A Framework for Motion Planning in Stochastic Environments:

Applications and Computational Issues

Steven M. LaValle
lavalle@cs.uiuc.edu

Rajeev Sharma
rajeev@cs.uiuc. edu

The Beckman Institute
University of Illinois, Urbana, 1. 61801

Abstract

In a companion paper [7], we presented a framework
for analyzing motion plans for a robot that operates in
an environment that changes over time in an uncertain
manner. In this paper, we demonstrate the utility of our
framework by applying it to a variety of motion planning
problems. Ezamples are computed for problems that in-
volve a changing configuration space, hazardous regions
and shelters, and processing of random service requests.
To achieve this, we have exploited the powerful principle
of optimality, which leads to a dynamic programming-
based algorithm for determining optimal strategies. Sev-
eral computed examples are presented and discussed.

1 Introduction

In this paper we handle motion planning problems
in which an environment changes over time, and is not
completely predictable. In a companion paper [7], we
characterized this as Type EP uncertainty (environment
predictability), for which a general framework was pre-
sented. The focus of this paper is to discuss motion
planning applications that can be characterized by our
framework, and to present an implemented computa-
tional method for determining optimal motion strategies;
several computed optimal strategies will be shown.

First, consider a motion planning problem in which
“doors” that the robot has no control over could close
or open. Suppose that the robot has bounded velocity,
and wishes to reach a goal region in a minimal amount
of time. Should the robot always try to move through
a particular doorway? Should it adjust its path depend-
ing on which of several doors are open? What happens
when the robot is moving toward a door and the door
closes? Should it just wait for it to open or should it
head toward another doorway? One would like to define
a formal basis for deciding on the best actions to take,
given that the robot does not know exactly when cer-
tain changes will occur in the workspace. We will refer
to problems such as this as the class of changing config-
uration space problems. To the best of our knowledge
there is no formal treatment of this type of problem in
the literature. We can analyze and determine a solution
to a problem of this type.

While accounting for the changing environment, prob-
lems such must be described geometrically. A standard
way of describing a geometric motion planning prob-
lem of a robot A in a workspace W is in terms of its
n-dimensional configuration space, C, in which n is the

number of degrees of freedom of A [6]. In terms of the
configuration space, the robot is represented as a point.
If W contains a set of fixed obstacles, {Bi,..., By}, the
goal of a traditional motion planning algorithm is to find
a path, from an initial configuration to a goal configura-
tion, whose image lies in Cfree (0r Cyaiia [6])-

We can consider a, prob{em that has a discrete set of
collision-free configuration spaces. At a given time, the
robot is in one of these spaces, and the environment can
cause the robot to move to a different collision-free con-
figuration space. This concept has been considered in [3],
in which transient obstacles were introduced for a motion
planning problem. In this approach polygonal obstacles
exist only for a given period of time, and an efficient al-
gorithm was proposed to determine reasonable solutions
when the transient obstacles are completely predictable.
Since the obstacles appear and disappear at the same
position, the motion planning problem can again be de-
scribed in terms of a discrete set of collision-free config-
uration spaces.

-— Goal Region

Goal Region

e

Service Area 1)

Service Area 2

\ g

a. b.

Figure 1. A problem that involves safe and hazardous re-
gions in addition to obstacles.

We can also move beyond the concept of a changing
configuration space to model new types of motion plan-
ning problems. For instance, in some situations, it may
be appropriate to not consider the individual moving ob-
stacles in the environment, and instead associate a cost
of traversing a region that could have moving obstacles.
This leads to a class of problems that we refer to as
hazardous region and shelter problems. The cost could,
for instance, directly correspond to the risk involved in
traversing a hazardous region. In a similar context, this
has been referred to as a weighted region problem [8]. As-
signing a cost associated with the traversal of a region
provides a way of dealing with the complexity of motion
planning in an environment that has several moving ob-

stacles, particularly when their motion is unknown. Sim-
ilar treatment of dynamic environments in [11] led to the
idea of shelters (regions which have low cost of traver-
sal) and alarms Eevents that cause the cost of traversing
a region to change from low to high). The treatment
considered in this work, however, is substantially more
general.

