEE
Trans. Syst., Man, Cybern., 11(10):681-698, 1981.

[123] T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Trans.
on Comput., C-32(2):108-120, 1983.

[124] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor. Automatic systhesis of fine-
motion strategies for robots. Int. J. Robot. Res., 3(1):3—-24, 1984.

[125] T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560-570, 1979.

264

[126]

[127]

[128]

[129]

[130]

[131]
[132]

[133]

[134]

[135]

[136]

[137]

[138]
[139]

[140]

V. J. Lumelsky and T. Skewis. A paradigm for incorporating vision in the robot
navigation function. In IEFEE Int. Conf. Robot. €& Autom., pages 734—739, 1988.

V. J. Lumelsky and A. A. Stepanov. Path planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica,

2:403-430, 1987.

K. M. Lynch and M. T. Mason. Pulling by pushing, slip with infinite friction, and
perfectly rough surfaces. Int. J. Robot. Res., 14(2):174-183, 1995.

N. Mahadevamurty, T.-C. Tsao, and S. Hutchinson. Multi-rate analysis and design
of visual feedback digital servo control systems. Trans. ASME J. Dyn. Sys., Meas.,
& Contr., pages 45-55, March 1994.

M. T. Mason. Compliance and force control for computer controlled manipula-
tors. In B. Brady, J. M. Hollerbach, T. L. Johnson, T. Lozano-Perez, and M. T.
Mason, editors, Robot Motion: Planning and Control, pages 373-404. MIT Press,
Cambridge, MA, 1982.

M. T. Mason. Automatic planning of fine motions: Correctness and completeness.
In Proc. IEEE Int. Conf. Robot. & Autom., pages 492-503, 1984.

M. T. Mason. Mechanics and planning of manipulator pushing operations. Int. J.
Robot. Res., 5(3):53-71, 1986.

S. McMillan, P. Sadayappan, and D. E. Orin. Parallel dynamic simulation of
multiple manipulator systems: Temporal versus spatial methods. IEEE Trans.
Syst., Man, Cybern., 24(7):982-990, July 1994.

J. S. B. Mitchell. Planning Shortest Paths. Ph.D. thesis, Department of Operations
Research, Stanford University, 1986.

J. Miura and Y. Shirai. Planning of vision and motion for a mobile robot using
a probabilistic model of uncertainty. In IEEE/RSJ Int. Workshop on Intelligent
Robots and Systems, pages 403-408, Osaka, Japan, May 1991.

B. K. Natarajan. The complexity of fine motion planning. Int. J. Robot. Res.,
7(2):36-42, 1988.

P. A. O’'Donnell and T. Lozano-Pérez. Deadlock-free and collision-free coordination
of two robot manipulators. In IEEE Int. Conf. Robot. €& Autom., pages 484—489,
1989.

C. O’Dunlaing and C. K. Yap. A retraction method for planning the motion of a
disc. Journal of Algorithms, 6:104-111, 1982.

B. O’Neill. Elementary Differential Geometry. Academic Press, New York, NY,
1966.

J. B. Oommen, S. S. Iyengar, N. S. V. Rao, and R. L. Kashyap. Robot navigation
in unknown terrains using learned visibility graphs. Part I: The disjoint convex
obstacle case. IEEFE J. of Robot. & Autom., 3(6):672—-681, 1987.

265

[141] G. Owen. Game Theory. Academic Press, New York, NY, 1982.

[142] L. A. Page and A. C. Sanderson. Robot motion planning for sensor-based control
with uncertainties. In IEEFE Int. Conf. Robot. & Autom., pages 1333-1340, 1995.

[143] S. Pandya and S. A. Hutchinson. A case-based approach to robot motion planning.
In Proc. IEEE Int. Conf. on Syst., Man, & Cybern., pages 492-497, Chicago,
October 1992.

[144] C. H. Papadimitriou. Games against nature. Journal of Computer and System
Sciences, 31:288-301, 1985.

