Unknown environment

Environment is one of several
Let \(E = \{ e_1, e_2, \ldots, e_n \} \)
\[X = \mathbb{Z} \times \mathbb{Z} \times D \times E \]

Here, \(X(\tau k) \) gives set of possible positions, directions, environments

Move while reducing the size of \(X(\tau k) \)

Cannot distinguish between translated or rotated copies of the "same" environment

\[
\begin{array}{c|c}
\downarrow & \leftarrow \\
\hline
\uparrow & \rightarrow \\
\end{array}
\] (no compass)
We can even let E be infinite.

Example: E is the set of all finite, connected sets of white tiles.

Problem: Mapping and localization at the same time (SLAM).

Let $\text{Maps} = \text{Pow}(\mathbb{Z} \times \mathbb{Z} \times D \times E)$

Represent a set in Maps by recording the current local configuration, and the "status" of each tile in $\mathbb{Z} \times \mathbb{Z}$.

- white \rightarrow name then
- black \rightarrow name then
- unknown

$(0, 0, N)$
Some state space
\[X = \mathbb{Z} \times \mathbb{Z} \times D \times E \]

Different task (Blum, Kozen, 1978)

There may be a treasure on one of the white tiles.

Additional sensor: Binary treasure detector.

Need to visit every tile

Systematic search:
- Spiralizing outward
- Breadth first
- Depth first

- Takes time and space linear in number of white tiles

\[O(n) \quad n = \# \text{ of white tiles} \]

Can we solve the problem with less space?
Make a derived F-space that keeps track of

1) lattice - # of tiles in the local N direction (O(lgn) bits)
2) orientation (local) (2 bits)

Sec. 12.3.1
Localization in a Given Polygon

Sensors: Compass - no orientation problems

Visibility - perfect depth mapping \(\Rightarrow y: S' \rightarrow [0, \infty) \)

Sensor

\(X = \mathbb{R}^2 \)

Inside of each region, the set of visible edges (partial or full) remains the same.

Divide environment into convex regions

Ilcinkas TCS?
H(y) = 4 possible positions

Χ(??)?