As an example of a hazardous region and shelter prob-
lem, consider the motion planning problem shown in Fig-
ure l.a, for a mobile robot in a factory floor in which
there might be other moving robots, vehicles, or people
in the corridors. Whenever the robot detects the pres-
ence of some impending collision in its path, it is directed
toward shelters along the sides of the corridor. These
shelters become relevant only when the environment is
hazardous. By proper modeling of hazardous regions and
shelters in the workspace, the need for explicitly consid-
ering multiple moving objects (as in [1, 2, 9]) can be
avoided, while implicitly factoring in the effect of mov-
ing obstacles in the determination of motion plans.

The concept of environment modes permits us to de-
scribe motion planning problems that have a greater
scope than just the problem of moving from a initial
position to a goal region. We describe a class of prob-
lems that we call servicing problems, which involve in-
teraction between the robot and the environment. Con-
sider, for example the environment shown in Figure 1.b,
which contains service areas 1 and 2. Whenever there
is a request for one type of service, the robot should
head toward that service area and process the service
request. We can define four environment modes, which
correspond to the combinations of the two different types
of service requests. One can associate a cost for the
waiting time before a request is processed. Additionally,
the robot directly affects the environment by causing the
mode to change once the robot arrives at a service area.
Our framework can model interactions of this type, be-
tween the robot and the environment, which occur dur-
ing motion planning.

2 Review of General Concepts

In general, to uniquely identify all of the possible sit-
uations that can occur in our problem, we define a state
space as the cartesian product, X = Cgpee X E, in which
E denotes a set of environment modes. The environ-
ment mode eg4+1 (corresponding to stage k) is known to
be sampled from P(eg41|zk, ux), which is conditioned on
the previous robot action, uy.

We define a strategy at stage k of A as a function
v : X — U. For each state, zj, the function -
yields an action up = vg(zx). The set of mappings
{71,72,---,7K} is denoted by v and termed a strategy.

We represent a desired performance criterion
by a mnonnegative real-valued functional L(z1,...,
TK+1,U1, -, UK), called the loss functional. The ulti-
mate goal of the planner is to determine an optimal strat-
egy v* = {75, ..., 7} that causes L to be minimized
in an expected sense. This loss function can be defined
in terms of contact dynamic regions (mapped to X; from
DS C Cfree) and/or enclosure dynamic regions (mapped
to X; from Df C Cfree). A goal region is considered as
a special kind of dynamic region, denoted by X¢.

In computed examples, we will use w(vy,z1,e) to re-
fer to the path taken through the state space by the
implementation of -y, an initial state, z;, and a given en-
vironment mode sequence e = {ej, ea,...,ex}. We refer
to w(y,z1,e) as a sample path for v (given z; and e).
We also define W(~, z1), which is a random process that
takes on values of sample paths once e is known. Note
that the probability distribution of e can be directly de-
termined from 7, z1, and the environment transition dis-
tribution; therefore, the probability distribution over the
sample paths (which defines W (v, z;)) is known.

3 Determining Optimal Strategies

We present a method for computing optimal strategies
that is based on the principle of optimality. Suppose
that for some k, the optimal strategy is known for each
stage i € {k,...,K}. The expected loss obtained by
starting from stage k, and implementing the portion of
the optimal strategy, {v;,...,7k}, can be represented
as

K

Li(zr) =E {Zli(ﬂﬂz’,ﬁ(%)) + lK+1($K+1)} , (1)

i=k

in which E{} denotes expectation. The expectation is
taken over the possible environment sequences, e. The
function L} (zy) is sometimes referred to as the cost-to-go
function in dynamic optimization literature.

The principle of optimality [4] states that L} (z)) can

be obtained from L} ,(2x41) by the following recur-
rence: L} (zy) =

min { Iy (zg, ur) + Z L1 @kg1) P(@rs1 |Tr, wr)
uy,
Th1
o)
Note that the sum in (2) is taken over a finite number of
states, which can be reached using the state transition
distribution.