[145] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of markov decision pro-
cesses. Math. of Oper. Res., 12(3):441-450, August 1987.

[146] N. P. Papanikolopoulos and P. K. Khosla. Shared and traded telerobotic visual
control. In IEEFE Int. Conf. Robot. & Autom., pages 878-883, 1992.

[147] T. Parthasarathy and M. Stern. Markov games: A survey. In Differential Games
and Control Theory II, pages 1-46. Marcel Dekker, New York, 1977.

[148] R. P. Paul and B. Shimano. Compliance and control. In Proc. of the Joint American
Automatic Control Conference, pages 1694-1699, 1976.

[149] J. Pearl. Heuristics. Addison-Wesley, Reading, MA, 1984.

[150] J. Pertin-Troccaz. Grasping: A state of the art. In O. Khatib, J. J. Craig, and
T. Lozano-Pérez, editors, The Robotics Review 1. MIT Press, Cambridge, MA,
1989.

[151] L. A. Petrosjan. Differential Games of Pursuit. Singapore, River Edge, NJ, 1993.

[152] S. Premvuti and S. Yuta. Consideration on the cooperation of multiple autonomous
mobile robots. In IEEFE Int. Workshop on Intelligent Robots and Systems, pages
59-63, 1990.

[153] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag,
Berlin, 1985.

[154] M. H. Raibert and J. J. Craig. Hybrid position/force control of manipulators.
Trans. ASME J. Dyn. Sys., Meas., & Contr., 102, 1981.

[155] N. S. V. Rao, S. S. Iyengar, J. B. Oommen, and R. L. Kashyap. On terrain model
acquisition by a point robot amidst polyhedral obstacles. IEEE J. of Robot. &
Autom., 4:450-455, 1988.

[156] S. Ratering and M. Gini. Robot navigation in a known environment with unknown
moving obstacles. In IEEFE Int. Conf. Robot. & Autom., pages 25-30, 1993.

[157] J. H. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In
Proc. of IEEE Symp. on Foundat. of Comp. Sci., pages 144154, 1985.

266

[158] E. Rimon and D. E. Koditschek. The construction of analytic diffeomorphisms for
exact robot navigation on star worlds. In IEEE Int. Conf. Robot. € Autom., pages
21-26, May 1989.

[159] E. Rimon and D. E. Koditschek. Exact robot navigation in geometrically compli-
cated but topologically simply spaces. In IEEFE Int. Conf. Robot. & Autom., pages
1937-1942, May 1990.

[160] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential
fields. IEEE Trans. Robot. & Autom., 8(5):501-518, October 1992.

[161] H. Rohnert. Shortest paths in the plane with convex polygonal obstacles. Infor-
mation Processing Letters, 23:71-76, 1986.

[162] J. J. Rotman. Introduction to Algebraic Topology. Springer-Verlag, Berlin, 1988.

[163] N. C. Rowe and R. F. Richbourg. A new method for optimal path planning through
nonhomogeneous free space. Technical Report NPS52-87-003, Naval Postgraduate
School, 1987.

[164] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization.
Academic Press, New York, NY, 1985.

[165] G. K. Schmidt and K. Azarm. Mobile robot navigation in a dynamic world using
an unsteady diffusion equation strategy. In IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems, pages 642—-647, 1992.

[166] J. T. Schwartz and M. Sharir. On the piano movers’ problem: I. The case of a
two-dimensional rigid polygonal body moving amidst polygonal barriers. Commu-
nications on Pure and Applied Mathematics, 36:345-398, 1983.

[167] J. T. Schwartz and M. Sharir. On the piano movers’ problem: III. Coordinating
the motion of several independent bodies. Int. J. Robot. Res., 2(3):97-140, 1983.

[168] U. Shaked and C. E. de Souza. Continuous-time tracking problems in an h., setting:
A game theory approach. IEEE Trans. Autom. Control, 40(5):841-852, May 1995.

