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Abstract. In this paper we present our advances in a data structure, the Gap
Navigation Tree (GNT), useful for solving different visibility-based robotic tasks in
unknown planar environments. We present its use for optimal robot navigation in
simply-connected environments, locally optimal navigation in multiply-connected
environments, pursuit-evasion, and robot localization. The guiding philosophy of
this work is to avoid traditional problems such as complete map building and ex-
act localization by constructing a minimal representation based entirely on critical
events in online sensor measurements made by the robot. The data structure is
introduced from an information space perspective, in which the information used
among the different visibility-based tasks is essentially the same, and it is up to
the robot strategy to use it accordingly for the completion of the particular task.
This is done through a simple sensor abstraction that reports the discontinuities
in depth information of the environment from the robot’s perspective (gaps), and
without any kind of geometric measurements. The GNT framework was successfully
implemented on a real robot platform.

1 Introduction

This paper centers on the development of mobile robotics systems that per-
form sophisticated visibility-based tasks with minimal sensing requirements.
The goal is to provide autonomous mobile robots for applications such as
surveillance, search-and-rescue, firefighting, law enforcement, and remote vi-
sual presence. Classical approaches often lack reliability when applied in prac-
tice due to problems such as mapping uncertainty, registration, segmentation,
localization errors, and unpredictable control errors. A primary cause is that
previous algorithmic efforts have often assumed the availability of perfect
geometric models. The guiding philosophy in this work is to avoid most of
these difficulties by developing algorithms and mobile robots that minimize
the information requirements. By constructing an algorithm and control law
that use the information directly from the robot sensors, it may be possible
to complete a task while eliminating the need to make potentially flawed
measurements. This can provide low-cost solutions to challenging problems,
while achieving greater reliability in the face of uncertainties.
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In this work we present our developments of a dynamic data structure
called the Gap Navigation Tree (GNT). The GNT is constructed entirely
from online sensor measurements made by the robot. Once constructed, it
encodes paths from the current position of the robot to any place in the
environment. As the robot moves, the GNT is updated as to always reflect
the path information from the current position of the robot. These paths
are globally optimal in distance if the environment is simply-connected, even
though geometric information, such as lengths, angle measurements and robot
orientation, is not available. The only restriction is that the components of the
environment’s boundary must be piecewise smooth closed curves, with only
a finite number of nonsmooth points. The approach is based on modeling an
abstract sensor that reports the order of depth discontinuities with respect to
the heading of the robot. These discontinuities are called gaps. Encoding the
changes of the gaps, the information state of the robot evolves, until a goal
state is reached. Such goal state is task dependent, and it may be, for example,
to explore the whole environment, to find all evaders in pursuit tasks, etc. The
gap changes, called gap critical events, correspond to combinatorial changes
in the visibility region of the robot. Given that no exact geometric information
is needed for its construction or use, the GNT provides a robust framework
for solving robotic tasks in the plane. Moreover, it provides a simple sensor-
feedback strategy if the path that the robot transverses is encoded in the
GNT.

The paper is organized as follows. The remainder of this section is a brief
review of the previous work related to our approach. Section 2 presents the
sensing model, followed by a description of the GNT in an information space
framework in Section 3. Section 4 sketches the use of the GNT in robot
localization, navigation and pursuit-evasion tasks.

1.1 Sensorless and minimal sensing settings

In this paper we are concerned with visibility-based tasks in the plane. More
specifically, those robotics tasks for which sensor information can be modeled
as a visibility region. The visibility region is the set of points that can be
joined with a line segment to the robot’s position, without intersecting the
environment’s boundary. As the robot moves, its visibility region changes,
modifying the information that the robot knows about the environment or
the progress towards a goal. We are interested in determining the minimal
sensing capabilities a robot should have in order to complete a visibility-
based task. One approach that considers minimal sensing settings is known as
bug algorithms [16,20]. Combining global knowledge with local information,
a robot is able to navigate among obstacles and reach a given goal. The
robot navigation capabilities are simple (movement towards obstacles and
wall-following), no representation of the environment is kept, and the global
information may consist only of the position of the goal to reach. These
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characteristics allow the use of bug algorithms in robots with very limited
sensing capabilities and unreliable motion control.