Suppose that the goal is to determine the optimal
action, wuy, for every value of xy, and every stage k €
{1,...,K}. One can begin with stage K + 1, and repeat-
edly apply (2) to obtain the optimal actions. At stage
K +1, we obtain L}, (x+1) = lk+1(2x+1). The cost-
to-go, L, can be determined from L}, through (2).
Using the ux € U that minimizes (2) at rx, we define
Yk (*x) = ukx. We then apply (2) again, using L to
obtain L} _; and % _;. These iterations continue until
k = 1. Finally, we take v* = {7{,...,7k}. The loss
function Lj(z;) shares similarities with the concept of
a global navigation function in motion planning [6, 10],
and the wavefront expansion method that is described in
[6].

We determine optimal strategies numerically, by suc-
cessively building approximate representations of Lj.
This offers flexibility, since analytical solutions are very
difficult to obtain, and have only been previously ob-
tained by considering very specific cases [11]. Each dy-
namic programming iteration can be considered as the

construction of an approximate representation of L;. We
decompose the state space into cells of uniform size; how-
ever, it is important to note the differences between the
use of this decomposition in our context and the tradi-
tional use of decompositions in geometric motion plan-
ning (see, for example, [6]). Our primary interest in
using the decomposition is to construct a good approxi-
mation of the function Lj.

We obtain the value for L} (z) by computing the right
side of (2) for various values of uy, including u, = @. The
value for L (zy) is obtained by linear interpolation on
X, for a given xpy;. Other schemes, such as quadratic
interpolation, can be used to improve numerical accuracy

[5]-

Note that the L% represents the cost of the optimal
one-stage strategy from each state zx. More generally,

E}(_i represents the cost of the optimal i+ 1-stage strat-

egy from each state zx_;. For a motion planning prob-
lem, we are only concerned with strategies that require
a finite number of stages, before terminating in the goal
region. For each position in the state space, one of the
following occurs after some finite number of iterations:
(i) The state, z, is in the goal region, in which case
Li(xx) = 0; (ii) The losses Ly (zx) and Li(2r41) be-
come equal for zy = x41; (iii) The loss Lj(z) contin-
ues to be greater than L, (zg+1) for x4 = zg11. The
second condition occurs when the optimal strategy from
ZTr4+1 has already been completely determined, and an
additional stage accomplishes nothing (this additional
stage can the considered as transpiring in the goal re-
gion, in which no additional loss is received). The third
condition occurs when the goal cannot be reached from
Zr4+1. If we continue to perform the dynamic program-
ming iterations until one of the three conditions is met
for every z; € X, then the optimal strategy from all
initial states will be represented. The resulting strategy
is formed from the optimal actions in the final iteration.
The optimal strategy is considered stationary, since it
only depends on the state, as opposed to additionally
requiring the stage index. Note that no choice of K is
necessary. Also, at each iteration of the dynamic pro-
gramming algorithm, we only retain the representation
of Ly, while constructing Lj.

To execute a strategy, the robot uses the final cost-
to-go representation, which we call L7. The robot is
not confined to move along the quantization grid that
is used for determining the cost-to-go functions. The
optimal action can be obtained from any real-valued lo-
cation z € X though the use of (2), linear interpolation,

and the approximate representation of L}. A real-valued
initial state is given (the final component represents the
environment mode, and is an integer). The application
of the optimal action will yield a new real-valued config-
uration for the robot. This form of iteration continues
until the goal region X is entered (assuming that it can
be reached).

In our simulation experiments, we have considered
problems in which the dimension of C¢,., is two or three,
and we have considered up to 32 environment modes. For
two-dimensional configuration space, we typically divide
the space into 50 x 50 x |E| cells, and use from 16 to 64

quantized actions (excluding () to approximate trans-
lational motion. For three-dimensional configuration
space, we typically divide the space into 50 x 50 x 64 x | E|
cells.

The computation times to determine «* vary dramat-
ically, depending on the resolution of the representation,
number of environment states, and dimension of the con-
figuration space. For each iteration of the dynamic pro-
gramming, the time complexity is O(Q"E?U) (E is the
number of environment modes, () is the number of cells
per dimension of X, and U is the number of actions), and
the number of iterations is proportional to the robot ve-
locity and the complexity of the solution strategy. For
the examples that we present in this paper, the compu-
tation times vary from about one minute to a few hours,
on a SPARC 10 workstation. It is important to note
that the dynamic programming equation (2) is highly
parallelizable. The computation of the optimal action at
each location zj, depends only on a very local portion
of the representation of Lj, +1($k+1), and on no portion

of L} (k). Also note that once the state-feedback con-
troller has been constructed, the optimal action can be
obtained very quickly for a given state, permitting a real-
time application.