[169] Y. Shan and Y. Koren. Obstacle accommodation motion planning. IEEE Trans.
Robot. & Autom., 1(11):36-49, February 1995.

[170] R. Sharma. Locally efficient path planning in an uncertain, dynamic environment
using a probabilistic model. IEEE Trans. Robot. & Autom., 8(1):105-110, February
1992.

[171] R. Sharma. A probabilistic framework for dynamic motion planning in partially
known environments. In IEEFE Int. Conf. Robot. €& Autom., pages 2459-2464, Nice,
France, May 1992.

[172] R. Sharma, S. M. LaValle, and S. A. Hutchinson. Optimizing robot motion strate-
gies for assembly with stochastic models of the assembly process. In IEEE Int’l
Symp. on Assembly and Task Planning, 1995.

267

[173] R. Sharma, D. M. Mount, and Y. Aloimonos. Probabilistic analysis of some nav-
igation strategies in a dynamic environment. IEEFE Trans. Syst., Man, Cybern.,
23(5):1465-1474, September 1993.

[174] T. Shibata and T. Fukuda. Coordinative behavior by genetic algorithm and fuzzy
in evolutionary multi-agent system. In IEEE Int. Conf. Robot. & Autom., pages
1:760-765, 1993.

[175] C. L. Shih, T.-T. Lee, and W. A. Gruver. A unified approach for robot motion
planning with moving polyhedral obstacles. IEEE Trans. Syst., Man, Cybern.,
20:903-915, 1990.

[176] K. G. Shin and N. D. McKay. Minimum-time control of robot manipulators with
geometric path constraints. IEEE Trans. Autom. Control, 30(6):531-541, 1985.

[177] K. G. Shin and Q. Zheng. Minimum-time collision-free trajectory planning for
dual-robot systems. IEEE Trans. Robot. €& Autom., 8(5):641-644, October 1992.

[178] J. F. Silverman and D. B. Cooper. Bayesian clustering for unsupervised estima-
tion of surface and texture models. IEEE Trans. Pattern Anal. Machine Intell.,
10(4):482-496, July 1988.

[179] K. Singh and K. Fujimura. Map making by cooperating mobile robots. In IFEE
Int. Conf. Robot. €& Autom., pages 254-258, 1993.

[180] R. C. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainty. Int. J. Robot. Res., 5(4):56-68, 1986.

[181] R. Spence and S. A. Hutchinson. Dealing with unexpected moving obstacles by
integrating potential field planning with inverse dynamics control. In IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems, pages 1485—-1490, 1992.

[182] R. Spence and S. A. Hutchinson. An integrated architecture for robot motion
planning and control in the presence of obstacles with unknown trajectories. IEEE

Trans. Syst., Man, Cybern., 25(1):100-110, 1995.

[183] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. Wiley, New York,
NY, 1989.

[184] W. Stadler. Fundamentals of multicriteria optimization. In W. Stadler, editor,
Multicriteria Optimization in Engineering and in the Sciences, pages 1-25. Plenum
Press, New York, NY, 1988.

[185] A. Stentz. Optimal and efficient path planning for partially-known environments.
In IEEE Int. Conf. Robot. & Autom., pages 3310-3317, 1994.

[186] S.-H. Suh and K. G. Shin. A variational dynamic programming approach to robot-
path planning with a distance-safety criterion. IEEE Trans. Robot. & Autom.,
4(3):334-349, June 1988.

[187] K. Sutner and W. Maass. Motion planning among time dependent obstacles. Acta
Informatica, 26:93-122, 1988.

268

[188] H. Takeda, C. Facchinetti, and J.-C. Latombe. Planning the motions of a mobile
robot in a sensory uncertainty field. IEEE Trans. Pattern Anal. Machine Intell.,
16(10):1002-1017, October 1994.

[189] H. Takeda and J.-C. Latombe. Sensory uncertainty field for mobile robot naviga-
tion. In IEEE Int. Conf. Robot. €& Autom., pages 24652472, Nice, France, May
1992.