In general, the initial state of the robot is unknown, and as it moves in
the environment, it might reach a goal state without determining its exact
current state. In robotics, the problem of driving a system from an unknown
state to a goal state was first considered in the context of manipulation
[10]. For example, up to convex hull symmetry it is possible to manipulate
polygonal parts to a final configuration without any sensor information [11].
Of course, not all robotic tasks can be solved without sensors, but it is very
interesting, and scientifically relevant, to determine the minimum information
necessary to complete a given task [2,6]. Moreover, one may go a step further
and design a sensor that exactly suits the robotic task. One can think of
an abstract sensor that gives the “ideal” minimal information to the robotic
system to work correctly, and its physical implementation in a “subideal”
sensor [9]. This philosophy can be used for solving the classical path-planning
problem, as presented in [28]. Using a critical-point detector and a passage-
point detector as abstract sensors, collision avoidance is achieved with sensor-
based repulsive potentials.

1.2 Visibility-based tasks

The changes in the visibility region have been extensively studied, from the
art-gallery problem [23], to decompositions of the environment into regions
of similar visibility. In [26], a cell complex decomposition is presented, the
visibility complex, in which points inside a cell see the same set of objects in
the environment. The space can be decomposed also into equivalence classes
of similar visibility of an object. Elements inside a class have a similar qual-
itative view of the object, that is, see the same aspect. An aspect here may
be defined as the set of views of an object that share the same combina-
torial structure. This leads to the study of the aspect graph [4]. In [13], a
planar environment is decomposed into cells that see the same aspect of the
environment’s boundary. The combinatorial structure of visibility regions in
that work is defined in terms of spurious and non-spurious edges. A spurious
edge is an edge of the visibility region that does not exist in the environ-
ment’s boundary, but it is produced by occlusions (i.e., by a corner). The
supporting line of a spurious edge is always collinear with the robot’s po-
sition. The sequence of spurious and nonspurious edges define the visibility

skeletons, and the environment is decomposed into cells of points that share
the same visibility skeleton. Such decomposition is called the visibility cell

decomposition.
In the decompositions mentioned before, if the robot moves inside a cell

there is not significant change in information. The robot receives about the
same information from the sensors. Such movements are called conservative

in the sense that they preserve the current robot’s information. In contrast,
when the robot crosses one of the cells’ boundary edges, the structure of the
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visibility region suffers a drastic change, and the robot’s information may be
modified. Such sudden changes are called visual events[8].

In the plane, if the components of the environment’s boundary are rep-
resented as a regular piecewise smooth closed curves, there are two kinds of
visual events. One kind is triggered when the robot crosses an environment’s
boundary generalized inflection ray, and the other when it crosses the comple-
ment of bitangent line segments of the boundary1. An inflection is a change
in the sign of the curvature of the environment’s boundary. We use the term
“generalized,” as in [19], to include polygonal boundaries. Given a generalized
inflection, an inflection ray is found by extending a ray from the inflection
until it hits another point of the environment’s boundary. A bitangent line
segment is a segment completely contained in the environment representa-
tion, whose supporting line is tangent to two points of the boundary, and
whose endpoints are these points of tangency. A common general position
assumption is that no line is tangent to more than two points of the bound-
ary (thus the term bitangent). For each bitangent, its complement is found
by extending outward from each point of tangency until the environment’s
boundary is hit again (see Figure 2).

