10 appear 1n rroc.

1999 1LRERE 1NTernational vonrerence on nRODBOTI1CS ana Automation

Visibility-Based Pursuit-Evasion: The Case of Curved Environments

Steven M. LaValle
Dept. of Computer Science
Iowa State University
Ames, TA 50011 USA
lavalle@Qiastate.edu

Abstract

We consider the problem of visually searching for an
unpredictable target that can move arbitrarily fast in a
simply-connected, curved, two-dimensional environment.
A complete algorithm is presented that is guaranteed to
find the elusive target if it is possible for a single pur-
suer. The key to the algorithm is a cell decomposition
based on critical visibility events that occur because of
inflections and bitangents of the environment boundary.
We have implemented the cell decomposition algorithm,
and show several computed examples. The technique is
an extension and simplification of a previous technique
for searching a polygonal environment. Our solution can
also be considered as a step towards a unified approach
to pursuit-evasion strategies that have little dependency
on the representation of the environment.

1 Introduction

Imagine entering a cave in complete darkness. You
are given a lantern and asked to search for any people
who might be moving about. Several questions might
come to mind. Does a strategy even exist that guaran-
tees I will find everyone? If not, then how many other
searchers are needed before this task can be completed?
Where should I move next? Can I keep from exploring
the same places multiple times? This kind of scenario
might apply to firepersons engaged in a rescue effort, law
enforcement officials in a hostage situation, or soldiers
attempting to secure a potentially-hostile area. Since it
is always preferable to place robots at risk instead of
humans, we might like to determine whether successful
searching strategies can be computed automatically for a
mobile robot. Such strategies can also provide valuable
advice to people as they plan for high-risk operations.

It is assumed in this paper that there is a single point
pursuer in a curved, planar environment that is given
the task of searching for any moving evaders, who have
unbounded speed. A search strategy is successful if all
evaders will eventually fall within the line of sight of the
pursuer. See Figure 1. In this paper, we propose a com-
plete algorithm that will compute a path that a pursuer
must follow to be guaranteed that all evaders will be
seen, regardless of their paths. The approach developed
in this paper extends previous work by LaValle et al.
[13], from the case of a polygonal environment to an en-
vironment with arbitrary curves. In both cases, critical

John E. Hinrichsen

Dept. of Mathematical Sciences

Carnegie Mellon University
Pittsburgh, PA 15213 USA
john4@andrew.cmu.edu

Figure 1: The pursuer is asked to find any moving
evaders in the curved environment.

events are found in an information space, and a finite,
combinatorial structure is searched that is induced by
a special cell decomposition of the environment. The
method in [13] would tend toward an infinite number
of cells if we considered approximating curved models
with arbitrarily-fine polygons. This problem motivated
the current work, which identifies a finite set of critical
events for a curved environment, and ultimately leads to
a simplification of the cell decomposition for polygonal
environments. The extension to curved environments
is significant because it brings us one step closer to a
unified approach to pursuit-evasion problems that is not
sensitive to the particular environment representation.
Completeness of the pursuit-evasion algorithms can gen-
erally be argued in terms of sensor-based representations
of the environment, taken from the perspective of a pur-
suer and its sensors.

Related problems have been considered in dynamic
(or differential) game theory, graph theory, and com-
putational geometry. In game theory, pursuit-evasion
scenarios, such as the Homicidal Chauffeur problem, ex-
press differential motion models for two opponents, and
conditions of capture or optimal strategies are sought
[1, 9, 10]. In graph theory, the several interesting re-
sults have been obtained for pursuit-evasion in a graph,
in which the pursuers and evader can move from ver-
tex to vertex until eventually a pursuer and evader lie in
the same vertex [14, 15, 16, 18]. One interesting result,
which does not hold true for our problem, is that a graph
can be searched monotonically (without clearing places



multiple times) [3, 11]. Art gallery problems in computa-
tional geometry [4, 17, 21] can be considered as a limiting
case for our problem, in which the pursuers are not al-
lowed to move. Several variations of pursuit-evasion in
a polygonal environment have also been considered in
[5, 22].