[190] R. H. Taylor, M. T. Mason, and K. Y. Goldberg. Sensor-based manipulation
planning as a game with nature. In Fourth International Symposium on Robotics
Research, pages 421-429, 1987.

[191] J. C. Trinkle and D. C. Zeng. Prediction of the quasistatic planar motion of a
contacted rigid body. IEEE Trans. Robot. € Autom., 11(2):229-246, April 1995.

[192] C. van Delft. Approximate solutions for large-scale piecewise deterministic con-
trol systems arising in manufacturing flow control models. IEEE Trans. Robot. &
Autom., 10(2):142-152, 1994.

[193] F.-Y. Wang and P. J. A. Lever. A cell mapping method for general optimum
trajectory planning of multiple robotic arms. Robots and Autonomous Systems,
12:15-27, 1994.

[194] C. W. Warren. Multiple robot path coordination using artificial potential fields. In
IEEE Int. Conf. Robot. & Autom., pages 500-505, 1990.

[195] D. Whitney. Force feedback control of manipulator fine motions. Trans. ASME J.
of Dyn. Sys., Meas., & Contr., 99:91-97, 1977.

[196] D. E. Whitney. Historical perspectives and the state of the art in robot force
control. In IEEFE Int. Conf. Robot. & Autom., pages 262—-268, 1985.

[197] P. Williams. Probability with Martingales. Cambridge Press, New York, NY, 1991.
[198] P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading, MA, 1992.

[199] Y. Yavin and M. Pachter. Pursuit-Evasion Differential Games. Pergamon Press,
Oxford, England, 1987.

[200] J. Yong. On differential evasion games. STAM J. Control & Optimization, 26(1):1—
22, January 1988.

[201] J. Yong. On differential pursuit games. SIAM J. Control & Optimization,
26(2):478-495, March 1988.

[202] L. S. Zaremba. Differential games reducible to optimal control problems. In IEEE
Conf. Decision € Control, pages 2449-2450, Tampa, FL, December 1989.

[203] Y. F. Zheng, J. Y. S. Luh, and P. F. Jia. Integrating two industrial robots into a
coordinated system. Computers in Industry, 12:285-298, 1989.

[204] Q. Zhu. Hidden Markov model for dynamic obstacle avoidance of mobile robot
navigation. IEEE Trans. Robot. & Autom., 7(3):390-397, June 1991.

269

[205] S. Zionts. Multiple criteria mathematical programming: An overview and several
approaches. In P. Serafini, editor, Mathematics of Multi-Objective Optimization,
pages 227-273. Springer-Verlag, Berlin, 1985.

270

VITA

Steven M. LaValle was born in St. Louis, Missouri, on June 14, 1968. He graduated
from John F. Kennedy High School in Manchester, Missouri, in 1986. He received a B.S.
degree with highest honors in Computer Engineering in 1990, an M.S. degree in Electrical
Engineering in 1993, and a PhD degree in Electrical Engineering in 1995, all from the
University of Illinois at Urbana-Champaign.

From 1987 to 1989 LaValle participated in the James Scholar program in the College
of Engineering, University of Illinois. In 1989, he was designated an Amoco Foundation
Scholar. He was nominated several times for the Oleson Award for Outstanding Teaching.
He was listed seven times in the Daily Illini’s List of Teachers Ranked Excellent by Their
Students between 1988 and 1991. He received a Distinguished Student Paper Award at
the Ninth Conference on Uncertainty in Artificial Intelligence in 1993. LaValle received a
Beckman Institute Research Assistantship award for 1994-1995. In 1994 he was awarded
the Mavis Fellowship from the College of Engineering, University of [llinois. In July 1995,
his doctoral dissertation was selected to represent the University of Illinois in the national
ACM Outstanding Dissertation Award competition. He is a member of the Institute of
Electrical and Electronics Engineers, the Association for Computing Machinery, and the

American Association for Artificial Intelligence.

271