Since the inflection and bitangents are so relevant for visibility-based prob-
lems, one may wonder if the robotic tasks may be described solely in terms of
inflections and bitangents, forgetting all the rest of geometric information of
the visibility region. Visibility-based tasks may have then the form of states
of information that are modified each time a visual event is detected. This
relation between the visual events and the robotic tasks has been exploded
before for different visibility-based tasks. Our aim here in the rest of this
Section is to give an unified view of visibility-based tasks. Particularly, we
will try to convince the reader that the tasks of optimal navigation, robot
localization, and pursuit-evasion share the same information structure. It is
up to the robot’s strategy to choose the way of manipulating this structure
to solve the particular task.

The first task we describe is optimal navigation in the plane. The classical
algorithm is to perform a search in the visibility graph, or in the bitangent
graph [22]. The bitangent graph is obtained from the visibility graph by delet-
ing all the edges, that if grew by a small epsilon, at least one of the endpoints
lies outside the boundary, or inside an object2. The bitangent graph is en-
tirely defined in terms of inflections and bitangents. Taking advantage of this,
in [1], shortest path trees are used to efficiently update the visibility region
of a moving point. On the other hand, each time a visual event occurs, a por-
tion of the shortest-path structure is revealed to the robot. It then becomes

1 In polygons there is a third kind of visual event, in which a non-reflex vertex
comes into view. Although this is relevant for defining, for example, the visi-
bility skeletons, it is particular for polygons, making generalization to curved
environments difficult.

2 Thus, the bitangent graph is called the reduced visibility graph in [18].
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possible to retrieve the shortest-path trees of an unknown environment, as it
is presented in [31,32]. Note, however, that the task of getting the shortest-
path information may use longer paths itself. This is because, in general, for
unknown environments, the competitive ratio between the length of the path
generated by any navigation strategy and the length of the optimal path is
unbounded [24].

In the robot localization problem, the robot must infer its position based
on local sensing [3,5,13,17]. One approach is to generate position hypotheses
by comparing the visibility skeleton of the robot’s visibility region with the
skeletons of the visibility cell decomposition[13]. If there is more than one
position hypotheses, the robot should move around to determine its position
with certainty. In [7], a strategy that computes an overlay arrangement of
the visibility cells is used to determine the optimal movement strategy to
reduce the set of position hypotheses. In that approach, a decision tree is
simulated, in which each decision node is a visibility skeleton comparison
that discards some position hypotheses. From the robot perspective, the lo-
calization problem can be stated as series of visual events that (must) occur
to uniquely identify the robot’s position. For example, if the robot detects
two bitangents and one inflection, in that order, it can discard all the possible
positions where the same movements lead to three bitangents in a row. This
sequence of visual events is available from the shortest-path tree[1]. Using
only visual events (i.e., no compass) will localize the robot up to a rigid rota-
tion transformation of the environment. In fact, the assumption of a compass
has a big impact in robotic tasks [2,6].

The last visibility-based task we describe here is the pursuit-evasion prob-
lem. In this task, one or several pursuers should find all possible evaders that
may be hiding in the environment[30]. In this task, a region of the environ-
ment is said to be contaminated if it might contain an evader, otherwise it
is referred as cleared. A cleared region that is contaminated again is called
recontaminated. The pursuit-evasion problem is solved when all the regions
of environment are cleared. Cleared and contaminated regions are separated
from the robot’s perspective by the current visibility region. Cleared regions
may only get recontaminated if they merge with a contaminated one, which
can only be the result of a combinatorial change in the visibility region. These
combinatorial changes are the base of the search algorithm presented in [12].
In terms of visual events, an strategy should dictate the sequence of inflection
rays and bitangent complements to cross in order to clear the whole environ-
ment. In [29] a strategy is presented that explicitly avoids some visual events
of being triggered to clear an unknown environment. The order of how the
visual events should occur also dictates the structure of the “T”, “S” and “Z”
patterns in [15], in which a 6-state automaton restricted to move along the
environment boundary serves as a pursuer. In [14] an algorithm is presented
in which clearing the environment is equivalent to clearing the shortest-path
structure from the current robot position in an unknown environment.
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2 Sensing model

