Recall 4 kinds of critical events:

1) appear
2) disappear
3) split
4) merge

Imagine a "movie" where gaps shows up.

A derived I-space that records only the sequence of cyclic orderings of gaps:

\[
\begin{align*}
\text{cyclic} & \quad \text{compress this into a tree}\n\end{align*}
\]

Make an even smaller I-space.
Consider the 4 critical events:

1) appear:
 - New node, attached to root
 - New label

2) disappear:
 - Delete node

3) merge

4) split

Shows the "merge structure"
Consider growing a tree that “represents” the whole environment/configuration.

Initially:

- Square denotes primitive node
- Cannot split

Modify the tree at the critical events:

For an appear event, the new node is called primitive.
'Learn' the environment/configuration

Keep chasing nonprimitive gaps/nodes
(any branch that has at least
one non-primitive leaf node)

If a split occurs, chase a non-primitive child
If a disappear occurs, chase a different non-primitive
node.

If all leaves are primitive, then
we are done exploring.
What is it good for? The robot can navigate optimally, in terms of shortest possible Euclidean distance travelled.

Objects in the environment

- Chase(object)
 - No distances or angles
 - Unknown whether E is polygonal or smooth
 - Big or Small?

\[X(\mathcal{H}) \subseteq X = \mathbb{R}^2 \times \mathbb{S}^1 \times \mathcal{E} \]

Sec. 6.2.4
July? June?

Can we learn about the state with no sensors?

Actuation only

Project Teams?

(Olli, Timo)

Umeå - individual projects: Erik, Ola, Kalle
Markus
Tero
Reijo, Lassi
Nazia