Plenty of applications exist that could benefit from
visibility-based pursuit-evasion strategies. They can
be embedded in surveillance systems that use mobile
robotics with various types of sensors (motion, thermal,
cameras, etc.). Small mobile robots with pursuit-evasion
strategies can be used by special forces in high-risk mil-
itary operations to systematically search a building in
enemy in territory before it is declared safe for entry. In
scenarios that involve multiple robots that have little or
no communication, a pursuit-evasion strategy could be
used to help one robot locate others. One robot could
even try to locate another that is malfunctioning. For
remote presence applications, it would be valuable if a
robot can locate automatically other robots and people
using sensors. Beyond robotics, software tools can be
developed that assist people in many applications that
involve systematically searching or covering complicated
environments. Relevant pursuit-evasion scenarios can be
imagined in law enforcement, search-and-rescue, toxic
cleanup, and in the architectural design of secure build-
ings.

2 Problem Formulation

The pursuer and evader are each points that move
in an open region, R, in the plane. It is assumed that
R is bounded by a simple, closed, smooth curve (the
curve must also have bounded variation). This curve
could be expressed either parametrically or implicitly.
Let e(t) € R denote the position of the evader at time
t > 0. It is assumed that e : [0,00) — R is a continuous
function, and the evader is capable of moving arbitrarily
fast (i.e., it moves at a finite, unbounded speed). Let
~(t) denote the position of the pursuer at time ¢ > 0.
The function v : [0,00) — R is also continuous, and is
referred to as a strategy. For any © € R, let V(z) C R
denote the set of all y € R such that the line segment
that joins x and y does not intersect the boundary of R.
Let V (z) be called the visibility region.

The task can now be formulated. It is assumed that
the pursuer does not know the starting position, e(0),
or the path, e, of the evader. Initially, an evader could
be anywhere in R that is not visible from «(0). A strat-
egy, 7, is called a solution strategy if for every continuous
e : [0,00) = R, there exists a time ¢t € [0,00) such that
e(t) € V(v(t)). In other words, the evader will eventually
be seen, regardless of its path. Two observations should
be made. Because the evader has unbounded speed, the
existence of a solution strategy does not even depend on
the maximum speed of the pursuer. The primary concern
is the route taken by the pursuer. Also, arbitrarily many
evaders could be considered without changing the prob-
lem. In other words, guaranteeing that one evader will
be found is the same as guaranteeing that for n evaders,

they will all be found.

Note that the set of points not visible, R\ V(z), is a
finite collection of disjoint subsets of R. In the spirit of
[18], any such subset of R that might contain the evader
is referred to as a contaminated region. If it is guaranteed
not to contain the evader, then it is referred to as cleared.
If a region is contaminated, becomes cleared, and then
becomes contaminated again, it will be referred to as
recontaminated.

3 A Combinatorial Representation

The Information Space Let x € R represent the cur-
rent pursuer position. Let S C R represent the set of
all contaminated points in R. Let n = (z,S) represent
an information state. The set of all possible informa-
tion states will be referred to as the information space,
Z. The information space is a standard representational
tool for problems that have imperfect state information,
and variations of it have appeared in many related plan-
ning contexts [2, 6, 7, 8, 12].

Suppose that a strategy is parameterized with a time
interval ¢t € [0,¢s] for some fixed ¢ty > 0. For a fixed
strategy, v, and an initial set of contaminated points,
S5(0), a path in the information space is obtained. At a
given 0 < ¢t < ty the set of contaminated points, S(t),
can be determined from the history {v(t')[t' € [0,¢]}.
Let ¥(n,~,to,t1) represent the information state that
will be obtained by starting from information state 7,
and applying the strategy v from ¢y to ¢;. The function
¥ can be thought of as a “black box” that produces the
resulting information state when a portion of a given
strategy is executed. Using U, observe that a path in R
induces a path in the information space, Z.