In this Section we formalize the model of the robot and the model of the
information used from the sensors. The robot is modeled as a moving point in
a connected open set R in the plane. Let O = {o1, o2, ..., on} be the possibly
empty set of pairwise disjoint obstacles, in which oi ⊂ R for i = [1, 2, . . . , n]
is a closed set. Let ∂oi be the boundary of oi ∈ O. We assume that ∂oi has a
single connected component. Let F = R \

⋃n

i=1
oi, with oi ∈ O, be the free

space. Let ∂F be the boundary of F . The components of ∂F are piecewise
smooth closed curves with only a finite number of nonsmooth points. The
robot is only able to move in F . In Section 5 we will briefly discuss the case
when the robot is not a point.

The problem here is to design a sensor that detects the combinatorial
changes in the visibility region. As we will detail later, the changes of the
visibility region can be defined as a function of the spurious edges. When
a spurious edge either appears, disappears, splits or merges with another, a
combinatorial change in the visibility region occurs. From the robot perspec-
tive, the spurious edges are the discontinuities in depth information in the
environment. Note that geometric information of the spurious edges is not
relevant for the visual event detection. The events will be the same in spite
of the exact length and angular position of the spurious edges. Their order is
relevant, though, since we are interested in which discontinuity disappeared,
or merged with another, for example. Although the precise distances to the
walls may be unknown, the robot only needs a type of edge detector that can
detect each of the discontinuities, and return their direction relative to the
robot’s heading. From now on, each of this discontinuities will be referred
to as a gap, and the sensor as a gap sensor [27]. Besides the gap sensor, no
other sensing ability is assumed, i.e., it has neither a compass nor a reliable
odometer. The ideal gap sensor can be easily realized with through a range
sensor (i.e., laser or sonar) or using computer vision techniques.

Each gap hides a connected region of the environment that is occluded
to the robot from its current position. A label of “L” or “R” is assigned to a
gap to indicate the direction of the part of R that is hidden behind the gap.
This corresponds to transitions of the gap sensor from “far to near” (left)
or “near to far” (right), if the gaps are detected by a counterclockwise scan
with respect to the robot’s heading (see Figure 1.(a)).

2.1 Gap Tracking

When the robot moves in the environment, the gaps, as reported by the gap
sensor, may change. We refer to gap tracking to the process by which the
gap sensor monitors the current visible gaps and their respective changes.
It is assumed that the robot can track the gaps at all times and record any
topological change. There are four possible ways in which gaps change:
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Fig. 1. The robot’s view of the environment. The position of the robot is shown
with a black disk. (a) The environment and the respective labeling of the gaps
detected. (b) Angular position of the gaps detected in the visibility region.

Gap appearance: A gap, not detected before, is now tracked by the gap
sensor. The gap is said to be visible.

Gap disappearance: A gap is no longer detected by the gap sensor. The
given gap is not visible for the gap sensor.

Gaps merge: Several gaps merge into a single one.

Gap split: One gap splits into several gaps.

If a gap appears, the region behind it was just visible to the robot, but
now is “hidden” by the gap. Similarly, when a gap disappears, the region of
the environment behind the gap is now visible to the robot. With bitangents,
exactly two gaps may merge into one, and one gap splits exactly into two gaps.
These four gap topological changes are called the gap critical events. We say
’critical events’ instead of ’visual events’ to make clear that the complete
information of the visibility region is not available.

Appearances and disappearances of gaps are related to generalized inflec-
tions of ∂F . As illustrated in Figure 2.(a), appearances and disappearances of
gaps occur when the robot crosses inflection rays. Merges and splits of gaps,
are related to the bitangents of ∂F , and they occur when the robot crosses
bitangent complements. (Figure 2.(b)).

With bitangents, exactly two gaps may merge into one, and one gap splits
exactly into two gaps. With the minimal capabilities assumed now for the gap
sensor, the robot cannot discriminate between a gap splitting in three, or a
gap splitting into two, and an appearance close together. The general position
assumption may be relaxed if a more sophisticated gap sensor is available (i.e.,
measuring exact distances or angles).