4 Computed Results
4.1 Changing Configuration Space

Suppose there are m regions in the workspace that can
appear or disappear, and we wish to prohibit collisions if
they appear. We define m dynamic regions, D, ..., Dy,.

We will assume that the stochastic processes that gov-
ern these regions are independent. In general, we have
2™ environment modes, which correspond to each pos-
sible subset of obstacles that can appear. If the region
processes are dependent, several of these subsets of re-
gions might not be possible (for one reason or another in
practice), thereby reducing the number of environment
modes. Our framework supports dependent processes by
defining the appropriate environment transition proba-
bilities; however, we use independent processes to ease
the modeling, through the use of Poisson processes.

We define two Poisson arrival rates for each dynamic
region, D;: A and Ai. The probabilities of a region
appearing or disappearing can then be derived, to yield:
Pyo, P31, Ply, and P};. Each environment transition
probability is given by

P(exsaler) = [[Phss (3)
i=1

in which k represents the ‘" bit in the binary repre-
sentation of ey1, and [, represents the i** bit in the
binary representation of e;. The interpretation of this
is that appearing or disappearing regions correspond to
bits changing from 0 to 1, or from 1 to 0 in the envi-
ronment mode index. We additionally assume that the
probability is zero that a region will appear in the same
location as the robot.

We now describe how the loss functional is built. Each
dynamic region, D;, is considered as a contact dynamic

region, from which m dynamic X-regions are formed. We
define ¢, = At, ¢; = o0, and ¢} = 0. By setting ¢, we
obtain time-optimal solutions when the goal is reached
without collision. The constant ¢; provides a penalty
for colliding with a dynamic region that has appeared,
which precludes this alternative from strategies. We also
let ¢f = o0.

We now present several computed examples. A sim-
ple example is first presented in Figure 2 that illustrates
many of the concepts. Figure 2.a shows a problem in
which there is a point robot that translates in ®2. A
single doorway exists in the workspace; therefore, there
are two environment states, e = 0 and e = 1. The outer
dimensions of the workspace for this and all other ex-
amples are 100 x 100. For this example, |[v||At = 2,
Pyo = P11 = 0.98. The goal region, X¢ for this problem
and others in this class exist in all layers of X (i.e., the
goal does not depend on the environment mode).

Figure 2.b depicts 20 sample paths from a fixed initial
location to the goal region, under the implementation of
the computed optimal strategy. Initially e; = 0, indi-
cating that the door is open. Recall that W (v*, z;) rep-
resents the random process yielded by the strategy ~v*,
starting from z; € X. Each of the 20 sample paths is
obtained by sampling an environment mode sequence, e,
from the Markov process, to obtain w(y*,z1,e), which
corresponds to one fixed trajectory in X that terminates
in the goal. Figure 2.b clearly illustrates different sample
paths that can result during execution, even though the
strategy is fixed.

Figures 2.c and 2.d depict the optimal strategy ~v*.
The direction of each arrow indicates the direction of mo-
tion (specified as uy, = v*(zx)) for the robot, from that
particular state location. The state space was quantized
into 75 x 75 x 2 locations for determining the optimal
strategy; however, for clarity we show actions at fewer
locations in the figures. When e = 0, a sharp division
is observed between places in the state space that lead
to the doorway, places that lead to the open corridor.
When e = 1, the robot is lead through the open corridor,
to the goal region. Figures 2.e and 2.f show 20 level-set
contours of the cost-to-go function, Li(z1). This func-
tion increases as the distance from the goal increases.

We next show some results for a more complex exam-
ple, in which there are 18 doorways, in Figure 3. We as-
sume a point robot, in which ||v||A# = 3. There are three
different classes of doors, which open and close simulta-
neously (see Figure 3.a). This results in three discon-
nected dynamic regions and eight environment modes.
Each class of doors is governed by the same Poisson pa-
rameters as the previous example.