Conservative Regions The next definition describes
an information invariance property, which when satisfied
allows the information space to be partitioned into equiv-
alence classes. A connected set C C F is conservative if
for any n such that ¢ € F, and for any 7 : [to,t1] —» C
such that « is continuous and v(to) = v(t1) = ¢, then the
same information state, n = ¥(n,~,to,t1), is obtained.
This implies that the information state cannot be altered
by moving along closed paths in C'. Just as in the case of
motions in a conservative field, the following holds [13]:

Lemma 1 If C is conservative then for any two contin-
uous paths, y1,7v2, mapping into C such that v1(tg) =
72(to) and vi(t1) = 72(t) then ¥(n,v,to,t1) =
\Il(,'%’y?: tUa tl); fO’f' any n.

A Sensor-Based Viewpoint To help us identify con-
servative regions in R, consider the representation shown
in Figure 2, which indicates how the environment might
appear from the perspective of the pursuer’s visibility
sensor in Figure 1. Suppose that the pursuer has a sensor
that performs an angular sweep from 0 to 27 and mea-
sures line-of-sight distance to the nearest wall. There
will be a finite set of orientations at which there is a



0/1

0/1

0/1
0/1

0 =Clear
1 = Contaminated

o1 01

Figure 2: Discontinuities in depth measurements parti-
tion the set of viewing directions. Each discontinuity
could hide an evader.

discontinuity in the depth data. Figure 2 shows a repre-
sentation of S! with the data discontinuities indicated.
Imagine how these discontinuities move in S* as the pur-
suer moves. Let d : R x ST — R denote the real-valued
function that corresponds to the ideal distance measure-
ments. The value d(z,8) gives the distance from z to
the boundary of R along the ray emanating from z at an
angle #. We call each data discontinuity a gap in d(x)
(d(x) is considered as a function of 6).

The following lemma establishes the conservative re-
gion concept in terms of gaps in S!. To establish this
important lemma, we define what we will refer to as
a piecewise homotopy. Let X denote any topological
space. Let f : X — R and g : X — R denote two
piecewise continuous functions that each have exactly k
points of discontinuity. Let h : [0,1] x X — R denote a
function for which the following hold: 1) h(0,z) = f(z)
for each z € X; 2) h(1,z) = g(z) for each z € X; 3)
h(t,z) : X — R has exactly k points of discontinuity for
any fixed ¢ € [0,1]; 4) h is continuous, except at any of
the k discontinuities for each h(t,z). Using h, attempt
to construct k functions, ¢y, @2, ..., Pk, that “track” the
discontinuties in h as follows. Let ¢; : [0,1] — X be
defined such that if ¢(¢t) = =z, then h(t,z) is a point of
discontinuity. If the functions ¢, ¢s, ..., ¢ can be de-
fined such that each is continuous, and ¢;(t) # ¢;(t) for
each t € [0, 1] and each i # j, then we say that h defines
a piecewise homotopy. Intuitively, piecewise homotopy
can be considered as a generalization of classical homo-
topy to piecewise continuous functions. The points of
discontinuity must move continuously in the piecewise
homotopy.

Let v : [0,1] — R be a continuous, closed-loop path
for the pursuer. Note that v can be composed with the
first argument of d to yield a function h : [0,1] x S — R.

Lemma 2 If, for some continuous, closed-loop path v,
h defines a piecewise homotopy, then the image of v in
R is contained in a conservative region.

Proof: If h defines a piecewise homotopy, then
d(y(t)) : S' = R and its discontinuities are required
to change continuously as (t) varies. This implies that
topology of the image of d(y(¢)) does not change. In
terms of the representation in Figure 2, it implies that
although gaps can move in S', none of the following can
occur: i) no new gap can appear; ii) no existing gap can
disappear; iii) no two gaps can merge into one; iv) no gap
can split into two or more gaps. These are the only con-

Figure 3: Inflections and bitangents represent critical
events in visibility.

ditions that could cause a topological change that would
violate the piecewise homotopy.