Given the gaps that the robot detects at a given time, it is possible to com-
mand the robot to move toward a given gap. This sensor-feedback movement
is defined as chasing a gap. Note that with only the gap sensor information
the only movements that are guaranteed to be collision free are gap chasing
movements.
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(a) (b)

Fig. 2. Inflections and bitangents of ∂F . (a) Appearance and disappearance of gaps
occur when the robot crosses inflection rays. (b) Splits and merge occur by crossing
bitangent complements.

3 The GNT from an information state perspective

Before introducing the GNT data structure, we define what we mean by an
information space and an information state. As a state space captures the
dynamics of a system, allowing the design of control inputs, or the study of the
system trajectories, an information space captures the evolution of a system
in terms of previous sensor readings and control inputs. Formally, let X ⊂ <n

be the state space, U ⊂ <m the input space, and u : [0,∞) → U the input
history. Also, Y ⊂ <k is defined as the sensor space, which models the set of
all of the possible instantaneous readings from the sensors. Let y :→ [0,∞) →
Y be the sensor history, in which y(t) = h(x(t)) is the instantaneous sensor
reading for the state x(t) ∈ X for some mapping h : X → Y . An information

state at time t is given by ηt = (ut, yt), that is, the input and sensor history
up to time t. The information space I is defined as the set of all possible
information states. Given an information state ηt and an initial set of states
X0 ⊂ X, a derived information state F (ηt,X0) is the set of all the possible
x(t) ∈ X given ηt and X0.

In our sensing model, the sensing space Y is defined by the set of all the of
ordered circular sequences of possible readings of gaps. Thus, {L,L,R} ∈ Y

correspond to a sensor reading where two “left” gaps and a “right” gap are
detected. Note this sensor reading is indistinguishable from {R,L,L} and
{L,R,L}, since a compass is not available. This means that the mapping h,
from states to sensor readings is not injective. Even more, with only gaps
readings, the exact position of the robot cannot be determined, and differ-
ent neighborhoods of points will generate the same sensor reading across
the whole environment. The input space is determined by the gap chasing
movements, that is, the commands to the robot to move towards a gap, or a
sequence of gaps.
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3.1 Encoding information states

Remember that the robot can track the gaps all of the time and record
any of their topological changes. Thus, it can detect that from the transition
{L1, R1, R2, L2} to {L1, R2, L2}, the gap R2 disappeared. The gap sensor only
will report to the robot that a gap, detected before in this order, disappeared,
for example. This identification of gaps is implicit at the sensor level, and it is
possible if we assume coherency between the robot’s motion and gap changes
(i.e., small position changes of the robot will produce small angular position
changes in the gaps).

The gaps and their topological changes are encoded into a tree, hereafter
referred to as T . The tree T is the Gap Navigation Tree of the environment.
The root of T moves along with the robot. Each child of the root represents
a gap that is currently visible, and they are maintained in the circular or-
der of the gaps they represent. In T , we will use the terms gaps and nodes
interchangeably because each node encodes a gap.

As the robot moves, critical events are triggered. As events occur, T is
updated as follows: if a gap disappears, the corresponding node is removed
from T . If a gap appears, it is added as a child of the root of T in a location
that preserves the circular ordering of gaps. Any node that is added in this
way is designated as a primitive node, which indicates that a portion of the
environment that was once visible is now occluded. If a gap splits, then the
corresponding child of the root will be replaced with two children. If two gaps
merge, the two corresponding children of the root become the children of a
new node, d, and d becomes a child of the root (see Figure 3.a). Merging can
only occur between a pair of gaps that are adjacent in the circular ordering
produced by the gap sensor. Each node also keeps the label associated with
the gap.

