Umeå

\[S^2 \times S^1 \times S^1 \times S^1 \rightarrow \text{car has } 5 \text{ degrees of freedom} \]

\[R^3 \times S^1 \rightarrow 4 \text{ d.o.f.} \]

\[\text{SO}(3) \rightarrow \text{RP}^3 \rightarrow 3 \text{ degrees of freedom} \]
Topological Concepts (LaValle, 4.1)

Topological space

A set X is called a topological space if there is a collection of subsets of X, called open sets, such that:

1) The union of a countable number of open sets is an open set.
2) The intersection of a finite number of open sets is an open set.
3) X, \emptyset are open sets.
A subset $C \subseteq X$ is called **closed** if $X - C$ is an open set.

\mathbb{R}

- $(0, 1)$ - open set
- $(0, 1) \cup (3, 4)$

- $[0, 1]$ - closed set
- \mathbb{R} - closed set
- ϕ - closed, open
- X - open, closed

$[0, 1]$ - neither open nor closed
A function is **continuous** if \(f^{-1}(O) \) is an open set for any open set \(O \).

\[f: X \rightarrow Y \quad f^{-1}(O) = \{ x \in X \mid f(x) \in O \} \]

preimage
The composition of two continuous functions is a continuous function.
A function $f: X \rightarrow Y$ is called a **homeomorphism** if f is bijective, f is continuous, f^{-1} is continuous.
Manifold M

A top. space is a manifold if for any $x \in M$, there exists an open set $O \subset M$ such that:

1) $x \in O$, 2) O is homeomorphic to \mathbb{R}^n, 3) n is fixed for all x

n is called the dimension of M