Each gap corresponds to a connected component of
R\ V(z) that is not visible to the pursuer. Each compo-
nent must be either clear or contaminated (it cannot be
a mixture). This implies that the information state can
be expressed by placing a binary label on each gap: “1”
if the corresponding component of R\ V(z) is contam-
inated, and “0” otherwise. If none of the previous four
conditions can occur, then the connected components of
R\ V(z) will remain preserved (although they will grad-
ually change). This implies that the binary labels cannot
change, and hence the information state is the same. O

Critical Events: Inflections and Bitangents Con-
sider the extending rays as shown in Figure 3. On the
left, a ray is extended outward from an inflection point,
and is terminated when it reaches the boundary of R. On
the right, two rays are extended outward from a pair of
bitangent points, and are terminated with they reach the
boundary of R. We will show that if the pursuer stays
inside of a region bounded by these rays, the region will
be conservative.

Lemma 3 If a continuous, closed-loop path -~y does not
cross the ray of an inflection or bitangent, then h defines
a piecewise homotopy.

Proof: Recall the proof of Lemma 2, which enumer-
ated four ways that a topological change occurs in vis-
ibility. The first two correspond to a gap appearing or
disappearing on S!. This corresponds precisely to the
case in which an inflection ray is crossed. In one direc-
tion a gap appears, and in the other, a gap disappears.
The last two cases correspond to a two or more gaps
splitting or merging. This corresponds precisely to the
case of crossing a bitangent. In one direction a pair of
gaps merge, and in the other direction, the same pair
splits. These are the only topological changes possible,
and each has been identified with crossing a visibility
ray of an inflection or bitangent. Thus, if v does not
cross one of this rays, the corresponding h is a piecewise
homotopy. O

Theorem 1 If no visibility rays of inflections or bitan-
gents intersect a region C C R, then C is conservative.

Proof: If no visibility rays of inflections or bitangents
intersect a region C' C R, then any continuous path -~y
whose image is C' must not cross the visibility ray of an
inflection or bitangent. By Lemma 3, the corresponding
function h must be a piecewise homotopy. It follows from
Lemma 2 that C' is conservative. O



4 A Complete Algorithm

Theorem 1 provides the basis on which to build a com-
plete algorithm. The problem of finding all of the inflec-
tions and bitangents reduces to computing roots of poly-
nomial equations. If the ray extensions are performed
for all of these critical events, and the intersections be-
tween rays are computed, the environment, R, can be
partitioned into a finite collection of cells. Each cell is
conservative according to Theorem 1, and the boundary
of each cell consists of segments of different extension
rays, and possibly parts of the boundary of R. Two cells
are adjacent if they share a one-dimensional boundary.
From this adjacency, a finite graph, G, can be derived
(i-e., the dual) in which the vertices represent cells and
the edges represent adjacencies between cells. The re-
sulting cell decomposition is similar to a visibility com-
plex in computational geometry [20] and an aspect graph
in computer vision [19].

The graph G corresponds to a finite collection of con-
servative cells in R, but what is needed is a finite collec-
tion of cells in the information space Z. A directed in-
formation graph, Gp, can be derived from G. Let B(C)
denote a binary sequence that corresponds to labelings
that are assigned to gaps using the representation shown
in Figure 2. For each possible binary sequence, B(C), a
different information state is obtained, but if the pursuer
stays within C, the binary labels cannot change. This
results in a collection of 2™ cells in Z that each corre-
sponds to a possible labeling of m gaps when the pursuer
is in C. Let the graph Gy contain one vertex for each
combination of cell C' and its possible labelings B(C).
The vertices of G correspond to a partition of 7 into a
finite set of equivalence classes.