A sequence of nodes from the root of T to a leaf define a sequence of gaps,
that if chased, follows a path in the bitangent graph. The proof of this result
is presented in Section 4.2. The relation of T with an information state is
immediate. In fact, T is nothing more than the sensor history of the current
information state. For example, assume that at time t1 the state of T is T1.
At t1 the robot is commanded to chase the sequence of gaps α, which brings
T into the state T2. Comparing T1 and T2 we can readily obtain the sequence
α followed (input history), with the respective changes as reported by the
gap sensor (sensor history). Note, however, that we are assuming that α is
the shortest sequence of gaps to take T1 into T2. In this sense, all sequences
of gaps that take T from one state to another are equivalent to the shortest
one, since at the end, they modify T in the same way.

3.2 Building the GNT of an unknown simply-connected

environment

We say that the robot is exploring if it is building the GNT of an environment.
When the robot is placed in an unknown environment, all of the leaves of
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(a) (b)

Fig. 3. (a) Encoding of critical events into a Gap Navigation Tree. The black disk
denotes the root of T and the current position of the robot. As the robot chases the
gap on the left, a gap appearance, and a gap merge are triggered. The structure of
T is updated accordingly. (b) Absence of gap critical events in multiply connected
environments. If the robot chases any of the to gaps, it will go around the obstacle
forever, because no gap chasing movement modifies the information state of the
robot.

T are marked as nonprimitive. This is because the robot has not yet seen
what is behind the corresponding gaps. The robot can arbitrarily choose to
chase any one of the gaps, and one of the following will occur when it crosses
the critical event related to the gap: (1) the gap will disappear, or (2) the
gap will split. If the gap disappears, this means that the robot has seen the
entire portion of the environment that was originally behind the gap. In this
case, the robot must choose another nonprimitive gap to chase. If the second
condition occurred, and the gap splits, then the robot can choose to chase
either one of the new gaps. This process can be applied repeatedly until
the first condition is met and a gap finally disappears. There is one further
complication. In some cases, there may be a nonprimitive leaf node, d, that
is not a child of the root. To handle this situation, the robot must first chase
the child of the root that is an ancestor of d in T . Once a split occurs, it must
then follow the next ancestor. This process repeats until d finally disappears
or splits. Note that during motion, critical events may occur in other gaps,
particularly appearances and merges, and T must be updated accordingly.
It is worth nothing that only the angular order, but not the precise angular
position of the gaps, is taken into account to build the tree. The construction
of T ends when all of the leaves are marked as primitive. This condition
indicates that the robot has seen the whole environment.

3.3 The GNT for multiply-connected environments

We briefly mention the complications that multiply-connected environments
present to the gap sensor model. For a more extensive description, the reader
is referred to [31]. The most interesting complication is that for some envi-
ronments there may be no critical events at all. Consider Figure 3.b, where
the environment’s boundary does not have either inflections or bitangents.
If the robot tries to follow either one of the gaps, expecting it to disappear,
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it will go around the obstacle forever. In terms of information states, there
is no gap chasing movement that modifies the current information state of
the robot. Even if there were critical events, no gap topological change gives
the information to the robot that it surrounded the obstacle once already.
To solve this, an artificial critical event must be introduced, that indicates
to the robot that the obstacle has been surrounded already. This serves as a
pebble, or marker, that the robot drops and picks as needed.

Another complication is present. In general, the obstacles cannot be dis-
criminated one from the other with only gap sensing information. If the ob-
stacles are assumed to be uniquely identifiable (i.e., they have different color),
a second sensor can indicate to the robot which gaps have been already ex-
plored. For example, a gap may be associated with the obstacle where it
begins (the ’near’ of the transition). A simple strategy to construct T may
command the robot to ’wall follow’ each of the obstacles of the environment.
In this case, the environment is completely explored when each of the ob-
stacles has been surrounded. This strategy assumes that the robot has the
capability of navigating by wall following, in addition to navigating by chas-
ing gaps.