Figure 3.b shows 20 sample paths under the imple-
mentation of the optimal strategy, when e; = 0 (all doors
are initially open). It is observed that many different
sample paths are obtained, under the optimal strategy,
~v*. For this example, there are places in the state space
in which the optimal action is v (2x) = ur = 0 (i.e., the
robot waits for some door(s) to open).

Figure 4 shows results from the problem discussed in
[7]. Four sample paths are shown under the implemen-
tation of the optimal strategy, in which the initial envi-
ronment mode is e = 1 (the lower door is closed, and
the upper door is open). For the lower door, we have
Py = P;; = 0.99, and for the upper door, we have

Point Robot

Doorway

Goal Region

e. f.

Figure 2. a) A door problem; b) 20 sample paths; c) v* at
e =0; d) v* at e = 1; e) isoperformance curves at e = 0; f)
isoperformance curves at e = 1.

Pyo = P11 = 0.98. At a stage the robot is allowed to ei-
ther rotation, or translate in the direction of orientation
(reverse allowed) in which ||v|]|At = 3 and 6,,At = 0.2.
In the first sample the lower door opens, and the robot
efficiently moves to the goal region. In the second sam-
ple the lower door remains closed for a long period of
time, and the robot chooses to move through the upper
doorway, taking a much longer route. In the third sam-
ple the robot starts to head for the upper doorway, and
then changes its heading when the lower door opens. In
the fourth sample the lower door opens and then closes
again. The robot decides to wait for the door to open
again, instead of taking the longer route.

4.2 Hazardous Regions and Shelters

For this type of problem we consider only two envi-
ronment modes: either the environment is hazardous, or
the environment is safe. Of course, generalizations of
this are possible to multiple levels of danger, or different

7
Point Robot

Door Typ
.

Door Type 1
1111

a b.

Figure 3. a) A problem that has 18 doors; b) 20 sample
paths.

Figure 4. Four sample paths for a changing configuration
space problem with two doors.

shelters for different types of hazards. We have a single
dynamic enclosure region, D;. We let c¢; = 00, ¢, = At,
¢; =0, and ¢, > 0.

Figure 5.a shows a basic example that illustrates the
shelter and hazardous region concepts. There is a point
robot that translates in %2, and four thin horizontal re-
gions that are designated as shelters. For this example,
lv||At = 2, Poo = 0.75 and P11 = 0.98. The loss function
is defined with ¢p = 0 and ¢j = 5. This is a generaliza-
tion of a local path optimization problem defined in [11],
which involved a single horizontal shelter region, with
analogy to the problem of crossing a street.

Figure 5.b shows 20 sample paths under the imple-
mentation of the optimal strategy. One can see clearly
the use of the shelters during the times when the rest of
the “street” becomes hazardous (e = 1). During the en-
vironment mode e = 1, the best strategy seems to be to
head toward the next shelter (median) and move along

the shelter until the environment mode changes back to

0.

Point Robot ——

i

/

Shelter Area

Goal Region \
7 I,

Figure 5. a) A hazardous region and shelter problem; b) 20
sample paths.

Figure 6 shows results from the problem discussed in
Figure 1. Four sample paths are shown under the imple-
mentation of the optimal strategy, in which the initial
environment mode is e = 0 (the environment is not haz-
ardous). We have Pyo = P11 = 0.98. The motion model
is the same as in the example from Figure 4, in which
||lv]|At = 3 and 6,,At = 0.2. In the first sample, the
environment does not become hazardous, and the robot
never moves into a shelter (although it travels close to
the shelters). In the remaining sample paths, the robot
responds to the hazardous environment by moving into
a shelter. In the final sample path, the environment be-
came hazardous three times, causing the robot to take
shelter each time. After the robot moves into a shelter,
it remains there until the environment mode, e switches
back to 0. Further, while it is waiting inside a shelter
the robot chooses an orientation that points along the re-
maining optimal path for e = 0. We have observed this
behavior more clearly through animations of the robot
moving along the sample paths shown in Figure 6.