To complete the construction of G, the set of edges
must be defined. Each vertex of G; will have a corre-
sponding vertex in G that corresponds to a cell in R.
When an adjacent cell is entered, the pursuer must cross
an inflection ray or a bitangent ray (assuming general
position). In terms of information states, it must be de-
termined which information equivalence class is reached
when going from a vertex in G that corresponds to C,
to another vertex that corresponds to an adjacent cell,
C' in R. This reduces to finding the appropriate binary
labeling B(C"). If an inflection ray is crossed, then either
a gap appears or a gap disappears. If the gap disappears,
a bit simply disappears when going from B(C) to B(C").
If a gap appears, then it always receives a “0” label. If a
bitangent is crossed, then gaps either merge or split. If
several gaps merge into one, then the corresponding bit
in B(C") will be the logical OR of the corresponding bits
in B(C). This is correct because one contaminated re-
gion could spread to other regions. If one gap splits into
several, the corresponding bits in B(C") will receive the
label of the corresponding bit in B(C'). Note that Gy is
directed because inflection and bitangent rays have dif-
ferent effects on the information state when crossed in
opposite directions.

The task of finding a solution now reduces to search-
ing Gr for a path between any information state with

B(C) =111 --- 1] to any information state with B(C"') =
[00 --- 0]. The path in G| induces a path in G. The path
in G corresponds to a sequence of cells that must be vis-
ited by the pursuer. A path for the pursuer can be con-
structed by choosing a point in each cell and construct-
ing a path between adjacent cells in the sequence. The
cells are generally not convex; however, it is straightfor-
ward to determine a path that connects points between
two adjacent cells without entering other cells or crossing
the boundary of R.

The following theorem establishes the completeness of
the algorithm.

Theorem 2 An algorithm that finds any path to a goal
vertex from an initial verter in Gy is complete for the
visibility-based pursuit-evasion problem defined on R.

Proof: The algorithm is complete if the existence of any
solution strategy implies that a path exists in Gt between
initial and goal vertices. Let {D1,...,D,} denote the
sequence of conservative cells (as we defined them with
inflection and bitangent rays) that are traversed by any
given solution strategy, 7. Each D; corresponds to a
vertex in G, and {D1,...,D,} corresponds to a path in
G. This in turn corresponds to a path in G;. By Lemma
1 and Theorem 1, the information state does not depend
on the path chosen within each region, D;. From this
and the fact that « is a solution strategy, the vertex
obtained at the end of the corresponding path in Gy is
a goal vertex. O

Number of cells If the total number of inflection and
bitangent rays is m, then by Euler’s formula there will
be m + i — 1 cells in R (or vertices in G), in which 4 is
the number of intersections between rays. There can be
at most a quadratic number of intersections; therefore,
there are at most O(m?) cells. The graph G is consid-
erably larger because of the binary labels; however, it
appears that this graph does not need to be completely
represented or explored. It remains an open problem to
determine if G; can be searched in polynomial time, even
for a polygonal environment.

Simple bounds can be constructed on the number of
inflection and bitangent rays, which relates directly to
the number of cells. Suppose that the boundary of R is
represented by the set of solutions to an implicit polyno-
mial equation of the form f(z,y) = 0 (here we use (z,y)
to denote a point in R, instead of € R). The number
of inflections and bitangents can be related to the degree
of f. An inflection corresponds to a change in sign of the
curvature. The curvature is

fzzfy2 - zfzyfzfy + fyyfj
(f2+ f3/2 ’

and the inflections are the solutions of f(z,y) = 0 and
foafy = 2fayfafy + fyyfi = 0. If the total degree of
f is d, then the second equation has degree 3d — 3.
There at most 3d(d — 1) inflections by Bezout’s The-
orem. The bitangents occur as solutions to the equa-
tions: f(z1,yl1) =0, f(22,y2) =0, (z1—22) f,(z1,yl) —

(1)



(y1—y2) fo(z1,y1) = 0, and (21 —22) fy(22,y2) — (y1 -
y2) fz(22,y2) = 0. Once again, by Bezout’s Theorem,
there are no more than d* solutions. These results imply
that in the worst case, there are no more than O(d®) cells,
in which d is the total degree of f(z,y) = 0. In prac-
tice, we expect the number of cells to be much smaller
because it is unlikely that most of the rays will intersect.