4 Using the GNT: Solving some visibility-based tasks

4.1 Robot Localization

For brevity, we only sketch a straightforward algorithm for robot localization.
Given a map of the environment, the cells formed by the inflection rays and
bitangent complements can be computed. For simplicity, let the state space
X be the set of all of these cells. For each cell, a shortest path tree can
be obtained using a breath-first search in the bitangent graph. To each of
the nodes of the shortest-path tree a label of “L” or “R” is assigned. The
label will indicate the side to which the environment’s boundary lies, with
respect to an observer standing at the node, and looking away from the root.
A localization strategy here will try to match a partial construction of the
T with a shortest-path tree of one of the cells. Note that the GNT can be
obtained from a shortest-path tree by following the methods to find visibilty
polygons from shortest-path trees presented in [1].

At the beginning, the possible position of the robot belongs to X0 = X.
After the first sensor reading, a partially constructed T , T0, is used to compute
X1 = F (X0, T0). The set X1 consist of all the cells to which the sequence of
’L’ and ’R’ of the gap sensor reading correspond with the first level of nodes
of the respective shortest-path trees. As the robot moves, a set of possible
positions Xi is computed from the partial constructed Ti, until a set Xn,
where no robot movement can decrease the position uncertainty. If |Xn| = 1,
the robot will be localized, up to a visibility cell, and up to a rotation of the
environment.
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To reduce the position uncertainty, the localization movements can be
computed at least in two ways. The first one is using a modified version
of the spiral search in the Kleinberg’s algorithm [17], using the gaps as the
incident edges of a tree representation of the environment. The movements
will be similar if the strategy presented by Dudek et. al.[7] is used. Instead
of using the arrangement of visibility cells, the shortest-path trees are used
for the comparisons in the movement decisions. Note that the localization
strategy sketched here works with only the information provided by the edges
not used in the visibility skeleton, which is the opposite case from previous
approaches.

4.2 Optimal and locally optimal navigation

We state the optimality of the paths encoded in T by chasing sequences of
gaps with the following two propositions:

Proposition 1 Let q ∈ F , and assume that F is simply-connected. If V =
(v1, v2, ..., vn) is the sequence of tangency points of ∂F of the shortest path

between q and vn in the bitangent graph, and G = (α1, α2, ..., αn) is the

sequence of gaps where αi is the gap produced by the tangency point vi when

it is visible, then the path generated by chasing the gap sequence G is the

shortest path between q and vn.

Proof. It is enough to prove that the path between vi and vi+1 is optimal,
since the sequence V is optimal by definition. The shortest path between two
points in the Euclidean plane is unique and is a straight line. Following αi+1

the trajectory is a straight line that ends in vi+1. We conclude that the path
between vi and vi+1 is optimal. ut

Proposition 2 The paths encoded in T between the root of T and any point

q ∈ F , if F is simply-connected, are optimal.

Proof. Let p ∈ F . Let T (p) refer to the configuration of T when the robot
is at p. From T (p) we generate the sequence of gaps G = {α1, α2, ..., αn, αq}
that must be chased to reach q. By following G, the tangency points V =
{v1, v2, ..., vn, q} of ∂F are visited. Let Go be the sequence of gaps that gen-
erates the shortest path between p and q. Let αd ∈ G (of point vd ∈ V ) be
the first gap in which G and Go differ. Since critical events are recorded in
T as they become visible, this means that the point vd is visible before the
rest of the path in Go, which therefore, hides behind αd. The shortest path
between the current position of the robot and the rest of the path encoded
in Go is the one following αd (by Proposition 1). Therefore, Go contains αd,
and we conclude that G = Go. ut

By Proposition 2, the paths encoded in T are optimal, and in this sense, a
shortest-path tree and the GNT encode the same path information. Optimal
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navigation occurs by executing motions that follow the path in T from the
root to the desired node d. During these motions, the robot records all changes
to T that occur from critical gap events. At every time during the navigation,
the robot chases the gap that corresponds to the child of the root that is an
ancestor of d. At several points, the gap may split, and the robot must chase
the new child of the root that is an ancestor of d. This results in a sequence
of gap chasing commands, which ends when d is not detected anymore. As it
is presented in [32], interesting objects in the environment can be associated
with gaps, and the robot can manipulate (i.e., move) them through optimal
paths.