4.3 Servicing Problems

Suppose that there are m different types of services
that need to be performed. For simplicity we assume
that a request for a particular service to be performed
arrives with Poisson frequency A%. Each dynamic region,
D;, corresponds to places in which the robot can respond
to a service request. We assume that the robot can im-
mediately process a request, which causes the request
to be cleared. We assume that any number of services
can be requested simultaneously, and the governing pro-
cesses are independent. These assumptions are not, of
course, necessary, but they simplify the examples that
we consider.

We now define the environment probability distribu-
tion. If z;, € D; then P}, = P}, =0, and Fj, = F§; = 1;
otherwise, we have P}, = 1 and

At
Py = Nse Notadt, =1 — e At (4)

0

in which), is the Poisson arrival rate for the it" service
request. The elements of the environment transition dis-

Figure 6. Four sample paths for a hazardous region and
shelter problem.

tribution are obtained by forming products as in (3). We
let ¢; = o0, ¢y = At, ¢; =0, and ¢} > 0. To construct
the loss functional, D; is considered as an enclosure or
contact dynamic region, as defined [7].

Figure 7 shows results for the problem discussed in
Figure 1.b. Four sample paths are shown under the im-
plementation of the optimal strategy, in which the ini-
tial environment mode is e = 2 (there is a request for
the second service only). For the first service type, we
have Pyg = P11 = 0.99, and for the second type, we
have Pyy = P;1 = 0.98. The robot is allowed a non-
holonomic, fixed-radius motion, in which ||v||At = 3 and
0.,At = 0.2. Each service region is an enclosure dy-
namic region. The goal region in the state space, Xg,
only exists for e = 0; this implies that the robot must
reach the goal region while there are no requests for ser-
vicing. Very different sample paths are obtained because
the robot must process any request that appears in order
to reach Xgq.

5 Conclusions

We have presented a framework for analyzing and de-
termining optimal robot motion strategies under a par-
tially predictable, changing environment. This frame-
work is general and flexible for characterizing Type EP
uncertainty, by modeling the environment as a Markov
process. The concept of optimal motion strategies under
performance criteria provides a useful characterization
of the desired behavior for the robot in this context. In
addition, we have provided a computational approach,
based on the principle of optimality, that determines
optimal solutions to many interesting motion planning
problems under Type EP uncertainty. The variety of
computed examples that were presented in Section 4 help
substantiate these conclusions. We are presently inves-

Figure 7. Four sample paths for a servicing problem with a
nonholonomic car robot.

tigating problems in which the robot changes over time,
for instance while carrying objects.

References

[1] J. Canny and J. Reif. New lower bound techniques for
robot motion planning problems. In Proc. IEEE Confer-
ence on Foundations of Computer Science, pages 49-60,
1987.

[2] M. Erdmann and T. Lozano-Pérez. On multiple moving
objects. Algorithmica, 2:477 — 521, 1987.

[3] K. Fujimura. On motion planning amidst transient ob-
stacles. In Proc. IEEE International Conference on
Robotics and Automation, pages 1488-1493, 1992.

[4] P. R. Kumar and P. Varaiya. Stochastic Systems. Pren-
tice Hall, Englewood Cliffs, NJ, 1986.

[6] R. E. Larson and J. L. Casti. Principles of Dynamic
Programming, Part II. Dekker, New York, NY, 1982.

[6] J.-C. Latombe. Robot Motion Planning. Kluwer Aca-
demic Publishers, Boston, MA, 1991.

[7] S. M. LaValle and R. Sharma. A framework for mo-
tion planning in stochastic environments: Modeling and
analysis. Proc. 1995 IEEE International Conference on
Robotics and Automation.

[8] J. S. B. Mitchell. Planning Shortest Paths. PhD thesis,
Stanford University, 1986.

[9] J. H. Reif and M. Sharir. Motion planning in the pres-
ence of moving obstacles. In Proc. of IEEE Symp. on
Foundat. of Comp. Sci., pages 144-154, 1985.

[10] E. Rimon and D. E. Koditschek. Exact robot navigation
using artificial potential fields. IEEE Trans. on Robotics
and Automation, 8(5):501-518, October 1992.

[11] R. Sharma. Locally efficient path planning in an
uncertain, dynamic environment using a probabilistic
model. IEEFE Transactions on Robotics and Automation,
8(1):105-110, February 1992.