5 An Implementation with Examples

The cell decomposition algorithm was implemented
using Linux, GNU C++ and the Library of Efficient
Data Types and Algorithms (LEDA). Instead of repre-
senting the boundary of R implicitly, we decided that it
would be easier to work directly with a parametric rep-
resentation. In either case, the bitangent and inflection
rays can be found as the solutions to polynomial equa-
tions. We chose to find the critical events numerically,
without giving major consideration to stability issues.
The purpose of our implementation is to gain some fur-
ther insights to the problem through computed exam-
ples. We currently generate the conservative cell decom-
position, and the corresponding graph, G. We are in the
process of extending G to G to perform a search on the
information space.

The program represents the environment as an ar-
ray of uniform cubic B-splines. Examples can be eas-
ily created using a UNIX drawing tool, such as Idraw.
The postscript output is then parsed and edited, cre-
ating an array of splines. The spline points held in
the array are then used to obtain the equations that
represent the boundary of R. Each spline curve is de-
scribed by a cubic parametric equation of the form z(t) =
azt® + byt + cpt + dyp and y(t) = ayt® + byt + cyt + dy.

Figure 4 shows the computed cell decomposition for
the example shown in Figure 1. Figure 4.d shows the cell
decomposition, which is an overlay of boundaries shown
in Figures 4.b and 4.c. There are 66 cells in this example.
Figure 5 shows four more computed examples. In Figures
5.a and 5.b there are 13 and 26 cells, respectively. In
5.c, the spiral tunnel produces exactly what we would
intuitively expect: the pursuer needs to search from end
to end. There are only three cells. Figure 5.d shows
an example that produced 244 cells. This example is
more complicated because many pairs of inflection and
bitangent rays intersect.

6 Discussion

We presented a complete algorithm for the problem
of computing a strategy for a pursuer in a curved envi-
ronment that must find an unpredictable evader using
line-of-sight visibility. The approach can be considered
as an extension to the case of a polygonal environment
[13], that brings some additional insight into pursuit-
evasion problems. In particular, we used a sensor-based
representation that enabled us to develop a complete al-
gorithm based on inflections and bitangents. This tech-
nique can also be used to reduce the number of cells
considerably in the polygonal case, and ultimately, we

()

Figure 4: (a) The input; (b) the set of inflection rays;
(c) the set of bitangent rays; (d) the conservative cell
decomposition.

believe the representation will enable us to approach
the problem without explicitly building a representation.
Consider Figure 6. Figure 6.a shows how sensor data
would appear (ideally) to a pursuer in a polygonal en-
vironment. In Figure 6.d, we see that the same sensor-
based representation implies. Therefore, a cell decompo-
sition of the polygon can be constructed for two kinds of
critical events, which are direct analogs of the inflection
rays and the bitangent rays.

Many variations of the problem considered in this pa-
per are possible. It might be useful to consider an input
representation that contains both curves and line seg-
ments. We could also consider problems that require
multiple pursuers, including pursuit-evasion in multiply-
connected curved environments. This could be handled
by extending the sensor-based representation to resolve
the information gathered by two or more robots.

Acknowledgments

This work was completed while John Hinrichsen vis-
ited Iowa State University as an undergraduate in the
summer of 1998. We thank Leo Guibas, Jean-Claude
Latombe, David Lin, and Rajeev Motwani for their in-
sights and contributions to the pursuit-evasion problem
in a polygonal environment. We thank Giora Slutzki and
Boris Simov for their helpful insights about the prob-
lem. Finally, we thank Jean Ponce suggesting the use of
Bezout’s Theorem for bounds on the critical events for
implicit polynomials.