When T is constructed for a multiply-connected environment, global op-
timality cannot be guaranteed. This is because T is a tree, which encodes
only one path between the robot’s position and any place in the environ-
ment. Since no distance information was taken into account in T , the path
encoded may not be the optimal one. When multiple paths are found to the
same place, a heuristic is used and only the paths with less gaps to chase
are kept. This guarantees that the robot will travel through less cluttered
areas, but tells nothing about optimality. Still, by a similar argument used
in Proposition 1 they are still locally optimal. For more details, the reader is
referred to [31].

4.3 Pursuit-Evasion

We next consider augmenting the GNTs to handle pursuit-evasion. A gap
may be labeled as cleared, contaminated or recontaminated as a function of
the region that hides behind it. Initially, all of the gaps in T are labeled as
contaminated. If a gap appears, it is labeled as cleared, since if an evader is
behind the gap, the pursuer would already have detected it. A cleared gap is
recontaminated if it merges with a contaminated or a recontaminated gap. If
T has at least one node that is not cleared, it is labeled as contaminated; oth-
erwise, it is said that T is cleared. Since each node in T encodes a connected
region of the environment, solving the pursuit-evasion problem is equivalent
to clearing each node of T .

In [14] we present an online strategy that reads “cleaning” schedules from
T . Each schedule is an ordered sequence of gaps that should be cleared. In
other words, it is a sequence of changes in the visibility region that guaran-
tees that some region of the environment is cleared. The strategy works by
growing a set of adjacent children of the root of T . When a gap recontam-
ination occurs, this is naturally reflected in T by the merge critical event.
Schedules are then defined recursively, where for a node encoding a merge,
its children should be cleared first. Circular dependencies of contamination
merges can be detected, as in [25], to conclude that the environment cannot
be successfully cleared with a single pursuer. The pursuer can place a static
sentry, or guard, to prevent a critical event from happening, breaking the
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circular dependency. As proved in [14], by using a GNT the number of sen-
tries needed is asymptotically optimal, O(log n), where n is the number of
bitangents in the environment.

Although the GNT keeps all the contamination information to solve a
pursuit-evasion problem, it may not encode the paths needed to clear some
regions. The GNT only provides shortest-paths, but maybe longer paths are
needed to avoid some critical event (i.e., a merge) from happening. Figure 4
shows an environment that can be cleared by a single pursuer, but not by
following paths in the GNT.

e?

e?v

clean

(a) (b)

Fig. 4. (a) Not every environment searchable with one robot is searchable with one
robot following sequences of gaps. A robot following the dashed path can find all of
the evaders (left) . The thick paths, generated by chasing gaps, cause unavoidable
recontaminations (right). (b) Robot platform used in the real experiments. The gap
sensor was realized using two laser range sensors.

5 Implementation and conclusions

The GNT construction for a simply-connected environment was successfully
implemented using the robot platform shown in Figure 4.b.. In the GNT
model, the robot was considered as a point that can get arbitrarily close to
the boundary before a critical event is triggered. Since this is not possible in
the real robot, wall-following capabilities were provided such that the robot
still chase the detected gaps, while taking into account the environment’s
boundary.

Although from a planning perspective the GNT may unify some of the
visibility tasks, the navigation paths it offers may not be adequate for all
robotic settings. For example, one may prefer the safety of maximum clear-
ance paths [5], instead of the shortest-paths. Still, the GNT may be used to
direct the motions of a robust navigation system, such as the one presented
in [21]. An algorithm using the GNT can determine which discontinuity to
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follow, and the navigation system, at a lower level, will determine the safer
motions for the robot.
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ITESM Campus Ciudad de México and by the ITESM Campus Morelos,
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