References

[1] T. Bagar and G. J. Olsder. Dynamic Noncooperative
Game Theory. Academic Press, London, 1982.



(c)

Figure 5: The computed cell decompositions for four
different problems.

2]

J. Barraquand and P. Ferbach. Motion planning with
uncertainty: The information space approach. In IEEE
Int. Conf. Robot. € Autom., pages 1341-1348, 1995.

D. Bienstock and P. Seymour. Monotonicity in graph
searching. J. Algorithms, 12:239-245, 1991.

W.-P. Chin and S. Ntafos. Optimum watchman routes.
Information Processing Letters, 28:39-44, 1988.

D. Crass, I. Suzuki, and M. Yamashita. Searching for a
mobile intruder in a corridor — the open edge variant of
the polygon search problem. Int. J. Comput. Geom. &
Appl., 5(4):397-412, 1995.

B. R. Donald. On information invariants in robotics.
Artif. Intell., 72:217-304, 1995.

M. Erdmann. Randomization for robot tasks: Using
dynamic programming in the space of knowledge states.
Algorithmica, 10:248-291, 1993.

K. Y. Goldberg. Orienting polygonal parts without sen-
sors. Algorithmica, 10:201-225, 1993.

O. H4jek. Pursuit Games. Academic Press, New York,
1975.

R. Isaacs. Differential Games. Wiley, New York, NY,
1965.

A. S. Lapaugh. Recontamination does not help to search
a graph. Journal of the ACM, 40(2):224-245, April 1993.

S. M. LaValle. A Game-Theoretic Framework for Robot
Motion Planning. PhD thesis, University of Illinois, Ur-
bana, IL, July 1995.

S. M. LaValle, D. Lin, L. J. Guibas, J.-C. Latombe,
and R. Motwani. Finding an unpredictable target in
a workspace with obstacles. In Proc. IEEE Int’l Conf.
on Robotics and Automation, pages 737-742, 1997.

F. Makedon and I. H. Sudborough. Minimizing width in
linear layouts. In Proc. 10th ICALP, Lecture Notes in

| \Wall
Wall E?
. Wall
L]
E?
| Wall Wall Wall
(a) (b)
0/1
0/1
0/1
0/1 o1
0/1

(c) (d)

Figure 6: (a) Distance measurements in a polygonal en-
vironment; (b) interpreting the data; (c) a possible envi-
ronment that is consistent with the data; (d) the sensor-
based representation can be applied to this case.

[15]

[16]

[17]
(18]
[19]
[20]
21]

[22]

Computer Science 154, pages 478—490. Springer-Verlag,
1983.

N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson,

and C. H. Papadimitriou. The complexity of searching a
graph. Journal of the ACM, 35(1):18-44, January 1988.

B. Monien and I. H. Sudborough. Min cut is NP-
complete for edge weighted graphs. Theoretical Com-
puter Science, 58:209-229, 1988.

J. O’Rourke. Art Gallery Theorems and Algorithms. Ox-
ford University Press, New York, NY, 1987.

T. D. Parsons. Pursuit-evasion in a graph. In Y. Alani
and D. R. Lick, editors, Theory and Applcation of
Graphs, pages 426—441. Springer-Verlag, Berlin, 1976.

S. Petitjean, D. Kriegman, and J. Ponce. Computing ex-

act aspect graphs of curved objects: algebraic surfaces.
Int. J. Comput. Vis., 9:231-255, Dec 1992.

M. Pocchiola and G. Vegter. The visibility complex. Int.
J. Comput. Geom. & Appl., 6(3):279-308, 1996.

T. Shermer. Recent results in art galleries. Proc. IEEE,
80(9):1384-1399, September 1992.

I. Suzuki and M. Yamashita.
intruder in a polygonal region.
21(5):863-888, October 1992.

Searching for a mobile
SIAM J. Computing,



